Skip to main content

Advertisement

Log in

Neurotoxic effects of perfluoroalkylated compounds: mechanisms of action and environmental relevance

  • Review Article
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Perfluoroalkylated compounds (PFCs) are used in fire-fighting foams, treatment of clothes, carpets and leather products, and as lubricants, pesticides, in paints and medicine. Recent developments in chemical analysis have revealed that fluorinated compounds have become ubiquitously spread and are regarded as a potential threats to the environment. Due to the carbon–fluorine bond, which has a very high bond strength, these chemicals are extremely persistent towards degradation and some PFCs have a potential for bioaccumulation in organisms. Of particular concern has been the developmental toxicity of PFOS and PFOA, which has been manifested in rodent studies as high mortality of prenatally exposed newborn rats and mice within 24 h after delivery. The nervous system appears to be one of the most sensitive targets of environmental contaminants. The serious developmental effects of PFCs have lead to the upcoming of studies that have investigated neurotoxic effects of these substances. In this review the major findings of the neurotoxicity of the main PFCs and their suggested mechanisms of action are presented. The neurotoxic effects are discussed in light of other toxic effects of PFCs to indicate the significance of PFCs as neurotoxicants. The main findings are that PFCs may induce neurobehavioral effects, particularly in developmentally exposed animals. The effects are, however, subtle and inconclusive and are often induced at concentrations where other toxic effects also are expected. Mechanistic studies have shown that PFCs may affect the thyroid system, influence the calcium homeostasis, protein kinase C, synaptic plasticity and cellular differentiation. Compared to other environmental toxicants the human blood levels of PFCs are high and of particular concern is that susceptible groups may be exposed to a cocktail of substances that in combination reach harmful concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Ahrens L, Siebert U, Ebinghaus R (2009) Total body burden and tissue distribution of polyfluorinated compounds in harbor seals (Phoca vitulina) from the German Bight. Mar Pollut Bull 58:520–525

    Article  PubMed  CAS  Google Scholar 

  • Alexander BH, Olsen GW, Burris JM, Mandel JH, Mandel JS (2003) Mortality of employees of a perfluorooctanesulphonyl fluoride manufacturing facility. Occup Environ Med 60:722–729

    Article  PubMed  CAS  Google Scholar 

  • Athanasiadou M, Cuadra SN, Marsh G, Bergman A, Jakobsson K (2008) Polybrominated diphenyl ethers (PBDEs) and bioaccumulative hydroxylated PBDE metabolites in young humans from Managua, Nicaragua. Environ Health Perspect 116:400–408

    Article  PubMed  CAS  Google Scholar 

  • Austin ME, Kasturi BS, Barber M, Kannan K, MohanKumar PS, MohanKumar SM (2003) Neuroendocrine effects of perfluorooctane sulfonate in rats. Environ Health Perspect 111:1485–1489

    Article  PubMed  CAS  Google Scholar 

  • Barkley RA (1998) Attention-deficit hyperactivity disorder. Sci Am 279:66–71

    Article  PubMed  CAS  Google Scholar 

  • Barter RA, Klaassen CD (1994) Reduction of thyroid hormone levels and alteration of thyroid function by four representative UDP-glucuronosyltransferase inducers in rats. Toxicol Appl Pharmacol 128:9–17

    Article  PubMed  CAS  Google Scholar 

  • Beetstra JB, van Engelen JG, Karels P, van der Hoek HJ, de Jong M, Docter R, Krenning EP, Hennemann G, Brouwer A, Visser TJ (1991) Thyroxine and 3,3′,5-triiodothyronine are glucuronidated in rat liver by different uridine diphosphate-glucuronyltransferases. Endocrinology 128:741–746

    Article  PubMed  CAS  Google Scholar 

  • Benskin JP, De Silva AO, Martin LJ, Arsenault G, McCrindle R, Riddell N, Mabury SA, Martin JW (2009) Disposition of perfluorinated acid isomers in Sprague-Dawley rats; part 1: single dose. Environ Toxicol Chem 28:542–554

    Article  PubMed  CAS  Google Scholar 

  • Bjork JA, Wallace KB (2009) Structure-activity relationships and human relevance for perfluoroalkyl acid-induced transcriptional activation of peroxisome proliferation in liver cell cultures. Toxicol Sci 111:89–99

    Article  PubMed  CAS  Google Scholar 

  • Bossi R, Riget FF, Dietz R, Sonne C, Fauser P, Dam M, Vorkamp K (2005) Preliminary screening of perfluorooctane sulfonate (PFOS) and other fluorochemicals in fish, birds and marine mammals from Greenland and the Faroe Islands. Environ Pollut 136:323–329

    Article  PubMed  CAS  Google Scholar 

  • Braune BM, Trudeau S, Jeffrey DA, Mallory ML (2011) Biomarker responses associated with halogenated organic contaminants in northern fulmars (Fulmarus glacialis) breeding in the Canadian Arctic. Environ Pollut 159:2891–2898

    Article  PubMed  CAS  Google Scholar 

  • Brouwer A (1989) Inhibition of thyroid hormone transport in plasma of rats by polychlorinated biphenyls. Arch Toxicol Suppl 13:440–445

    PubMed  CAS  Google Scholar 

  • Brouwer A (1990) Competitive-inhibition of thyroxine binding to transthyretin by monohydroxy metabolites of 3,4,3′,4′-tetrachlorobiphenyl. Chemosphere 20:1257–1262

    Article  CAS  Google Scholar 

  • Brouwer A (1991) Role of biotransformation in PCB-induced alterations in vitamin-A and thyroid-hormone metabolism in laboratory and wildlife species. Biochem Soc Trans 19:731–737

    PubMed  CAS  Google Scholar 

  • Brouwer A, Morse DC, Lans MC, Schuur AG, Murk AJ, Klasson-Wehler E, Bergman A, Visser TJ (1998) Interactions of persistent environmental organohalogens with the thyroid hormone system: mechanisms and possible consequences for animal and human health. Toxicol Indust Health 14:59–84

    CAS  Google Scholar 

  • Brown RC, Lockwood AH, Sonawane BR (2005) Neurodegenerative diseases: an overview of environmental risk factors. Environ Health Perspect 113:1250–1256

    Article  PubMed  CAS  Google Scholar 

  • Bustnes JO, Moe B, Herzke D, Hanssen SA, Nordstad T, Sagerup K, Gabrielsen GW, Borgå K (2010) Strongly increasing blood concentrations of lipid-soluble organochlorines in high arctic common eiders during incubation fast. Chemosphere 79:320–325

