Skip to main content

Advertisement

Log in

Green tea polyphenols attenuate deterioration of bone microarchitecture in female rats with systemic chronic inflammation

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Green tea polyphenols (GTP) are promising agents for preventing bone loss. GTP supplementation sustained microarchitecture and improved bone quality via a decrease in inflammation. Findings suggest a significant role for GTP in skeletal health of patients with chronic inflammation.

Introduction

This study evaluated whether GTP can restore bone microstructure along with a molecular mechanism in rats with chronic inflammation. A 2 [placebo vs. lipopolysaccharide (LPS)]× 2 [no GTP vs. 0.5% GTP (w/v) in drinking water] factorial design was employed.

Methods

Female rats were assigned to four groups: placebo, LPS, placebo + GTP, and LPS + GTP for 12 weeks. Efficacy was evaluated by examining changes in bone microarchitecture using histomorphometric and microcomputed tomographic analyses and by bone strength using the three-point bending test. A possible mechanism was studied by assessing the difference in tumor necrosis factor-α (TNF-α) expression in tibia using immunohistochemistry.

Results

LPS lowered trabecular volume fraction, thickness, and bone formation in proximal tibia while increasing osteoclast number and surface perimeter in proximal tibia and eroded surface in endocortical tibial shafts. GTP increased trabecular volume fraction and number in both femur and tibia and periosteal bone formation rate in tibial shafts while decreasing trabecular separation in proximal tibia and eroded surface in endocortical tibial shafts. There was an interaction between LPS and GTP in trabecular number, separation, bone formation, and osteoclast number in proximal tibia, and trabecular thickness and number in femur. GTP improved the strength of femur, while suppressing TNF-α expression in tibia.

Conclusion

In conclusion, GTP supplementation mitigated deterioration of bone microarchitecture and improved bone integrity in rats with chronic inflammation by suppressing bone erosion and modulating cancellous and endocortical bone compartments, resulting in a larger net bone volume. Such a protective role of GTP may be due to a suppression of TNF-α.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Van Dyke TE, Serhan CN (2003) Resolution of inflammation: a new paradigm for the pathogenesis of periodontal diseases. J Dent Res 82:82–90

    Article  PubMed  Google Scholar 

  2. Mann ST, Stracke H, Lange U, Klor HU, Teichmann J (2003) Alternations of bone mineral density and bone metabolism in patients with various grades of chronic pancreatitis. Metabolism 52:579–585

    Article  CAS  PubMed  Google Scholar 

  3. Bernstein CN, Leslie WD, Taback SP (2003) Bone density in a population-based cohort or premenopausal adult women with early onset inflammatory bowel disease. Am J Gastroenterol 98:1094–1100

    Article  PubMed  Google Scholar 

  4. Romas E, Gillespie MT, Martin TJ (2003) Involvement of receptor activator of NF-κB ligand and tumor necrosis factor-alpha in bone destruction in rheumatoid arthritis. Bone 30:340–346

    Article  Google Scholar 

  5. Uaratanawong S, Deesomchoke U, Lertmaharit S, Uaratanawong S (2003) Bone mineral density in premenopausal women with systemic lupus erythematosus. J Rheumatol 30(11):2365–2368

    PubMed  Google Scholar 

  6. Banfi G, Iorio EL, Corsi MM (2008) Oxidative stress, free radicals and bone remodeling. Clin Chem Lab Med 46(11):1550–1555, Review

    Article  CAS  PubMed  Google Scholar 

  7. Miyaura C, Inada M, Matsumoto C, Ohshiba T, Uozumi N, Shimizu T, Ito A (2003) An essential role of cytosolic phospholipase A2 alpha in prostaglandin E2-mediated bone resorption associated with inflammation. J Exp Med 197(10):1303–1310

    Article  CAS  PubMed  Google Scholar 

  8. Cochran DL (2008) Inflammation and bone loss in periodontal disease. J Periodontol 79(8 Suppl):1569–1576

    Article  CAS  PubMed  Google Scholar 

  9. Boulos P, Ioannidis G, Adachi JD (2000) Glucocorticoid-induced osteoporosis. Curr Rheumatol Rep 2(1):53–61

    Article  CAS  PubMed  Google Scholar 

  10. Hofbauer LC, Brueck CC, Shanahan CM, Schoppet M, Dobnig H (2007) Vascular calcification and osteoporosis—from clinical observation towards molecular understanding. Osteoporos Int 18(3):251–259, Review

