Skip to main content
Log in

Statistical analysis of autoregressive fractionally integrated moving average models in R

  • Original Paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

The autoregressive fractionally integrated moving average (ARFIMA) processes are one of the best-known classes of long-memory models. In the package afmtools for R, we have implemented a number of statistical tools for analyzing ARFIMA models. In particular, this package contains functions for parameter estimation, exact autocovariance calculation, predictive ability testing and impulse response function computation, among others. Furthermore, the implemented methods are illustrated with applications to real-life time series.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Automat Contr 19(6):716–723

    Article  MathSciNet  MATH  Google Scholar 

  • Andrews D (1991) Heteroskedasticity and autocorrelation consistent covariance matrix estimation. Econometrica 59(3):817–858

    Article  MathSciNet  MATH  Google Scholar 

  • Andrews D, Monahan JC (1992) An improved heteroskedasticity and autocorrelation consistent covariance matrix estimator. Econometrica 60(4):953–966

    Article  MathSciNet  MATH  Google Scholar 

  • Beran J (1994) Statistics for long-memory processes. Chapman & Hall, New York

    MATH  Google Scholar 

  • Bisaglia L, Guégan D (1998) A comparison of techniques of estimation in long-memory processes. Comput Stat Data Anal 27:61–81

    Article  MATH  Google Scholar 

  • Contreras-Reyes JE, Goerg G, Palma W (2011) Estimation, diagnostic and forecasting Functions for ARFIMA models. R package version 0.1.8. http://cran.r-project.org/web/packages/afmtools/index.html

  • Contreras-Reyes J, Idrovo B (2011) En busca de un modelo Benchmark Univariado para predecir la tasa de desempleo de Chile. Cuad Econ 30(55):105–125

    Google Scholar 

  • Dahlhaus R (1989) Efficient parameter estimation for self-similar processes. Ann Stat 17(4):1749–1766

    Google Scholar 

  • Diebold F, Mariano R (1995) Comparing predictive accuracy. J Bus Econ Stat 13(3):253–263

    Google Scholar 

  • Giacomini R, White H (2006) Tests of conditional predictive ability. Econometrica 74(6):1545–1578

    Article  MathSciNet  MATH  Google Scholar 

  • Gradshteyn IS, Ryzhik IM (2007) Table of Integrals, Series, and Products, 7th edn. Elsevier, Amsterdam

    MATH  Google Scholar 

  • Granger CW, Joyeux R (1980) An introduction to long-memory time series models and fractional differencing. J Time Ser Anal 1:15–29

    Article  MathSciNet  MATH  Google Scholar 

  • Haslett J, Raftery AE (1989) Space-time modelling with long-memory dependence: assessing Ireland’s wind power resource (with Discussion). Appl Stat 38(1):1–50

    Article  Google Scholar 

  • Hassler U, Kokoszka PS (2010) Impulse responses of fractionally integrated processes with long memory. Economet Theor 26(6):1861–1885

    Article  MathSciNet  Google Scholar 

  • Hipel KW, McLeod AI (1994) Time series modelling of water resources and environmental systems. Elsevier, Amsterdam

  • Hosking JR (1981) Fractional differencing. Biometrika 68(1):165–176

    Article  MathSciNet  MATH  Google Scholar 

  • Hyndman RJ, Khandakar Y (2008) Automatic time series forecasting: the forecast Package for R. J Stat Softw 27(3):1–22

    Google Scholar 

  • Kokoszka PS, Taqqu MS (1995) Fractional ARIMA with stable innovations. Stoch Proc Appl 60(1):19–47

    Article  MathSciNet  MATH  Google Scholar 

  • Lieberman O, Phillips PCB (2008) A complete asymptotic series for the autocovariance function of a long memory process. J Econometrics 147(1):99–103

    Article  MathSciNet  Google Scholar 

  • Lumley A, Heagerty P (1999) Weighted Empirical adaptive variance estimators for correlated data regression. J Roy Stat Soc B 61(2):459–477

    Article  MathSciNet  MATH  Google Scholar 

  • Newey WK, West KD (1987) A simple, positive semidefinite, Heteroskedasticity and autocorrelation consistent covariance matrix. Econometrica 55(3):703–708

    Google Scholar 

  • Palma W (2007) Long-memory time series, theory and methods. Wiley, Hoboken

    Book  MATH  Google Scholar 

  • Palma W, Olea R (2010) An efficient estimator for locally stationary Gaussian long-memory processes. Ann Stat 38(5):2958–2997

    Article  MathSciNet  MATH  Google Scholar 

  • Palma W, Olea R, Ferreira G (2013) Estimation and forecasting of locally stationary processes. J Forecast 32(1):86–96

    Article  MathSciNet  Google Scholar 

  • Peiris M, Perera B (1988) On prediction with fractionally differenced ARIMA models. J Time Ser Anal 9(3):215–220

    Article  MathSciNet  MATH  Google Scholar 

  • Piessens R, de Doncker-Kapenga E, Uberhuber C, Kahaner D (1983) Quadpack: a subroutine package for automatic integration. Springer, New York

    Book  MATH  Google Scholar 

  • R Development Core Team (2012) R: A language and environment for statistical computing. Foundation for Statistical Computing, Vienna. ISBN 3-900051-07-0. http://www.R-project.org

  • Singleton RC (1979) Mixed radix fast fourier transforms. In: IEEE Digital Signal Processing Committee (eds) Programs for Digital Signal Processing. IEEE Press, New York

  • Sowell F (1992) Maximum likelihood estimation of stationary univariate fractionally integrated time series models. J Econom 53(1–3):165–188

    Article  MathSciNet  Google Scholar 

  • Whittle P (1953) Estimation and information in stationary time series. Ark Mat 2:423–434

    Google Scholar 

  • Wold H (1938) A study in the analysis of stationary time series, vol 53. Almqvist and Wiksell, Uppsala, pp 165–188

  • Zeileis A (2004) Econometric Computing with HC and HAC Covariance Matrix Estimators. J Stat Softw 11(10):1–17

    Google Scholar 

  • Zeileis A (2006) Object-oriented Computation of Sandwich Estimators. J Stat Softw 16(9):1–16

    Google Scholar 

Download references

Acknowledgments

Wilfredo Palma would like to thank the support from Fondecyt Grant 1120758. The authors thank the editor, the co-editor and an anonymous referee for their helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier E. Contreras-Reyes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Contreras-Reyes, J.E., Palma, W. Statistical analysis of autoregressive fractionally integrated moving average models in R. Comput Stat 28, 2309–2331 (2013). https://doi.org/10.1007/s00180-013-0408-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-013-0408-7

Keywords

Navigation