Skip to main content
Log in

The Two-Dimensional Euler Equations on Singular Domains

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We establish the existence of global weak solutions of the two-dimensional incompressible Euler equations for a large class of non-smooth open sets. Loosely, these open sets are the complements (in a simply connected domain) of a finite number of obstacles with positive Sobolev capacity. Existence of weak solutions with L p vorticity is deduced from a property of domain continuity for the Euler equations that relates to the so-called γ-convergence of open sets. Our results complete those obtained for convex domains in Taylor (Progress in Nonlinear Differential Equations and their Applications, Vol. 42, 2000), or for domains with asymptotically small holes (Iftimie et al. in Commun Partial Differ Equ 28(1–2), 349–379, 2003; Lopes Filho in SIAM J Math Anal 39(2), 422–436, 2007).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Borsuk, M., Kondratiev, V.: Elliptic boundary value problems of second order in piecewise smooth domains. North-Holland Mathematical Library, Vol. 69. Elsevier Science B.V., Amsterdam, 2006

  2. Bucur D., Feireisl E., Necasova S., Wolf J.: On the asymptotic limit of the Navier–Stokes system with rough boundaries. J. Differ. Equ. 244(11), 2890–2908 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Casado-Diaz J., Fernandez-Cara E., Simon J.: Why viscous fluids adhere to rugose walls: a mathematical explanation. J. Differ. Equ. 189(2), 26–537 (2003)

    Article  MathSciNet  Google Scholar 

  4. Delort J.-M.: Existence de nappes de tourbillon en dimension deux. (French) [Existence of vortex sheets in dimension two]. J. Am. Math. Soc. 4(3), 553–586 (1991)

    MathSciNet  MATH  Google Scholar 

  5. DiPerna R.J., Majda A.J.: Concentrations in regularizations for 2-D incompressible flow. Commun. Pure Appl. Math. 40(3), 301–345 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  6. Galdi, G.P.: An introduction to the mathematical theory of the Navier-Stokes equations. Steady-state problems, 2nd edn. Springer Monographs in Mathematics. Springer, New York, 2011

  7. Henrot, A., Pierre, M.: Variation et optimisation de formes. Une analyse géométrique (French) [Shape variation and optimization. A geometric analysis], Mathématiques & Applications, Vol. 48. Springer, Berlin, 2005

  8. Iftimie D., Lopes Filho M.C., Nussenzveig Lopes H.J.: Two dimensional incompressible ideal flow around a small obstacle. Commun. Partial Diff. Equ. 28(1–2), 349–379 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kikuchi, K.: Exterior problem for the two-dimensional Euler equation. J. Fac. Sci. Univ. Tokyo Sect. 1A Math. 30(1), 63–92 (1983)

  10. Kozlov, V.A., Mazya, V.G., Rossmann, J.: Spectral problems associated with corner singularities of solutions to elliptic equations. Mathematical Surveys and Monographs, Vol. 85. American Mathematical Society, Providence, RI, 2001

  11. Lacave C.: Two dimensional incompressible ideal flow around a thin obstacle tending to a curve. Annales de l’IHP, Anl 26, 1121–1148 (2009)

    MathSciNet  MATH  Google Scholar 

  12. Lacave C.: Two-dimensional incompressible ideal flow around a small curve. Commun. Partial Diff. Equ. 37(4), 690–731 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lacave, C.: Uniqueness for two dimensional incompressible ideal flow on singular domains. submitted, preprint 2011. arXiv:1109.1153

  14. Lopes Filho M.C.: Vortex dynamics in a two dimensional domain with holes and the small obstacle limit. SIAM J. Math. Anal. 39(2), 422–436 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Majda, A., Bertozzi, A.: Vorticity and Incompressible Flow. Cambridge University Press, Cambridge, 2002

  16. McGrath F.J.: Nonstationary plane flow of viscous and ideal fluids. Arch. Ration. Mech. Anal. 27, 329–348 (1967)

    MathSciNet  MATH  Google Scholar 

  17. Pommerenke, C.: Univalent Functions. Vandenhoeck & Ruprecht, Göttingen, 1975

  18. Simon J.: Compact sets in the space Lp(0,T;B). Ann. Mat. Pura Appl. (4) 146, 65–96 (1987)

    Google Scholar 

  19. Sverák V.: On optimal shape design. J. Math. Pures Appl. (9) 72(6), 537–551 (1993)

    MathSciNet  MATH  Google Scholar 

  20. Taylor, M.: Incompressible fluid flows on rough domains. Semigroups of Operators: Theory and Applications (Newport Beach, CA, 1998). In: Progress in Nonlinear Differential Equations and their Applications, Vol. 42. Birkhauser, Basel, 320–334, 2000

  21. Wolibner, W.: Un théorème sur l’existence du mouvement plan d’un fluide parfait homogène, incompressible, pendant un temps infiniment long. Math. Z. 37(1), 698–726, 1933

    Google Scholar 

  22. Yudovich, V.I.: Non-stationary flows of an ideal incompressible fluid. Z. Vycisl. Mat. i Mat. Fiz. 3, 1032–1066 (1963) (in Russian) [English translation in USSR Comput. Math. Math. Phys. 3, 1407–1456 (1963)]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Lacave.

Additional information

Communicated by V. Šverák

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gérard-Varet, D., Lacave, C. The Two-Dimensional Euler Equations on Singular Domains. Arch Rational Mech Anal 209, 131–170 (2013). https://doi.org/10.1007/s00205-013-0617-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-013-0617-9

Keywords

Navigation