Skip to main content
Log in

Recent improvements in the Zonal Detached Eddy Simulation (ZDES) formulation

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

An efficient generalized Zonal Detached Eddy Simulation method (ZDES) is presented, which aims at performing hybrid Reynolds Averaged Numerical Simulation (RANS)/Large Eddy Simulation (LES) calculations for both internal and external aerodynamics problems. It is based on a zonal formulation of the hybrid length scale that allows to combine the zonal approach with the best features of Delayed Detached Eddy Simulation (DDES) (Spalart et al. Theor Comput Fluid Dyn 20:181–195, 2006). In other words, the presumed weak point of a zonal approach, namely that the location of separation has to be known in advance, is now overcome. What is more, the problem of slow LES content development in mixing layers when they are treated neither in RANS nor in LES mode is investigated. It is argued that the subgrid length scale Δmax = max(Δx, Δy, Δz) entering DDES is physically justified to shield the boundary layer but is definitely not a good subgrid length scale in LES mode. Remedies are proposed based on new zonal subgrid length scales that depend not only on the grid spacing but also on the flow solution and especially on the local vorticity vector. The method is validated on a spatially developing mixing layer as well as in a backward facing step flow and then applied to a three-element airfoil. It is argued in this latter case that a precise control of the RANS mode thanks to a zonal approach is essential. More generally, in all simulated cases in this study, ZDES has proven to be very efficient as regards the behavior in LES mode while retaining the strongest asset of DDES, namely the treatment of the attached boundary layer in RANS mode. The issue of zonal or non-zonal treatment of turbulent flows is also briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Arnott, K., Neitzke, K., Agocs, J., Sammer, G., Schneider, G., Schroeder, A.: Detailed characterisation using PIV of the flow around an aerofoil in high lift configuration. In: EUROPIV2 Workshop on Particle Image Velocimetry. Springer, Berlin (2003)

  2. Bogey C., Marsden O., Bailly C.: Large-eddy simulation of the flow and acoustic fields of a reynolds number 105 subsonic jet with tripped exit boundary layers. Phys. Fluids 23, 035104 (2011)

    Article  Google Scholar 

  3. Breuer M., Jovicic N., Mazaev K.: Comparison of DES, RANS and LES for the separated flow around a flat plate at high incidence. Int. J. Numer. Methods Fluids 41, 357–388 (2003)

    Article  MATH  Google Scholar 

  4. Brunet, V., Deck, S.: Zonal detached eddy simulation of transonic buffet on a civil aircraft type configuration. In: Peng, S.-H., Haase, W. Advances in Hybrid RANS-LES Modelling, NNFM97, pp. 182–191. Springer, Berlin (2008)

  5. Brunet, V., Deck, S.: Zonal detached eddy simulation of a civil aircraft engine jet configuration. In: Peng, S.-H., Doerffer, P., Haase, W. Progress in Hybrid RANS-LES Modelling NNFM111, pp. 147–156. Springer, Berlin (2010)

  6. Chauvet, N.: Simulation numérique et analyse physique d’un jet propulsif contrôlé par des injections radiales. Ph.D. thesis, Dpt of Fundamental and Applied Sciences. University of Poitiers (2007)

  7. Chauvet N., Deck S., Jacquin L.: Zonal-detached-eddy simulation of a controlled propulsive jet. AIAA J. 45(10), 2458–2473 (2007)

    Article  Google Scholar 

  8. Choudhari M., Khorrami M.: Effect of three-dimensional shear-layer structures on slat cove unsteadiness. AIAA J. 45(9), 2174–2186 (2007)

    Article  Google Scholar 

  9. Dandois J., Garnier E., Sagaut P.: Numerical simulation of active separation control by a synthetic jet. J. Fluid Mech. 574, 25–58 (2007)

    Article  MATH  Google Scholar 

  10. Deck S.: Numerical simulation of transonic buffet over a supercritical airfoil. AIAA J. 43(7), 1556–1566 (2005)

    Article  Google Scholar 

  11. Deck S.: Zonal-detached eddy simulation of the flow around a high-lift configuration. AIAA J. 43(11), 2372–2384 (2005)

    Article  Google Scholar 

  12. Deck S.: Delayed detached eddy simulation of self-sustained unsteadiness and side-loads in an overexpanded nozzle flow. Shock Waves 19, 239–249 (2009). doi:10.1007/s00193-009-0199-5

    Article  Google Scholar 

  13. Deck S., Duveau P., d’Espiney P., Guillen P.: Development and application of Spalart Allmaras one equation turbulence model to three-dimensional supersonic complex configurations. Aerosp. Sci. Technol. 6(3), 171–183 (2002)