    Article  PubMed  CAS  Google Scholar 

  • Butenhoff J, Costa G, Elcombe C, Farrar D, Hansen K, Iwai H, Jung R, Kennedy G Jr, Lieder P, Olsen G, Thomford P (2002) Toxicity of ammonium perfluorooctanoate in male cynomolgus monkeys after oral dosing for 6 months. Toxicol Sci 69:244–257

    Article  PubMed  CAS  Google Scholar 

  • Butenhoff JL, Gaylor DW, Moore JA, Olsen GW, Rodricks J, Mandel JH, Zobel LR (2004) Characterization of risk for general population exposure to perfluorooctanoate. Regul Toxicol Pharmacol 39:363–380

    Article  PubMed  CAS  Google Scholar 

  • Butenhoff JL, Gaylor DW, Moore JA, Olsen GW, Rodricks J, Mandel JH, Zobel LR (2005) Response to letter to the editor. Regul Toxicol Pharmacol 145:146–147

    Article  Google Scholar 

  • Butenhoff JL, Chang SC, Ehresman DJ, York RG (2009a) Evaluation of potential reproductive and developmental toxicity of potassium perfluorohexanesulfonate in Sprague Dawley rats. Reprod Toxicol 27:331–341

    Article  PubMed  CAS  Google Scholar 

  • Butenhoff JL, Ehresman DJ, Chang SC, Parker GA, Stump DG (2009b) Gestational and lactational exposure to potassium perfluorooctanesulfonate (K + PFOS) in rats: developmental neurotoxicity. Reprod Toxicol 27:319–330

    Article  PubMed  CAS  Google Scholar 

  • Butenhoff JL, Bjork JA, Chang SC, Ehresman DJ, Parker GA, Das K, Lau C, Lieder PH, van Otterdijk FM, Wallace KB (2011) Toxicological evaluation of ammonium perfluorobutyrate in rats: twenty-eight-day and ninety-day oral gavage studies. Reprod Toxicol. doi:10.1016/j.reprotox.2011.08.004 (in press)

  • Butt CM, Berger U, Bossi R, Tomy GT (2010) Levels and trends of poly- and perfluorinated compounds in the arctic environment. Sci Total Environ 408:2936–2965

    Article  PubMed  CAS  Google Scholar 

  • Calvo RM, Jauniaux E, Gulbis B, Asunción M, Gervy C, Contempré B, Morreale de Escobar G (2002) Fetal tissues are exposed to biologically relevant free thyroxine concentrations during early phases of development. J Clin Endocrinol Metab 87:1768–1777

    Article  PubMed  CAS  Google Scholar 

  • Carvalho FP (2006) Agriculture, pesticides, food security and food safety Environ Sci Pol 9:685–692

    Google Scholar 

  • Chang SC, Thibodeaux JR, Eastvold ML, Ehresman DJ, Bjork JA, Froehlich JW, Lau CS, Singh RJ, Wallace KB, Butenhoff JL (2007) Negative bias from analog methods used in the analysis of free thyroxine in rat serum containing perfluorooctanesulfonate (PFOS). Toxicology 234:21–33

    Article  PubMed  CAS  Google Scholar 

  • Chang SC, Thibodeaux JR, Eastvold ML, Ehresman DJ, Bjork JA, Froehlich JW, Lau C, Singh RJ, Wallace KB, Butenhoff JL (2008) Thyroid hormone status and pituitary function in adult rats given oral doses of perfluorooctanesulfonate (PFOS). Toxicology 243:330–339

    Article  PubMed  CAS  Google Scholar 

  • Chang SC, Ehresman DJ, Bjork JA, Wallace KB, Parker GA, Stump DG, Butenhoff JL (2009) Gestational and lactational exposure to potassium perfluorooctanesulfonate (K + PFOS) in rats: toxicokinetics, thyroid hormone status, and related gene expression. Reprod Toxicol 27:387–399

    Article  PubMed  CAS  Google Scholar 

  • Colborn T (2004) Neurodevelopment and endocrine disruption. Environ Health Perspect 112:944–949

    Article  PubMed  CAS  Google Scholar 

  • Collins WT Jr, Capen CC (1980) Fine structural lesions and hormonal alterations in thyroid glands of perinatal rats exposed in utero and by the milk to polychlorinated biphenyls. Am J Pathol 99:125–142

    PubMed  CAS  Google Scholar 

  • Conder JM, Hoke RA, De Wolf W, Russell MH, Buck RC (2008) Are PFCAs bioaccumulative? A critical review and comparison with regulatory criteria and persistent lipophilic compounds. Environ Sci Technol 42:995–1003

    Article  PubMed  CAS  Google Scholar 

  • Crisp TM, Clegg ED, Cooper RL, Wood WP, Anderson DG, Baetcke KP, Hoffmann JL, Morrow MS, Rodier DJ, Schaeffer JE, Touart LW, Zeeman MG, Patel YM (1998) Environmental endocrine disruption: an effects assessment and analysis. Environ Health Perspect 106(Suppl 1):11–56

    Article  PubMed  CAS  Google Scholar 

  • Cui L, Zhou QF, Liao CY, Fu JJ, Jiang GB (2009) Studies on the toxicological effects of PFOA and PFOS on rats using histological observation and chemical analysis. Arch Environ Contam Toxicol 56:338–349

    Article  PubMed  CAS  Google Scholar 

  • De Voogt P, Berger U, de Coen W, de Wolf W, Heimstad E, McLchlan M, van Leeuwen S, van Roon A (2006) PERFORCE, perfluorinated compounds in the European environment, scientific report. FP6-NEST-508967, University of Amsterdam, Amsterdam

  • Donaldson SG, Van Oostdam J, Tikhonov C, Feeley M, Armstrong B, Ayotte P, Boucher O, Bowers W, Chan L, Dallaire F, Dallaire R, Dewailly E, Edwards J, Egeland GM, Fontaine J, Furgal C, Leech T, Loring E, Muckle G, Nancarrow T, Pereg D, Plusquellec P, Potyrala M, Receveur O, Shearer RG (2010) Environmental contaminants and human health in the Canadian Arctic. Sci Total Environ 408:5165–5234

    Article  PubMed  CAS  Google Scholar 

  • Ehresman DJ, Froehlich JW, Olsen GW, Chang SC, Butenhoff JL (2007) Comparison of human whole blood, plasma, and serum matrices for the determination of perfluorooctanesulfonate (PFOS), perfluorooctanoate (PFOA), and other fluorochemicals. Environ Res 103:176–184

