Skip to main content
Log in

The accuracy of the extramedullary and intramedullary femoral alignment system in total knee arthroplasty for varus osteoarthritic knee

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

The intramedullary (IM) femoral alignment system does not alway guarantee accuracy of the component position in the total knee arthroplasty (TKA). In some cases, the extramedullary (EM) femoral alignment system in total knee arthroplasty (TKA) is a useful alternative surgical option to adjust femoral component alignment. In the EM technique, accuracy of the femoral head center location is mandatory. The purpose of this prospective randomized study was to compare the alignment after TKA using two different femoral alignment systems.

Methods

From January 2009 to December 2009, 91 patients (106 knees) with osteoarthritis underwent TKA. The IM femoral alignment system was used in 50 TKAs, and the EM system was used in 56 TKAs. We measured the coronal, sagittal alignment of the femoral component, and overall alignment from full-length standing. Anteroposterior radiographs were taken 1 year after surgery.

Results

The overall limb alignment was 0.2° ± 1.9° varus in the EM group and 1.1° ± 1.9° valgus in the IM group (p = 0.001). The coronal alignment of the femoral component was 90.0° ± 1.1° in the EM group and 90.3° ± 1.2° in the IM group, not statistically different (n.s.). The sagittal alignment of the femoral component was 2.3° ± 1.7° in the EM group and 2.5° ± 1.0° in the IM group (n.s.). Clinically acceptable overall limb alignment was achieved in 91.1 % of EM group and 84.0 % of IM group (n.s.).

Conclusion

The present study suggests that by applying our EM technique that uses a newly designed mechanical axis marker system, the alignment of the femoral component and overall limb alignment is reliable and at least as accurate as the standard IM technique.

Level of evidence

I.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Andriacchi TP (1988) Biomechanics and gait analysis in total knee replacement. Orthop Rev 17:470–473

    PubMed  CAS  Google Scholar 

  2. Baldini A, Adravanti P (2008) Less invasive TKA: extramedullary femoral reference without navigation. Clin Orthop Relat Res 466:2694–2700

    Article  PubMed  Google Scholar 

  3. Berend ME, Ritter MA, Meding JB, Faris PM, Keating EM, Redelman R, Faris GW, Davis KE (2004) Tibial component failure mechanisms in total knee arthroplasty. Clin Orthop Relat Res 428:26–34

    Article  PubMed  Google Scholar 

  4. Brys DA, Lombardi AV Jr, Mallory TH, Vaughn BK (1991) A comparison of intramedullary and extramedullary alignment systems for tibial component placement in total knee arthroplasty. Clin Orthop Relat Res 263:175–179

    PubMed  Google Scholar 

  5. Byrick RJ, Forbes D, Waddell JP (1986) A monitored cardiovascular collapse during cemented total knee replacement. Anesthesiology 65:213–216

    Article  PubMed  CAS  Google Scholar 

  6. Caillouette JT, Anzel SH (1990) Fat embolism syndrome following the intramedullary alignment guide in total knee arthroplasty. Clin Orthop Relat Res 251:198–199

    PubMed  Google Scholar 

  7. Catani Fabio, Digennaro Vitantonio, Ensini Andrea, Leardini Alberto, Giannini Sandro (2012) Navigation-assisted total knee arthroplasty in knees with osteoarthritis due to extra-articular deformity. Knee Surg Sports Traumatol Arthrosc 20:546–551

    Article  PubMed  Google Scholar 

  8. Cates HE, Ritter MA, Keating EM, Faris PM (1993) Intramedullary versus extramedullary femoral alignment systems in total knee replacement. Clin Orthop Relat Res 286:32–39

    PubMed  Google Scholar 

  9. Church JS, Scadden JE, Gupta RR, Cokis C, Williams KA, Janes GC (2007) Embolic phenomena during computer-assisted and conventional total knee replacement. J Bone Joint Surg Br 89:481–485

    Article  PubMed  CAS  Google Scholar 

  10. Collier MB, Engh CA Jr, McAuley JP, Engh GA (2007) Factors associated with the loss of thickness of polyethylene tibial bearings after knee arthroplasty. J Bone Joint Surg Am 89:1306–1314

    Article  PubMed  Google Scholar 

  11. de Kroon KE, Houterman S, Janssen RPA (2011) Leg alignment and tibial slope after minimal invasive total knee arthroplasty: a prospective, randomized radiological study of intramedullary versus extramedullary tibial instrumentation. Knee. doi:10.1016/j.knee.2011.04.007

  12. Dennis DA, Channer M, Susman MH, Stringer EA (1993) Intramedullary versus extramedullary tibial alignment systems in total knee arthroplasty. J Arthroplasty 8:43–47

    Article  PubMed  CAS  Google Scholar 

  13. Dorr LD, Merkel C, Mellman MF, Klein I (1989) Fat emboli in bilateral total knee arthroplasty. Clin Orthop Relat Res 248:112–119