    Article  CAS  PubMed  Google Scholar 

  11. Mody N, Parhami F, Saraflan TA, Demer LL (2001) Oxidative stress modulates osteoblastic differentiation of vascular and bone cells. Free Radic Biol Med 31:509–519

    Article  CAS  PubMed  Google Scholar 

  12. Muthusami S, Ramachandran I, Muthusamy B, Vasudevan G, Prabhu V, Subramaniam V, Jagadeesan A, Narasimhan S (2005) Ovariectomy induces oxidative stress and impairs bone antioxidant system in adult rats. Clin Chim Acta 360(1–2):81–86

    Article  CAS  PubMed  Google Scholar 

  13. Manolagas SC (2008) De-fense! De-fense! De-fense: scavenging H2O2 while making cholesterol. Endocrinology 149(7):3264–3266

    Article  CAS  PubMed  Google Scholar 

  14. Garrett JR, Boyce BF, Oreffo RO, Bonewald L, Poser J, Mundy GR (1990) Oxygen-derived free radicals stimulate osteoclastic bone resorption in rodent bone in vitro and in vivo. J Clin Invest 85:632–639

    Article  CAS  PubMed  Google Scholar 

  15. Shen CL, Yeh JK, Cao JJ, Tatum OL, Dagda RY, Wang JS (2009) Green tea polyphenols mitigate bone loss of female rats in a chronic inflammation-induced bone loss model. J Nutr Biochem (in press)

  16. Shen CL, Yeh JK, Cao J, Wang J-S (2009) Green tea and bone metabolism. Nutr Res 29(7):437–456, Review

    Article  CAS  PubMed  Google Scholar 

  17. Weisburger JH (1999) Tea and health: the underlying mechanisms. Proc Soc Exp Biol Med 220(4):271–275, Review

    Article  CAS  PubMed  Google Scholar 

  18. Shen CL, Yeh JK, Stoecker BJ, Chyu MC, Wang JS (2009) Green tea polyphenols mitigate deterioration of bone microarchitecture in middle-aged female rats. Bone 44(4):684–690

    Article  CAS  PubMed  Google Scholar 

  19. Smith BJ, Lerner MR, Bu SY, Lucas EA, Hanas JS, Lightfoot SA, Postier RG, Bronze MS, Brackett DJ (2006) Systemic bone loss and induction of coronary vessel disease in a rat model of chronic inflammation. Bone 38(3):378–386

    Article  CAS  PubMed  Google Scholar 

  20. Wang JS, Luo H, Wang P, Tang L, Yu J, Huang T, Cox S, Gao W (2008) Validation of green tea polyphenol biomarkers in a phase II human intervention trial. Food Chem Toxicol 46(1):232–240

    Article  CAS  PubMed  Google Scholar 

  21. Shen CL, Wang P, Guerrieri J, Yeh JK, Wang JS (2008) Protective effect of green tea polyphenols on bone loss in middle-aged female rats. Osteoporos Int 19(7):979–990

    Article  CAS  PubMed  Google Scholar 

  22. Villanueva AR, Mehr LA (1977) Modifications of the Goldner and Gomori one-step trichrome stains for plastic-embedded thin sections of bone. Am J Medica Tech 43:536–538

    CAS  Google Scholar 

  23. Parfitt AM, Drezner MJ, Glorieux FH, Kanis JA, Malluche H, Meunier PJ (1987) Bone histomorphometry: standardization of nomenclature, symbols and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 2:595–610

    Article  CAS  PubMed  Google Scholar 

  24. Nielsen FH (2004) Dietary fat composition modifies the effect of boron on bone characteristics and plasma lipids in rats. BioFactors 20:161–171

    Article  CAS  PubMed  Google Scholar 

  25. Crenshaw TD, Peo ER, Lewis AJ Jr, Moser BD (1981) Bone strength as a trait for assessing mineralization in swine: a critical review of techniques involved. J Anim Sci 53:827–835