    Article  PubMed  CAS  Google Scholar 

  • Ek CJ, Dziegielewska KM, Habgood MD, Saunders NR (2012) Barriers in the developing brain and neurotoxicology. Neurotoxicology. doi:10.1016/j.neuro.2011.12.009 (in press)

  • Eriksson P (1997) Developmental neurotoxicity of environmental agents in the neonate. Neurotoxicology 18:719–726

    PubMed  CAS  Google Scholar 

  • Eriksson P, Fredriksson A (1996) Developmental neurotoxicity of four ortho-substituted polychlorinated biphenyls in the neonatal mouse. Environ Toxicol Pharmacol 1:155–165

    Article  PubMed  CAS  Google Scholar 

  • Eriksson P, Fredriksson A (1998) Neurotoxic effects in adult mice neonatally exposed to 3,3′ 4,4′ 5-pentachlorobiphenyl or 2,3,3′ 4,4′-pentachlorobiphenyl. Changes in brain nicotinic receptors and behaviour. Environ Toxicol Pharmacol 5:17–27

    Article  PubMed  CAS  Google Scholar 

  • Eriksson P, Talts U (2000) Neonatal exposure to neurotoxic pesticides increases adult susceptibility: a review of current findings. Neurotoxicology 21:37–47

    PubMed  CAS  Google Scholar 

  • Eriksson P, Lundkvist U, Fredriksson A (1991) Neonatal exposure to 3,3′,4,4′-tetrachlorobiphenyl: changes in spontaneous behaviour and cholinergic muscarinic receptors in the adult mouse. Toxicology 69:27–34

    Article  PubMed  CAS  Google Scholar 

  • Eriksson P, Ahlbom J, Fredriksson A (1992) Exposure to DDT during a defined period in neonatal life induces permanent changes in brain muscarinic receptors and behaviour in adult mice. Brain Res 582:277–281

    Article  PubMed  CAS  Google Scholar 

  • Eriksson P, Viberg H, Jakobsson E, Orn U, Fredriksson A (2002) A brominated flame retardant, 2,2′,4,4′,5-pentabromodiphenyl ether: uptake, retention, and induction of neurobehavioral alterations in mice during a critical phase of neonatal brain development. Toxicol Sci 67:98–103

    Article  PubMed  CAS  Google Scholar 

  • Eriksson P, Fischer C, Fredriksson A (2006). Polybrominated diphenyl ethers, a group of brominated flame retardants, can interact with polychlorinated biphenyls in enhancing developmental neurobehavioral defects. Toxicol Sci 94:302–309

    Google Scholar 

  • Eriksson P, Fischer C, Wallin M, Jakobsson E, Fredriksson A (2006) Impaired behaviour, learning and memory, in adult mice neonatally exposed to hexabromocyclododecane (HBCDD). Environ Toxicol Pharmacol 21:317–322

    Article  PubMed  CAS  Google Scholar 

  • Fasano WJ, Carpenter SC, Gannon SA, Snow TA, Stadler JC, Kennedy GL, Buck RC, Korzeniowski SH, Hinderliter PM, Kemper RA (2006) Absorption, distribution, metabolism, and elimination of 8-2 fluorotelomer alcohol in the rat. Toxicol Sci 91:341–355 (Erratum in: Toxicol Sci (2008) 102:455)

    Google Scholar 

  • Fidaleo M (2009) Human health risk assessment for peroxisome proliferators: more than 30 years of research. Exp Toxicol Pathol 61:215–221

    Article  PubMed  Google Scholar 

  • Fonnum F, Mariussen E (2009) Mechanisms involved in the neurotoxic effects of environmental toxicants such as polychlorinated biphenyls and brominated flame retardants. J Neurochem 111:1327–1347

    Article  PubMed  CAS  Google Scholar 

  • Fuentes S, Colomina MT, Rodriguez J, Vicens P, Domingo JL (2006) Interactions in developmental toxicology: concurrent exposure to perfluorooctane sulfonate (PFOS) and stress in pregnant mice. Toxicol Lett 164:81–89

    Article  PubMed  CAS  Google Scholar 

  • Fuentes S, Colomina MT, Vicens P, Domingo JL (2007a) Influence of maternal restraint stress on the long-lasting effects induced by prenatal exposure to perfluorooctane sulfonate (PFOS) in mice. Toxicol Lett 171:162–170

    Article  PubMed  CAS  Google Scholar 

  • Fuentes S, Colomina MT, Vicens P, Franco-Pons N, Domingo JL (2007b) Concurrent exposure to perfluorooctane sulfonate and restraint stress during pregnancy in mice: effects on postnatal development and behavior of the offspring. Toxicol Sci 98:589–598

    Article  PubMed  CAS  Google Scholar 

  • Fuentes S, Vicens P, Colomina MT, Domingo JL (2007c) Behavioral effects in adult mice exposed to perfluorooctane sulfonate (PFOS). Toxicology 242:123–129

    Article  PubMed  CAS  Google Scholar 

  • Gafni J, Wong PW, Pessah IN (2004) Non-coplanar 2,2′,3,5′,6-pentachlorobiphenyl (PCB 95) amplifies ionotropic glutamate receptor signaling in embryonic cerebellar granule neurons by a mechanism involving ryanodine receptors. Toxicol Sci 77:72–82

    Article  PubMed  CAS  Google Scholar 

  • Golovanov IB, Tsygankova IG (2001) Structure-property correlation equation: VII. Some properties of perfluorinated organic compounds. Russ J Gen Chem 71:839–844

    Article  CAS  Google Scholar 

  • Grandjean P, Landrigan PJ (2006) Developmental neurotoxicity of industrial chemicals. Lancet 368:2167–2178

    Article  PubMed  CAS  Google Scholar 

  • Greco W, Unkelbach H, Poch G, Suhnel J, Bodker W (1992) Consensus on concepts and terminology for combined action assessment: The Saariselkä agreement. Arch Complex Environ Stud 4:65–69

    Google Scholar 

  • Grice MM, Alexander BH, Hoffbeck R, Kampa DM (2007) Self-reported medical conditions in perfluorooctanesulfonyl fluoride manufacturing workers. J Occup Environ Med 49:722–729

    Article  PubMed  CAS  Google Scholar 

  • Gutshall DM, Pilcher GD, Langley AE (1989) Mechanism of the serum thyroid hormone lowering effect of perfluoro-n-decanoic acid (PFDA) in rats. J Toxicol Environ Health 28:53–65