    PubMed  Google Scholar 

  14. Engh GA, Petersen TL (1990) Comparative experience with intramedullary and extramedullary alignment in total knee arthroplasty. J Arthroplasty 5:1–8

    Article  PubMed  CAS  Google Scholar 

  15. Han Hyuk-Soo, Kang Seung-Baik, Jo Chris H, Kim Sun-Hong, Lee Jung-Ha (2010) The accuracy of intramedullary tibial guide of sagittal alignment of PCL-substituting total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 18:1334–1338

    Article  PubMed  Google Scholar 

  16. Hofmann S, Frank R, Kratochwill C, Salzer M (1996) Femoral intramedullary pressure and pulmonary fat embolism during uncemented total knee replacement: comparison of different surgical techniques. Orthop Trans 20:145–153

    Google Scholar 

  17. Ishii Y, Ohmori G, Bechtold JE, Gustilo RB (1995) Extramedullary versus intramedullary alignment guides in total knee arthroplasty. Clin Orthop Relat Res 318:167–175

    PubMed  Google Scholar 

  18. Jiang CC, Insall JN (1989) Effect of rotation on the axial alignment of the femur. Pitfalls in the use of femoral intramedullary guides in total knee arthroplasty. Clin Orthop Relat Res 248:50–56

    PubMed  Google Scholar 

  19. Jung WH, Kim DH, Chun CW, Jeong JH, Ha YC, Seo JG (2011) Accuracy of inter femoral head center distance measurement and evaluation for coronal alignment of femoral component during total knee arthroplasty. J Korean Orthop Assoc 46:320–325

    Article  Google Scholar 

  20. Laskin RS (1984) Alignment of total knee components. Orthopedics 7:62–65

    Google Scholar 

  21. Laskin RS (1993) Total knee arthroplasty using an uncemented, polyethylene tibial implant. A seven-year follow-up study. Clin Orthop Relat Res 288:270–276

    PubMed  Google Scholar 

  22. Lotke PA, Ecker ML (1977) Influence of positioning of prosthesis in total knee replacement. J Bone Joint Surg 59A:77–85

    Google Scholar 

  23. Matsuda S, Miura H, Nagamine R (1999) Posterior tibial slope in the normal and varus knee. Am J Knee Surg 12:165–168

    PubMed  CAS  Google Scholar 

  24. Mihalko WM, Krackow KA (1999) Posterior cruciate ligament effects on the flexion space in total knee arthroplasty. Clin Orthop Relat Res 360:243–250

    Article  PubMed  Google Scholar 

  25. Montgomery AA, Graham A, Evans PH, Fahey T (2002) Inter-rater agreement in the scoring of abstracts submitted to a primary care research conference. BMC Health Serv Res 2:8

    Article  PubMed  Google Scholar 

  26. Morawa LG, Manley MT, Edidin AA, Reilly DT (1996) Transesophageal echocardiographic monitored events during total knee arthroplasty. Clin Orthop Relat Res 331:192–198

    Article  PubMed  Google Scholar 

  27. Mullaji A, Shetty GM, Kanna R, Sharma A (2010) Variability in the range of inter-anterior superior iliac spine distance and its correlation with femoral head centre. A prospective computed tomography study of 200 adults. Skeletal Radiol 39:363–368

    Article  PubMed  Google Scholar 

  28. Seo JG, Moon YW, Kim YS (2006) A comparison of extramedullary and intramedullary femoral component alignment guide systems in TKA. J Korean Knee Soc 18:47–54

    Google Scholar 

  29. Seo JG, Lim JS, Lee HI, Woo KJ (2010) An extramedullary femoral alignment system in total knee arthroplasty using the inter-femoral head center distance. J Korean Orthop Assoc 45:347–355

    Article  Google Scholar 

  30. Teter KE, Bregman D, Colwell CW Jr (1995) The efficacy of intramedullary femoral alignment in total knee replacement. Clin Orthop Relat Res 321:117–121

    PubMed  Google Scholar 

  31. Tillett ED, Engh GA, Peterson T (1988) A comparative study of extramedullary and intramedullary alignment systems in total knee arthroplasty. Clin Orthop Relat Res 230:176–181

    PubMed  Google Scholar 

  32. Windsor RE, Scuderi GR, Moran MC, Insall JN (1989) Mechanisms of failure of the femoral and tibial components in total knee arthroplasty. Clin Orthop Relat Res 248:15–19

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Heon Jeong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jung, Wh., Chun, Cw., Lee, Jh. et al. The accuracy of the extramedullary and intramedullary femoral alignment system in total knee arthroplasty for varus osteoarthritic knee. Knee Surg Sports Traumatol Arthrosc 21, 629–635 (2013). https://doi.org/10.1007/s00167-012-1994-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-012-1994-6

Keywords

Navigation