Skip to main content

Advertisement

Log in

Bone turnover and bone collagen maturation in osteoporosis: effects of antiresorptive therapies

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Bone collagen maturation may be important for anti-fracture efficacy as the reduction in risk is only partly explained by a concomitant increase in BMD during anti-resorptive therapy. Different treatments caused diverse profiles in bone collagen degradation products, which may have implications for bone quality.

Introduction

The aim of the present study was to evaluate the effect of different anti-resorptive treatments on bone collagen maturation measured as the ratio between the degradation products of newly synthesized and mature isomerized C-telopeptides of type I collagen.

Methods

Participants were from cohorts of healthy postmenopausal women participating in double blind, placebo-controlled 2-year studies of alendronate, ibandronate, intranasal hormone replacement therapy (HRT), oral HRT, transdermal HRT, or raloxifene (n = 427). The non-isomerized ααCTX and isomerized ββCTX were measured in urine samples obtained at baseline, and after 6, 12, and 24 months of therapy.

Results

Bone collagen maturation measured as the ratio between ααCTX and ββCTX showed that bisphosphonate treatment induced a collagen profile consistent with an older matrix with a 52% (alendronate) and 38% (ibandronate) reduction in the ratio between the two CTX isoforms vs. 3% and 15% with HRT or raloxifene, respectively.

Conclusions

Anti-resorptive treatments had different effects on the endogenous profile of bone collagen maturation. Whether that effect on bone collagen has an impact on bone strength independent on the treatment-dependent effect on BMD should be investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Dempster DW (2006) Anatomy and functions of the adult skeleton. In: Favus MJ (founding ed) Primer on the metabolic bone diseases and disorders of mineral metabolism, 6th edn. American Society for Bone and Mineral Research, Washington, USA, pp 7–11

    Google Scholar 

  2. Takahashi H, Epker B, Frost HM (1964) Resorption precedes formative activity. Surg Forum 15:437–438

    PubMed  CAS  Google Scholar 

  3. Hattner R, Epker BN, Frost HM (1965) Suggested sequential mode of control of changes in cell behaviour in adult bone remodelling. Nature 206:489–490

    Article  PubMed  CAS  Google Scholar 

  4. Parfitt AM (1982) The coupling of bone formation to bone resorption: a critical analysis of the concept and of its relevance to the pathogenesis of osteoporosis. Metab Bone Dis Relat Res 4:1–6

    Article  PubMed  CAS  Google Scholar 

  5. Martin TJ (1993) Hormones in the coupling of bone resorption and formation. Osteoporos Int 3(Suppl 1):121–125

    Article  PubMed  Google Scholar 

  6. Nakamura M, Udagawa N, Matsuura S et al (2003) Osteoprotegerin regulates bone formation through a coupling mechanism with bone resorption. Endocrinology 144:5441–5449

    Article  PubMed  CAS  Google Scholar 

  7. Rodan GA (1991) Mechanical loading, estrogen deficiency, and the coupling of bone formation to bone resorption. J Bone Miner Res 6:527–530

    Article  PubMed  CAS  Google Scholar 

  8. Garnero P, Sornay-Rendu E, Claustrat B et al (2000) Biochemical markers of bone turnover, endogenous hormones and the risk of fractures in postmenopausal women: the OFELY study. J Bone Miner Res 15:1526–1536

    Article  PubMed  CAS  Google Scholar 

  9. Ravn P, Hosking D, Thompson D et al (1999) Monitoring of alendronate treatment and prediction of effect on bone mass by biochemical markers in the early postmenopausal intervention cohort study. J Clin Endocrinol Metab 84:2363–2368

    Article  PubMed  CAS  Google Scholar 

  10. Ravn P, Clemmesen B, Christiansen C (1999) Biochemical markers can predict the response in bone mass during alendronate treatment in early postmenopausal women. Alendronate Osteoporosis Prevention Study Group. Bone 24:237–244

    Article  PubMed  CAS  Google Scholar 

  11. Ravn P, Thompson DE, Ross PD et al (2003) Biochemical markers for prediction of 4-year response in bone mass during bisphosphonate treatment for prevention of postmenopausal osteoporosis. Bone 33:150–158

    Article  PubMed  CAS  Google Scholar 

  12. Odvina CV, Zerwekh JE, Rao DS et al (2005) Severely suppressed bone turnover: a potential complication of alendronate therapy. J Clin Endocrinol Metab 90:1294–1301

    Article  PubMed  CAS  Google Scholar 

  13. Fledelius C, Johnsen AH, Cloos PA et al (1997) Characterization of urinary degradation products derived from type I collagen. Identification of a beta-isomerized Asp-Gly sequence within the C-terminal telopeptide (alpha1) region. J Biol Chem 272:9755–9763

    Article  PubMed  CAS  Google Scholar 

  14. Cloos PA, Lyubimova N, Solberg H et al (2004) An immunoassay for measuring fragments of newly synthesized collagen type I produced during metastatic invasion of bone. Clin Lab 50:279–289

    PubMed  CAS  Google Scholar 

  15. Garnero P, Borel O, Gineyts E et al (2006) Extracellular post-translational modifications of collagen are major determinants of biomechanical properties of fetal bovine cortical bone. Bone 38:300–309