    Article  PubMed  CAS  Google Scholar 

  • Haddow JE, Palomaki GE, Allan WC, Williams JR, Knight GJ, Gagnon J, O’Heir CE, Mitchell ML, Hermos RJ, Waisbren SE, Faix JD, Klein RZ (1999) Maternal thyroid deficiency during pregnancy and subsequent neuropsychological development of the child. N Engl J Med 341:549–555

    Article  PubMed  CAS  Google Scholar 

  • Hagen DF, Belisle J, Johnson JD, Venkateswarlu P (1981) Characterization of fluorinated metabolites by a gas chromatographic-helium microwave plasma detector—the biotransformation of 1 h, 1 h, 2 h, 2 h-perfluorodecanol to perfluorooctanoate. Anal Biochem 118:336–343

    Article  PubMed  CAS  Google Scholar 

  • Harada K, Xu F, Ono K, Iijima T, Koizumi A (2005) Effects of PFOS and PFOA on L-type Ca2+ currents in guinea-pig ventricular myocytes. Biochem Biophys Res Commun 329:487–494

    Article  PubMed  CAS  Google Scholar 

  • Harada KH, Hashida S, Kaneko T, Takenaka K, Minata M, Inoue K, Saito N, Koizumi A (2007) Biliary excretion and cerebrospinal fluid partition of perfluorooctanoate and perfluorooctane sulfonate in humans. Environ Toxicol Pharmacol 24:134–139

    Article  PubMed  CAS  Google Scholar 

  • Hardell L, Lindstrom G, Van Bavel B (2002) Is DDT exposure during fetal period and breast-feeding associated with neurological impairment? Environ Res 88:141–144

    Article  PubMed  CAS  Google Scholar 

  • Hardell E, Carlberg M, Nordström M, van Bavel B (2010) Time trends of persistent organic pollutants in Sweden during 1993–2007 and relation to age, gender, body mass index, breast-feeding and parity. Sci Total Environ 408:4412–4419

    Article  PubMed  CAS  Google Scholar 

  • Hart K, Kannan K, Isobe T, Takahashi S, Yamada TK, Miyazaki N, Tanabe S (2008) Time trends and transplacental transfer of perfluorinated compounds in melon-headed whales stranded along the Japanese coast in 1982, 2001/2002, and 2006. Environ Sci Technol 42:7132–7137

    Article  PubMed  CAS  Google Scholar 

  • Haug LS, Thomsen C, Becher G (2009) Time trends and the influence of age and gender on serum concentrations of perfluorinated compounds in archived human samples. Environ Sci Technol 43:2131–2136

    Article  PubMed  CAS  Google Scholar 

  • Haukås M, Berger U, Hop H, Gulliksen B, Gabrielsen GW (2007) Bioaccumulation of per- and polyfluorinated alkyl substances (PFAS) in selected species from the Barents Sea food web. Environ Pollut 148:360–371

    Article  PubMed  CAS  Google Scholar 

  • Henriksen EO, Gabrielsen GW, Skaare JU (1998) Validation of the use of blood samples to assess tissue concentrations of organochlorines in glaucous gulls. Larus hyperboreus Chemos 37:2627–2643

    Article  CAS  Google Scholar 

  • Hoffman K, Webster TF, Weisskopf MG, Weinberg J, Vieira VM (2010) Exposure to polyfluoroalkyl chemicals and attention deficit/hyperactivity disorder in U.S. children 12–15 years of age. Environ Health Perspect 118:1762–1767

    Article  PubMed  CAS  Google Scholar 

  • Hopf NB, Ruder AM, Succop P (2009) Background levels of polychlorinated biphenyls in the U.S. population. Sci Total Environ 407:6109–6119

    Article  PubMed  CAS  Google Scholar 

  • Jenssen BM (2006) Endocrine-disrupting chemicals and climate change: A worst-case combination for arctic marine mammals and seabirds? Environ Health Perspect 114(Suppl 1):76–80

    PubMed  Google Scholar 

  • Johansson N, Fredriksson A, Eriksson P (2008) Neonatal exposure to perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) causes neurobehavioural defects in adult mice. Neurotoxicology 29:160–169

    Article  PubMed  CAS  Google Scholar 

  • Johansson N, Eriksson P, Viberg H (2009) Neonatal exposure to PFOS and PFOA in mice results in changes in proteins which are important for neuronal growth and synaptogenesis in the developing brain. Toxicol Sci 108:412–418

    Article  PubMed  CAS  Google Scholar 

  • Jones PD, Hu W, De Coen W, Newsted JL, Giesy JP (2003) Binding of perfluorinated fatty acids to serum proteins. Environ Toxicol Chem 22:2639–2649

    Article  PubMed  CAS  Google Scholar 

  • Kang JH, Jeong W, Park Y, Lee SY, Chung MW, Lim HK, Park IS, Choi KH, Chung SY, Kim DS, Park CS, Hwang O, Kim J (2002) Aroclor 1254-induced cytotoxicity in catecholaminergic CATH.a cells related to the inhibition of NO production. Toxicology 177:157–166

    Article  PubMed  CAS  Google Scholar 

  • Kannan K, Corsolini S, Falandysz J, Fillmann G, Kumar KS, Loganathan BG, Mohd MA, Olivero J, Van Wouwe N, Yang JH, Aldoust KM (2004) Perfluorooctanesulfonate and related fluorochemicals in human blood from several countries. Environ Sci Technol 38:4489–4495

    Article  PubMed  CAS  Google Scholar 

  • Kato K, Wong LY, Jia LT, Kuklenyik Z, Calafat AM (2011) Trends in exposure to polyfluoroalkyl chemicals in the U.S. Population: 1999–2008. Environ Sci Technol 45:8037–8045

    Article  PubMed  CAS  Google Scholar 

  • Kennedy GL Jr, Butenhoff JL, Olsen GW, O’Connor JC, Seacat AM, Perkins RG, Biegel LB, Murphy SR, Farrar DG (2004) The toxicology of perfluorooctanoate. Crit Rev Toxicol 34:351–384

    Article  PubMed  CAS  Google Scholar 

  • Kissa E (2001) Fluorinated surfactants and repellents. Surfactants Science Series 97. Marcel Dekker, New York

  • Knox SS, Jackson T, Frisbee SJ, Javins B, Ducatman AM (2011) Perfluorocarbon exposure, gender and thyroid function in the C8 Health Project. J Toxicol Sci 36:403–410

    Article  PubMed  Google Scholar 

  • Kodavanti PRS, Derr-Yellin EC (2002) Differential effects of polybrominated diphenyl ethers and polychlorinated biphenyls on [H-3]arachidonic acid release in rat cerebellasr granule neurons. Toxicol Sci 68:451–457

