Skip to main content
Log in

The Dielectric Permittivity of Crystals in the Reduced Hartree–Fock Approximation

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

In a recent article (Cancès et al. in Commun Math Phys 281:129–177, 2008), we have rigorously derived, by means of bulk limit arguments, a new variational model to describe the electronic ground state of insulating or semiconducting crystals in the presence of local defects. In this so-called reduced Hartree–Fock model, the ground state electronic density matrix is decomposed as \({\gamma = \gamma^0_{\rm per} + Q_{\nu,\varepsilon_{\rm F}}}\), where \({\gamma^0_{\rm per}}\) is the ground state density matrix of the host crystal and \({Q_{\nu,\varepsilon_{\rm F}}}\) the modification of the electronic density matrix generated by a modification ν of the nuclear charge of the host crystal, the Fermi level ε F being kept fixed. The purpose of the present article is twofold. First, we study in more detail the mathematical properties of the density matrix \({Q_{\nu,\varepsilon_{\rm F}}}\) (which is known to be a self-adjoint Hilbert–Schmidt operator on \({L^2(\mathbb{R}^3)}\)). We show in particular that if \({\int_{\mathbb{R}^3}\,\nu \neq 0, Q_{\nu,\varepsilon_{\rm F}}}\) is not trace-class. Moreover, the associated density of charge is not in \({L^1(\mathbb{R}^3)}\) if the crystal exhibits anisotropic dielectric properties. These results are obtained by analyzing, for a small defect ν, the linear and nonlinear terms of the resolvent expansion of \({Q_{\nu,\varepsilon_{\rm F}}}\). Second, we show that, after an appropriate rescaling, the potential generated by the microscopic total charge (nuclear plus electronic contributions) of the crystal in the presence of the defect converges to a homogenized electrostatic potential solution to a Poisson equation involving the macroscopic dielectric permittivity of the crystal. This provides an alternative (and rigorous) derivation of the Adler–Wiser formula.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adler S.L.: Quantum theory of the dielectric constant in real solids. Phys. Rev. 126, 413–420 (1962)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. Bach V., Lieb E.H., Solovej J.P.: Generalized Hartree–Fock theory and the Hubbard model. J. Stat. Phys. 76, 3–89 (1994)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  3. Baroni S., Resta R.: Ab initio calculation of the macroscopic dielectric constant in silicon. Phys. Rev. B 33, 7017–7021 (1986)

    Article  ADS  Google Scholar 

  4. Cancès É., Deleurence A., Lewin M.: A new approach to the modelling of local defects in crystals: the reduced Hartree–Fock case. Commun. Math. Phys. 281, 129–177 (2008)

    Article  MATH  ADS  Google Scholar 

  5. Cancès É., Deleurence A., Lewin M.: Non-perturbative embedding of local defects in crystalline materials. J. Phys. Condens. Matter 20, 294213 (2008)

    Article  Google Scholar 

  6. Catto I., Le Bris C., Lions P.-L.: On the thermodynamic limit for Hartree–Fock type models. Ann. Inst. H. Poincaré Anal. Non Linéaire 18, 687–760 (2001)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. Dreizler R., Gross E.: Density Functional Theory. Springer, Berlin (1990)

    MATH  Google Scholar 

  8. Engel G.E., Farid B.: Calculation of the dielectric properties of semiconductors. Phys. Rev. B 46, 15812–15827 (1992)

    Article  ADS  Google Scholar 

  9. Gajdoš M., Hummer K., Kresse G., Furthmüller J., Bechstedt F.: Linear optical properties in the projector-augmented wave methodology. Phys. Rev. B 73, 045112 (2006)

    Article  ADS  Google Scholar 

  10. Gravejat P., Lewin M., Séré É.: Ground state and charge renormalization in a nonlinear model of relativistic atoms. Commun. Math. Phys. 286, 179–215 (2009)

    Article  MATH  ADS  Google Scholar 

  11. Hainzl C., Lewin M., Séré É.: Existence of a stable polarized vacuum in the Bogoliubov–Dirac–Fock approximation. Commun. Math. Phys. 257, 515–562 (2005)

    Article  MATH  ADS  Google Scholar 

  12. Hainzl C., Lewin M., Séré É.: Existence of atoms and molecules in the mean-field approximation of no-photon quantum electrodynamics. Arch. Ration. Mech. Anal. 192, 453–499 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  13. Hainzl C., Lewin M., Séré É., Solovej J.P.: A minimization method for relativistic electrons in a mean-field approximation of quantum electrodynamics. Phys. Rev. A 76, 052104 (2007)

    Article  ADS  Google Scholar 

  14. Hybertsen M.S., Louie S.G.: Ab initio static dielectric matrices from the density-functional approach. I. Formulation and application to semiconductors and insulators. Phys. Rev. B 35, 5585–5601 (1987)

    Article  ADS  Google Scholar 

  15. Hybertsen M.S., Louie S.G.: Ab initio static dielectric matrices from the density-functional approach. II. Calculation of the screening response in diamond, Si, Ge, and LiCl. Phys. Rev. B 35, 5602–5610 (1987)

    Article  ADS  Google Scholar 

  16. Kunc K., Tosatti E.: Direct evaluation of the inverse dielectric matrix in semiconductors. Phys. Rev. B 29, 7045–7047 (1984)

    Article  ADS  Google Scholar 

  17. Lieb E.H., Simon B.: The Hartree–Fock theory for Coulomb systems. Commun. Math. Phys. 53, 185–194 (1977)

    Article  MathSciNet  ADS  Google Scholar 

  18. Panati G.: Triviality of Bloch and Bloch–Dirac bundles. Ann. Henri Poincaré 8, 995–1011 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  19. Pick R.M., Cohen M.H., Martin R.M.: Microscopic theory of force constants in the adiabatic approximation. Phys. Rev. B 1, 910–920 (1970)

    Article  ADS  Google Scholar 

  20. Reed M., Simon B.: Methods of Modern Mathematical Physics. IV. Analysis of Operators. Academic Press, New York (1978)

    MATH  Google Scholar 

  21. Resta R., Baldereschi A.: Dielectric matrices and local fields in polar semiconductors. Phys. Rev. B 23, 6615–6624 (1981)

    Article  ADS  Google Scholar 

  22. Seiler E., Simon B.: Bounds in the Yukawa2 quantum field theory: upper bound on the pressure, Hamiltonian bound and linear lower bound. Commun. Math. Phys. 45, 99–114 (1975)

    Article  MathSciNet  ADS  Google Scholar 

  23. Simon, B.: Trace Ideals and Their Applications. In: London Mathematical Society Lecture Note Series, vol. 35. Cambridge University Press, Cambridge, 1979

  24. Solovej J.P.: Proof of the ionization conjecture in a reduced Hartree–Fock model. Invent. Math. 104, 291–311 (1991)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  25. Thomas L.E.: Time dependent approach to scattering from impurities in a crystal. Commun. Math. Phys. 33, 335–343 (1973)

    Article  ADS  Google Scholar 

  26. Wiser N.: Dielectric constant with local field effects included. Phys. Rev. 129, 62–69 (1963)

    Article  MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Éric Cancès.

Additional information

Communicated by C. Le Bris

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cancès, É., Lewin, M. The Dielectric Permittivity of Crystals in the Reduced Hartree–Fock Approximation. Arch Rational Mech Anal 197, 139–177 (2010). https://doi.org/10.1007/s00205-009-0275-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-009-0275-0

Keywords

Navigation