    Article  PubMed  CAS  Google Scholar 

  16. Viguet-Carrin S, Roux JP, Arlot ME et al (2006) Contribution of the advanced glycation end product pentosidine and maturation of type I collagen to compressive biomechanical properties of human lumbar vertebrae. Bone 39:1073–1079

    Article  PubMed  CAS  Google Scholar 

  17. Siris ES, Miller PD, Barrett-Connor E et al (2001) Identification and fracture outcomes of undiagnosed low bone mineral density in postmenopausal women: results from the National Osteoporosis Risk Assessment. JAMA 286:2815–2822

    Article  PubMed  CAS  Google Scholar 

  18. Miller PD, Siris ES, Barrett-Connor E et al (2002) Prediction of fracture risk in postmenopausal white women with peripheral bone densitometry: evidence from the National Osteoporosis Risk Assessment. J Bone Mineral Res 17:2222–2230

    Article  Google Scholar 

  19. Schuit SC, van der Klift M, Weel AE et al (2004) Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam Study. Bone 34:195–202

    Article  PubMed  CAS  Google Scholar 

  20. Hui SL, Slemenda CW, Johnston CC Jr (1988) Age and bone mass as predictors of fracture in a prospective study. J Clin Invest 81:1804–1809

    Article  PubMed  CAS  Google Scholar 

  21. Faulkner KG (2000) Bone matters: are density increases necessary to reduce fracture risk? J Bone Miner Res 15:183–187

    Article  PubMed  CAS  Google Scholar 

  22. Delmas PD, Li Z, Cooper C (2004) Relationship between changes in bone mineral density and fracture risk reduction with antiresorptive drugs: some issues with meta-analyses. J Bone Miner Res 19:330–337

    Article  PubMed  CAS  Google Scholar 

  23. Riis B, Ise J, von Stein T et al (2001) Ibandronate: A comparison of oral daily dosing versus intermittent dosing in postmenopausal osteoporosis. J Bone Mineral Res 16:1871–1878

    Article  CAS  Google Scholar 

  24. Nielsen TF, Ravn P, Bagger YZ et al (2004) Pulsed estrogen therapy in prevention of postmenopausal osteoporosis. A 2-year randomized, double blind, placebo-controlled study. Osteoporos Int 15:168–174

    Article  PubMed  CAS  Google Scholar 

  25. Warming L, Ravn P, Nielsen T et al (2004) Safety and efficacy of drospironone used in a continuous combination with 17β-estradiol for prevention of postmenopausal osteoporosis. Climacteric 7:103–111

    Article  PubMed  CAS  Google Scholar 

  26. Warming L, Ravn P, Christiansen C (2005) Levonorgestrel and 17β-estradiol given transdermally for the prevention of postmenopausal osteoporosis. Maturitas 50:78–85

    Article  PubMed  CAS  Google Scholar 

  27. Delmas PD, Bjarnason NH, Mitlak BH et al (1997) Effects of raloxifene on bone mineral density, serum cholesterol concentrations, and uterine endometrium in postmenopausal women. N Engl J Med 337:1641–1647

    Article  PubMed  CAS  Google Scholar 

  28. Rosenquist C, Fledelius C, Christgau S et al (1998) Serum CrossLaps One Step ELISA. First application of monoclonal antibodies for measurement in serum of bone-related degradation products from C-terminal telopeptides of type I collagen. Clin Chem 44:2281–2289

    PubMed  CAS  Google Scholar 

  29. Rogers MJ (2003) New insights into the molecular mechanisms of action of bisphosphonates. Curr Pharm Des 9:2643–2658

    Article  PubMed  CAS  Google Scholar 

  30. McClung MR, Lewiecki EM, Cohen SB et al (2006) Denosumab in postmenopausal women with low bone mineral density. N Engl J Med 354:821–831

    Article  PubMed  CAS  Google Scholar 

  31. Reid IR, Brown JP, Burckhardt P et al (2002) Intravenous zoledronic acid in postmenopausal women with low bone mineral density. N Engl J Med 346:653–661

    Article  PubMed  CAS  Google Scholar 

  32. Watts NB, Cooper C, Lindsay R et al (2004) Relationship between changes in bone mineral density and vertebral fracture risk associated with risedronate. J Clin Densitom 7:255–261

    Article  PubMed  Google Scholar 

  33. Sarkar S, Mitlak BH, Wong M et al (2002) Relationships between bone mineral density and incident vertebral fracture risk with raloxifene therapy. J Bone Miner Res 17:1–10

    Article  PubMed  CAS  Google Scholar 

  34. Cummings SR, Karpf DB, Harris F et al (2002) Improvement in spine bone density and reduction in risk of vertebral fractures during treatment with antiresorptive drugs. Am J Med 112:281–289

    Article  PubMed  CAS  Google Scholar 

  35. Weinstein RS (2000) True strength. J Bone Miner Res 15:621–625

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

Conflict of Interest

Inger Byrjalsen, Diana J Leeming, and Per Qvist are employees of Nordic Bioscience A/S, and Per Qvist , Claus Christiansen, and Morten A Karsdal are stock owners of Nordic Bioscience A/S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Byrjalsen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Byrjalsen, I., Leeming, D.J., Qvist, P. et al. Bone turnover and bone collagen maturation in osteoporosis: effects of antiresorptive therapies. Osteoporos Int 19, 339–348 (2008). https://doi.org/10.1007/s00198-007-0462-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-007-0462-5

Keywords

Navigation