    Article  PubMed  CAS  Google Scholar 

  • Kodavanti PRS, Shafer TJ, Ward TR, Mundy WR, Freudenrich T, Harry GJ, Tilson HA (1994) Differential effects of polychlorinated biphenyl congeners on phosphoinositide hydrolysis and protein kinase C translocation in rat cerebellar granule cells. Brain Res 662:75–82

    Article  PubMed  CAS  Google Scholar 

  • Kodavanti PRS, Derr-Yellin EC, Mundy WR, Shafer TJ, Herr DW, Barone S, Choksi NY, MacPhail RC, Tilson HA (1998) Repeated exposure of adult rats to Aroclor 1254 causes brain region-specific changes in intracellular Ca2+ buffering and protein kinase C activity in the absence of changes in tyrosine hydroxylase. Toxicol Appl Pharmacol 153:186–198

    Article  PubMed  CAS  Google Scholar 

  • Koibuchi N, Chin WW (2000) Thyroid hormone action and brain development. Trends Endocrinol Metab 11:123–128

    Article  PubMed  CAS  Google Scholar 

  • Kudo N, Iwase Y, Okayachi H, Yamakawa Y, Kawashima Y (2005) Induction of hepatic peroxisome proliferation by 8–2 telomer alcohol feeding in mice: formation of perfluorooctanoic acid in the liver. Toxicol Sci 86:231–238

    Article  PubMed  CAS  Google Scholar 

  • Kudo N, Sakai A, Mitsumoto A, Hibino Y, Tsuda T, Kawashima Y (2007) Tissue distribution and hepatic subcellular distribution of perfluorooctanoic acid at low dose are different from those at high dose in rats. Biol Pharm Bull 30:1535–1540

    Article  PubMed  CAS  Google Scholar 

  • Lai BC, Marion SA, Teschke K, Tsui JK (2002) Occupational and environmental risk factors for Parkinson’s disease. Parkinsonism Relat Disord 8:297–309

    Article  PubMed  CAS  Google Scholar 

  • Langley AE, Pilcher GD (1985) Thyroid, bradycardic and hypothermic effects of perfluoro-n-decanoic acid in rats. J Toxicol Environ Health 15:485–491

    Article  PubMed  CAS  Google Scholar 

  • Lau C, Thibodeaux JR, Hanson RG, Rogers JM, Grey BE, Stanton ME, Butenhoff JL, Stevenson LA (2003) Exposure to perfluorooctane sulfonate during pregnancy in rat and mouse. II: postnatal evaluation. Toxicol Sci 74:382–392

    Article  PubMed  CAS  Google Scholar 

  • Lau C, Butenhoff JL, Rogers JM (2004) The developmental toxicity of perfluoroalkyl acids and their derivatives. Toxicol Appl Pharmacol 198:231–241

    Article  PubMed  CAS  Google Scholar 

  • Lau C, Thibodeaux JR, Hanson RG, Narotsky MG, Rogers JM, Lindstrom AB, Strynar MJ (2006) Effects of perfluorooctanoic acid exposure during pregnancy in the mouse. Toxicol Sci 90:510–518

    Article  PubMed  CAS  Google Scholar 

  • Lau C, Anitole K, Hodes C, Lai D, Pfahles-Hutchens A, Seed J (2007) Perfluoroalkyl acids: a review of monitoring and toxicological findings. Toxicol Sci 99:366–394

    Article  PubMed  CAS  Google Scholar 

  • Lehmler HJ (2005) Synthesis of environmentally relevant fluorinated surfactants—a review. Chemosphere 58:1471–1496

    Article  PubMed  CAS  Google Scholar 

  • Liao CY, Li XY, Wu B, Duan S, Jiang GB (2008) Acute enhancement of synaptic transmission and chronic inhibition of synaptogenesis induced by perfluorooctane sulfonate through mediation of voltage-dependent calcium channel. Environ Sci Technol 42:5335–5341

    Article  PubMed  CAS  Google Scholar 

  • Liao CY, Cui L, Zhou QF, Duan SM, Jiang GB (2009a) Effects of perfluorooctane sulfonate on ion channels and glutamate-activated current in cultured rat hippocampal neurons. Environ Toxicol Pharmacol 27:338–344

    Article  PubMed  CAS  Google Scholar 

  • Liao C, Wang T, Cui L, Zhou Q, Duan S, Jiang G (2009b) Changes in synaptic transmission, calcium current, and neurite growth by perfluorinated compounds are dependent on the chain length and functional group. Environ Sci Technol 43:2099–2104

    Article  PubMed  CAS  Google Scholar 

  • Liu L, Liu W, Song J, Yu H, Jin Y, Oami K, Sato I, Saito N, Tsuda S (2009) A comparative study on oxidative damage and distribution of perfluorooctane sulfonate (PFOS) in mice at different postnatal developmental stages. J Toxicol Sci 34:245–254

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Jin Y, Liu W, Wang F, Hao S (2011a) Possible mechanism of perfluorooctane sulfonate and perfluorooctanoate on the release of calcium ion from calcium stores in primary cultures of rat hippocampal neurons. Toxicol In Vitro 25:1294–1301

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Li J, Liu Y, Chan HM, Zhao Y, Cai Z, Wu Y (2011b) Comparison on gestation and lactation exposure of perfluorinated compounds for newborns. Environ Int 37:1206–1212

    Article  PubMed  CAS  Google Scholar 

  • Lowe KC (1999) Perfluorinated blood substitutes and artificial oxygen carriers. Blood Rev 13: 171–184

    Google Scholar 

  • Lu C, Cheng SY (2009) Thyroid hormone receptors regulate adipogenesis and carcinogenesis via crosstalk signaling with peroxisome proliferator-activated receptors. J Mol Endocrinol 44:143–154

    Article  PubMed  CAS  Google Scholar 

  • Luebker DJ, Hansen KJ, Bass NM, Butenhoff JL, Seacat AM (2002) Interactions of fluorochemicals with rat liver fatty acid-binding protein. Toxicology 176:175–185

    Article  PubMed  CAS  Google Scholar 

  • Luebker DJ, Case MT, York RG, Moore JA, Hansen KJ, Butenhoff JL (2005a) Two-generation reproduction and cross-foster studies of perfluorooctanesulfonate (PFOS) in rats. Toxicology 215:126–148

    Article  PubMed  CAS  Google Scholar 

  • Luebker DJ, York RG, Hansen KJ, Moore JA, Butenhoff JL (2005b) Neonatal mortality from in utero exposure to perfluorooctanesulfonate (PFOS) in Sprague-Dawley rats: dose-response, and biochemical and pharamacokinetic parameters. Toxicology 215:149–169