    Google Scholar 

  26. Nakagawa H, Wachi M, Woo JT, Kato M, Kasai S, Takahashi F, Lee IS, Nagai K (2002) Fenton reaction is primarily involved in a mechanism of (-)-epigallocatechin-3-gallate to induce osteoclastic cell death. Biochem Biophys Res Commun 292(1):94–101

    Article  CAS  PubMed  Google Scholar 

  27. Hafeez BB, Ahmed S, Wang N, Gupta S, Zhang A, Haqqi TM (2006) Green tea polyphenols induced apoptosis in human osteosarcoma SAOS-2 cells involves a caspase-dependent mechanism with downregulation of nuclear factor-kappaB. Toxicol Appl Pharmacol 216(1):11–19

    Article  PubMed  Google Scholar 

  28. Nakagawa H, Hasumi K, Takami M, Aida-Hyugaji S, Woo JT, Nagai K, Ishikawa T, Wachi M (2007) Identification of two biologically crucial hydroxyl groups of (-)-epigallocatechin gallate in osteoclast culture. Biochem Pharmacol 73(1):34–43

    Article  CAS  PubMed  Google Scholar 

  29. Yun JH, Pang EK, Kim CS, Yoo YJ, Cho KS, Chai JK, Kim CK, Choi SH (2009) Inhibitory effects of green tea polyphenol (-)-epigallocatechin gallate on the expression of matrix metalloproteinase-9 and on the formation of osteoclasts. J Periodontal Res 39(5):300–307

    Article  Google Scholar 

  30. Takayanagi H, Kim S, Taniguchi T (2002) Signaling crosstalk between RANKL and interferons in osteoclast differentiation. Arthritis Res 4(Suppl 3):S227–S232, Review

    Article  PubMed  Google Scholar 

  31. Lee JH, Jin H, Shim HE, Kim HN, Ha H, Lee ZH (2009) Epigallocatechin-3-gallate inhibits osteoclastogenesis by down-regulating c-Fos expression and suppressing the NF-{kappa}B signal. Mol Pharmacol Oct 14 (in press)

  32. Matsunaga K, Klein TW, Friedman H, Yamamoto Y (2002) In vitro therapeutic effect of epigallocatechin gallate on nicotine-induced impairment of resistance to Legionella pneumophila infection of established MH-S alveolar macrophages. J Infect Dis 185(2):229–236

    Article  CAS  PubMed  Google Scholar 

  33. Balga R, Wetterwald A, Portenier J, Dolder S, Mueller C, Hofstetter W (2006) Tumor necrosis factor-alpha: alternative role as an inhibitor of osteoclast formation in vitro. Bone 39(2):325–335

    Article  CAS  PubMed  Google Scholar 

  34. Armour KJ, Armour KE, van’t Hof RJ, Reid DM, Wei XQ, Liew FY, Ralston SH (2001) Activation of the inducible nitric oxide synthase pathway contributes to inflammation-induced osteoporosis by suppressing bone formation and causing osteoblast apoptosis. Arthritis Rheum 44(12):2790–2796

    Article  CAS  PubMed  Google Scholar 

  35. Dumitrescu AL, Abd-El-Aleem S, Morales-Aza B, Donaldson LF (2004) A model of periodontitis in the rat: effect of lipopolysaccharide on bone resorption, osteoclast activity, and local peptidergic innervation. J Clin Periodontol 31(8):596–603

    Article  CAS  PubMed  Google Scholar 

  36. Droke EA, Hager KA, Lerner MR, Lightfoot SA, Stoecker BJ, Brackett DJ, Smith BJ (2007) Soy isoflavones avert chronic inflammation-induced bone loss and vascular disease. J Inflamm (Lond) 4:17

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Laura W. Bush Institute for Women’s Health and National Institutes of Health/National Center for Complementary and Alternative Medicine grant R21AT003735 (CLS) and the National Institutes of Health/National Cancer Institute grant CA90997 (JSW).

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C.-L. Shen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, CL., Yeh, J.K., Samathanam, C. et al. Green tea polyphenols attenuate deterioration of bone microarchitecture in female rats with systemic chronic inflammation. Osteoporos Int 22, 327–337 (2011). https://doi.org/10.1007/s00198-010-1209-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-010-1209-2

Keywords

Navigation