    Article  PubMed  CAS  Google Scholar 

  • Lundstedt-Enkel K, Karlsson D, Darnerud PO (2010) Interaction study with rats given two flame retardants: polybrominated diphenyl ethers (Bromkal 70-5 DE) and chlorinated paraffins (Cereclor 70L). J Chemometrics 24:710–718

    Google Scholar 

  • Macon MB, Villanueva LR, Tatum-Gibbs K, Zehr RD, Strynar MJ, Stanko JP, White SS, Helfant L, Fenton SE (2011) Prenatal perfluorooctanoic acid exposure in CD-1 mice: low-dose developmental effects and internal dosimetry. Toxicol Sci 122:134–145

    Article  PubMed  CAS  Google Scholar 

  • Maestri L, Negri S, Ferrari M, Ghittori S, Fabris F, Danesino P, Imbriani M (2006) Determination of perfluorooctanoic acid and perfluorooctanesulfonate in human tissues by liquid chromatography/single quadrupole mass spectrometry. Rapid Commun Mass Spectrom 20:2728–2734

    Article  PubMed  CAS  Google Scholar 

  • Mariussen E, Fonnum F (2006) Neurochemical targets and behavioral effects of organohalogen compounds; an update. Crit Rev Toxicol 36:253–289

    Article  PubMed  CAS  Google Scholar 

  • Mariussen E, Myhre O, Reistad T, Fonnum F (2002) The polychlorinated biphenyl mixture aroclor 1254 induces death of rat cerebellar granule cells: The involvement of the N-methyl-D-aspartate receptor and reactive oxygen species. Toxicol Appl Pharmacol 179:137–144

    Article  PubMed  CAS  Google Scholar 

  • Martin JW, Whittle DM, Muir DC, Mabury SA (2004) Perfluoroalkyl contaminants in a food web from Lake Ontario. Environ Sci Technol 38:5379–5385

    Article  PubMed  CAS  Google Scholar 

  • Martin JW, Mabury SA, O’Brien PJ (2005) Metabolic products and pathways of fluorotelomer alcohols in isolated rat hepatocytes. Chem Biol Interact 155:165–180

    Article  PubMed  CAS  Google Scholar 

  • McKinney J, Fannin R, Jordan S, Chae K, Rickenbacher U, Pedersen L (1987) Polychlorinated biphenyls and related compound interactions with specific binding sites for thyroxine in rat liver nuclear extracts. J Med Chem 30:79–86

    Article  PubMed  CAS  Google Scholar 

  • Melzer D, Rice N, Depledge MH, Henley WE, Galloway TS (2010) Association between serum perfluorooctanoic acid (PFOA) and thyroid disease in the U.S. National Health and Nutrition Examination Survey. Environ Health Perspect 118:686–692

    Article  PubMed  CAS  Google Scholar 

  • Minh NH, Minh TB, Kajiwara N, Kunisue T, Subramanian A, Iwata H, Tana TS, Baburajendran R, Karuppiah S, Viet PH, Tuyen BC, Tanabe S (2006) Contamination by persistent organic pollutants in dumping sites of Asian developing countries: implication of emerging pollution sources. Arch Environ Contam Toxicol 50:474–481

    Article  PubMed  CAS  Google Scholar 

  • Morse DC, Wehler EK, Wesseling W, Koeman JH, Brouwer A (1996) Alterations in rat brain thyroid hormone status following pre- and postnatal exposure to polychlorinated biphenyls (Aroclor 1254). Toxicol Appl Pharmacol 136:269–279

    Article  PubMed  CAS  Google Scholar 

  • Nilsson R (2000) Endocrine modulators in the food chain and environment. Toxicol Pathol 28:420–431

    Article  PubMed  CAS  Google Scholar 

  • Nøst TH, Helgason LB, Harju M, Heimstad ES, Gabrielsen GW, Jenssen BM (2012) Halogenated organic contaminants and their correlations with circulating thyroid hormones in developing Arctic seabirds. Sci Total Environ 414:248–256

    Article  PubMed  CAS  Google Scholar 

  • Ohmori K, Kudo N, Katayama K, Kawashima Y (2003) Comparison of the toxicokinetics between perfluorocarboxylic acids with different carbon chain length. Toxicology 184:135–140

    Article  PubMed  CAS  Google Scholar 

  • Olivero-Verbel J, Tao L, Johnston-Restrepo B, Guette-Fernandez J, Baldiris-Avila R, O’byrne-Hoyos I, Kannan K (2006) Perfluorooctanesulfonate and related fluorochemicals in biological samples from the north coast of Colombia. Environ Pollut 142:367–372

    Article  PubMed  CAS  Google Scholar 

  • Olsen GW, Burris JM, Burlew MM, Mandel JH (2003) Epidemiologic assessment of worker serum perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) concentrations and medical surveillance examinations. J Occup Environ 45:260–270

    Article  CAS  Google Scholar 

  • Olsen GW, Huang HY, Helzlsouer KJ, Hansen KJ, Butenhoff JL, Mandel JH (2005) Historical comparison of perfluorooctanesulfonate, perfluorooctanoate, and other fluorochemicals in human blood. Environ Health Perspect 113:539–545

    Article  PubMed  CAS  Google Scholar 

  • Olsen GW, Butenhoff JL, Zobel LR (2009) Perfluoroalkyl chemicals and human fetal development: an epidemiologic review with clinical and toxicological perspectives. Reprod Toxicol 27:212–230

    Article  PubMed  CAS  Google Scholar 

  • Onishchenko N, Fischer C, Wan Ibrahim WN, Negri S, Spulber S, Cottica D, Ceccatelli S (2011) Prenatal exposure to PFOS or PFOA alters motor function in mice in a sex-related manner. Neurotox Res 19:452–461

    Article  PubMed  CAS  Google Scholar 

  • Oppenheimer JH, Schwartz HL (1997) Molecular basis of thyroid hormone-dependent brain development. Endocr Rev 18:462–475

    Article  PubMed  CAS  Google Scholar 

  • Parent AS, Naveau E, Gerard A, Bourguignon JP, Westbrook GL (2011) Early developmental actions of endocrine disruptors on the hypothalamus, hippocampus, and cerebral cortex. J Toxicol Environ Health B Crit Rev 14:328–345

    Article  PubMed  CAS  Google Scholar 

  • Patandin S, Dagnelie PC, Mulder PG, Op de Coul E, van der Veen JE, Weisglas-Kuperus N, Sauer PJ (1999) Dietary exposure to polychlorinated biphenyls and dioxins from infancy until adulthood: a comparison between breast-feeding, toddler, and long-term exposure. Environ Health Perspect 107:45–51

    Article  PubMed  CAS  Google Scholar 

  • Pinkas A, Slotkin TA, Brick-Turin Y, Van der Zee EA, Yanai J (2010) Neurobehavioral teratogenicity of perfluorinated alkyls in an avian model. Neurotoxicol Teratol 32:182–186

    Article  PubMed  CAS  Google Scholar 

  • Porterfield SP (1994) Vulnerability of the developing brain to thyroid abnormalities—environmental insults to the thyroid system. Environ Health Perspect 102:125–130

    PubMed  Google Scholar 

  • Qazi MR, Bogdanska J, Butenhoff JL, Nelson BD, DePierre JW, Abedi-Valugerdi M (2009) High-dose, short-term exposure of mice to perfluorooctanesulfonate (PFOS) or perfluorooctanoate (PFOA) affects the number of circulating neutrophils differently, but enhances the inflammatory responses of macrophages to lipopolysaccharide (LPS) in a similar fashion. Toxicology 262:207–214

    Article  PubMed  CAS  Google Scholar 

  • Renner R (2001) Growing concern over perfluorinated chemicals. Environ Sci Technol 35:154A–160A

    Article  PubMed  CAS  Google Scholar 

  • Ribes D, Fuentes S, Torrente M, Colomina MT, Domingo JL (2010) Combined effects of perfluorooctane sulfonate (PFOS) and maternal restraint stress on hypothalamus adrenal axis (HPA) function in the offspring of mice. Toxicol Appl Pharmacol 243:13–18

    Article  PubMed  CAS  Google Scholar 

  • Rice DC (2000) Parallels between attention deficit hyperactivity disorder and behavioral deficits produced by neurotoxic exposure in monkeys. Environ Health Perspect 108:405–408

    PubMed  Google Scholar 

  • Rickenbacher U, McKinney JD, Oatley SJ, Blake CC (1986) Structurally specific binding of halogenated biphenyls to thyroxine transport protein. J Med Chem 29:641–648

    Article  PubMed  CAS  Google Scholar 

  • Rosen MB, Lau C, Corton JC (2009) Does exposure to perfluoroalkyl acids present a risk to human health? Toxicol Sci 111:1–3

    Article  PubMed  CAS  Google Scholar 

  • Rubarth J, Dreyer A, Guse N, Einax JW, Ebinghaus R (2011) Perfluorinated compounds in red-throated divers from the German Baltic Sea: new findings from their distribution in 10 different tissues. Environ Chem 8:419–428

    CAS  Google Scholar 

  • Schettler T (2001) Toxic threats to neurologic development of children. Environ Health Perspect 109:813–816

    PubMed  CAS  Google Scholar 

  • Schussler GC (2000) The thyroxine-binding proteins. Thyroid 10:141–149 (Review) (Erratum in: Thyroid (2000) 10:372)

    Google Scholar 

  • Seacat AM, Thomford PJ, Hansen KJ, Olsen GW, Case MT, Butenhoff JL (2002) Subchronic toxicity studies on perfluorooctanesulfonate potassium salt in cynomolgus monkeys. Toxicol Sci 68:249–264

    Article  PubMed  CAS  Google Scholar 

  • Seacat AM, Thomford PJ, Hansen KJ, Clemen LA, Eldridge SR, Elcombe CR, Butenhoff JL (2003) Sub-chronic dietary toxicity of potassium perfluorooctanesulfonate in rats. Toxicology 183:117–1131

    Article  PubMed  CAS  Google Scholar 

  • Siblinski LJ, Allen JL, Erickson EE (1983) Two year oral (diet) toxicity/carcinogenicity study of fluorochemical FC-143 in rats. Expt. No. 0281CR0012, Riker Laboratories, Inc, St. Paul, MN. USEPA Public Docket AR-226-0437, AR-226-0438, AR-226-0439, and AR-226-0440

  • Slotkin TA, MacKillop EA, Melnick RL, Thayer KA, Seidler FJ (2008) Developmental neurotoxicity of perfluorinated chemicals modeled in vitro. Environ Health Perspect 116:716–722

    Article  PubMed  CAS  Google Scholar 

  • Smithwick M, Mabury SA, Solomon KR, Sonne C, Martin JW, Born EW, Dietz R, Derocher AE, Letcher RJ, Evans TJ, Gabrielsen GW, Nagy J, Stirling I, Taylor MK, Muir DC (2005a) Circumpolar study of perfluoroalkyl contaminants in polar bears (Ursus maritimus). Environ Sci Technol 39:5517–5523

    Article  PubMed  CAS  Google Scholar 

  • Smithwick M, Muir DC, Mabury SA, Solomon KR, Martin JW, Sonne C, Born EW, Letcher RJ, Dietz R (2005b) Perflouroalkyl contaminants in liver tissue from East Greenland polar bears (Ursus maritimus). Environ Toxicol Chem 24:981–986

    Article  PubMed  CAS  Google Scholar 

  • Staddon JM, Rubin LL (1996) Cell adhesion, cell junctions and the blood-brain barrier. Curr Opin Neurobiol 6:622–627

    Article  PubMed  CAS  Google Scholar 

  • Suga T (2004) Hepatocarcinogenesis by peroxisome proliferators. J Toxicol Sci 29:1–12

    Article  PubMed  CAS  Google Scholar 

  • Sühnel J (1990) Evaluation of synergism or antagonism for the combined action of antiviral agents. Antiviral Res 13:23–39

    Article  PubMed  Google Scholar 

  • Suk WA, Ruchirawat KM, Balakrishnan K, Berger M, Carpenter D, Damstra T, de Garbino JP, Koh D, Landrigan PJ, Makalinao I, Sly PD, Xu Y, Zheng BS (2003) Environmental threats to children’s health in Southeast Asia and the Western Pacific. Environ Health Perspect 111:1340–1347

    Article  PubMed  Google Scholar 

  • Sundström M, Ehresman DJ, Bignert A, Butenhoff JL, Olsen GW, Chang SC, Bergman AA (2011) temporal trend study (1972–2008) of perfluorooctanesulfonate, perfluorohexanesulfonate, and perfluorooctanoate in pooled human milk samples from Stockholm, Sweden. Environ Int 37:178–183

    Article  PubMed  CAS  Google Scholar 

  • Tatum-Gibbs K, Wambaugh JF, Das KP, Zehr RD, Strynar MJ, Lindstrom AB, Delinsky A, Lau C (2011) Comparative pharmacokinetics of perfluorononanoic acid in rat and mouse. Toxicology 281:48–55

    Article  PubMed  CAS  Google Scholar 

  • Traves D (1968) Evidence that there are two forms of fluoride in human serum. Nature 217:1050–1051

    Google Scholar 

  • Van de Vijver KI, Hoslbeek L, Das K, Blust R, Joiris C, De Coen W (2007) Occurrence of perfluorooctane sulfonate and other perfluorinated alkylated substances in harbor porpoises from the Black Sea. Environ Sci Technol 41:315–320

    Article  PubMed  CAS  Google Scholar 

  • Vanden Heuvel JP, Kuslikis BI, Van Rafelghem MJ, Peterson RE (1991a) Tissue distribution, metabolism, and elimination of perfluorooctanoic acid in male and female rats. J Biochem Toxicol 6:83–92

    Article  PubMed  CAS  Google Scholar 

  • Vanden Heuvel JP, Kuslikis BI, Van Rafelghem MJ, Peterson RE (1991b) Disposition of perfluorodecanoic acid in male and female rats. Toxicol Appl Pharmacol 107:450–459

    Article  PubMed  CAS  Google Scholar 

  • Vanden Heuvel JP, Kuslikis BI, Peterson RE (1992) Covalent binding of perfluorinated fatty acids to proteins in the plasma, liver and testes of rats. Chem Biol Interact 82:317–328

    Article  PubMed  CAS  Google Scholar 

  • Verreault J, Houde M, Gabrielsen GW, Berger U, Haukas M, Letcher RJ, Muir DC (2005) Perfluorinated alkyl substances in plasma, liver, brain, and eggs of glaucous gulls (Larus hyperboreus) from the Norwegian arctic. Environ Sci Technol 39:7439–7445

    Article  PubMed  CAS  Google Scholar 

  • Viberg H, Fredriksson A, Jakobsson E, Orn U, Eriksson P (2003) Neurobehavioral derangements in adult mice receiving decabrominated diphenyl ether (PBDE 209) during a defined period of neonatal brain development. Toxicol Sci 76:112–120

    Article  PubMed  CAS  Google Scholar 

  • Villanger GD, Jenssen BM, Fjeldberg RR, Letcher RJ, Muir DC, Kirkegaard M, Sonne C, Dietz R (2011) Exposure to mixtures of organohalogen contaminants and associative interactions with thyroid hormones in East Greenland polar bears (Ursus maritimus). Environ Int 37:694–708

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Li B, Zhao WD, Liu YJ, Shang DS, Fang WG, Chen YH (2011) Perfluorooctane sulfonate triggers tight junction “opening” in brain endothelial cells via phosphatidylinositol 3-kinase. Biochem Biophys Res Commun 410:258–263

    Article  PubMed  CAS  Google Scholar 

  • Weber R, Watson A, Forter M, Oliaei F (2011) Review article: persistent organic pollutants and landfills—a review of past experiences and future challenges. Waste Manag Res 29:107–121

    Article  PubMed  CAS  Google Scholar 

  • Weiss JM, Andersson PL, Lamoree MH, Leonards PE, van Leeuwen SP, Hamers T (2009) Competitive binding of poly- and perfluorinated compounds to the thyroid hormone transport protein transthyretin. Toxicol Sci 109:206–216

    Article  PubMed  CAS  Google Scholar 

  • Weschler CJ (2009) Changes in indoor pollutants since the 1950s. Atmos Env 43:153–169

    Google Scholar 

  • White SS, Fenton SE, Hines EP (2011) Endocrine disrupting properties of perfluorooctanoic acid. J Steroid Biochem Mol Biol 127:16–26

    Article  PubMed  CAS  Google Scholar 

  • Yang JH, Derr-Yellin EC, Kodavanti PRS (2003) Alterations in brain protein kinase C isoforms following developmental exposure to a polychlorinated biphenyl mixture. Mol Brain Res 111:123–135

    Article  PubMed  CAS  Google Scholar 

  • Ylinen M, Auriola S (1990) Tissue distribution and elimination of perfluorodecanoic acid in the rat after single intraperitoneal administration. Pharmacol Toxicol 66:45–48

    Article  PubMed  CAS  Google Scholar 

  • Ylinen M, Hanhijärvi H, Jaakonaho J, Peura P (1989) Stimulation by oestradiol of the urinary excretion of perfluorooctanoic acid in the male rat. Pharmacol Toxicol 65:274–277

    Article  PubMed  CAS  Google Scholar 

  • Yu WG, Liu W, Jin YH, Liu XH, Wang FQ, Liu L, Nakayama SF (2009) Prenatal and postnatal impact of perfluorooctane sulfonate (PFOS) on rat development: a cross-foster study on chemical burden and thyroid hormone system. Environ Sci Technol 43:8416–8422

    Article  PubMed  CAS  Google Scholar 

  • Zamir R, Athanasiadou M, Nahar N, Mamun MI, Mosihuzzaman M, Bergman A (2009) Persistent organohalogen contaminants in plasma from groups of humans with different occupations in Bangladesh. Chemosphere 74:453–459

    Article  PubMed  CAS  Google Scholar 

  • Zeng HC, Li YY, Zhang L, Wang YJ, Chen J, Xia W, Lin Y, Wei J, Lv ZQ, Li M, Xu SQ (2011a) Prenatal exposure to perfluorooctanesulfonate in rat resulted in long-lasting changes of expression of synapsins and synaptophysin. Synapse 65:225–233

    Article  PubMed  CAS  Google Scholar 

  • Zeng HC, Zhang L, Li YY, Wang YJ, Xia W, Lin Y, Wei J, Xu SQ (2011b) Inflammation-like glial response in rat brain induced by prenatal PFOS exposure. Neurotoxicology 32:130–139

    Article  PubMed  CAS  Google Scholar 

  • Zoeller RT, Dowling ALS, Herzig CTA, Iannacone EA, Gauger KJ, Bansal R (2002) Thyroid hormone, brain development, and the environment. Environ Health Perspect 110:355–361

    Article  PubMed  CAS  Google Scholar 

  • Zushi Y, Tamada M, Kanai Y, Masunaga S (2010) Time trends of perfluorinated compounds from the sediment core of Tokyo Bay, Japan (1950s–2004). Environ Pollut 158:756–763

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Espen Mariussen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mariussen, E. Neurotoxic effects of perfluoroalkylated compounds: mechanisms of action and environmental relevance. Arch Toxicol 86, 1349–1367 (2012). https://doi.org/10.1007/s00204-012-0822-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-012-0822-6

Keywords

Navigation