    Article  MATH  Google Scholar 

  14. Deck S., Thorigny P.: Unsteadiness of an axisymmetric separating-reattaching flow: numerical investigation. Phys. Fluids 19, 065103 (2007)

    Article  Google Scholar 

  15. Deck, S., Thorigny, P., Thépot, R.: Zonal detached eddy simulation of unsteady side-loads over space launcher configurations. In: 2nd EUCASS Conderence, Brussels, Belgium, 2–5 July (2007)

  16. Deck, S., Weiss, P., Pamiès, M., Garnier, E.: On the use of stimulated detached eddy simulation (SDES) for spatially developing boundary layers. In: Peng, S.-H., Haase, W. Advances in Hybrid RANS-LES Modelling, NNFM97, pp. 67–76. Springer, Berlin (2008)

  17. Deck S., Weiss P., Pamiès M., Garnier E.: Zonal detached eddy simulation of a spatially developing flat plate turbulent boundary layer. Comput. Fluids 48, 1–15 (2011). doi:10.1016/j.compfluid.2011.03.09

    Article  Google Scholar 

  18. Delville, J.: La décomposition orthogonale aux valeurs propres et l’analyse de l’organisation tridimensionnelle des écoulements turbulents cisaillés libres. Ph.D. thesis, Department of Fundamental and Applied Sciences. University of Poitiers (1995)

  19. Driver D., Seegmiller H., Marvin J.: Time-dependent behavior of a reattaching shear layer. AIAA J. 25(7), 914–919 (1987)

    Article  Google Scholar 

  20. Frohlich J., von Terzi D.: Hybrid RANS/LES methods for the simulation of turbulent flows. Prog. Aerosp. Sci. 44, 349–377 (2008)

    Article  Google Scholar 

  21. Fureby, C.: Large eddy simulation modelling of combustion for proplusion applications. Phil. Trans. R. Soc. A. 367:2957–2969 (2009)

    Google Scholar 

  22. Gand F., Deck S., Brunet V., Sagaut P.: Dynamics over a simplified junction flow. Phys. Fluids 22, 115111 (2010)

    Article  Google Scholar 

  23. Garnier E.: Stimulated detached eddy simulation of a three-dimensional shock/boundary layer interaction. Shock Waves 19(6), 479–486 (2009)

    Article  Google Scholar 

  24. Huang L., Ho C.: Small scale transition in a plane mixing layer. J. Fluid Mech. 200, 475–500 (1982)

    Google Scholar 

  25. Hutton A.: The emerging role of large eddy simulation in industrial practice: challenges and opportunities. Phil. Trans. R. Soc. A. 367, 2819–2826 (2009)

    Article  Google Scholar 

  26. Imamura T., Enomoto S., Yokokawa Y., Tamamoto K.: Three-dimensional unsteady flow computations around a conventional slat of high-lift devices. AIAA J. 446(5), 1045–1053 (2008)

    Article  Google Scholar 

  27. Jarrin N., Benhamadouche S., Laurence D., Prosser R.: A synthetic-eddy-method for generating inflow conditions for large eddy simulation. Int. J. Heat Fluid Flows 27, 585–593 (2006)

    Article  Google Scholar 

  28. Jarrin, N., Uribe, J.C., Prosser, R.D.L.: Synthetic inflow conditions for wall bounded flows. In: Peng, S.-H., Haase, W. Advances in Hybrid RANS-LES Modelling, NNFM97, pp. 77–86. Springer, Berlin (2008)

  29. Jenkins, L., Khorrami, M., Choudhari, M.: Characterization of unsteady flow structures near leading-edge slat: Part I. PIV measurements. AIAA Paper 2004–2802, 10th AIAA/CEAS Aeroacoustics conference (2004)

  30. Kok, J., Dol, H., Oskam, H., van der Ven, H.: Extra-large eddy simulation of massively separated flows. AIAA Paper 04-0264, 42th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada (2004)

  31. Kok, J., van der, Ven H.: Destabilizing free shear layers in XLES using a stochastic subgrid-scale model. In: Peng, S.-H., Doerffer, P., Haase, W. Progress in Hybrid RANS-LES Modelling, NNFM111, pp. 179–189. Springer, Berlin (2010)

  32. Konig D., Koh S., Meinke M., Schroder W.: Two-step simulation of slat noise. Comput. Fluids 39, 512–524 (2010)

    Article  Google Scholar 

  33. Laraufie R., Deck S., Sagaut P.: A dynamic forcing method for unsteady turbulent inflow conditions. J. Comput. Phys. 230, 8647–8663 (2011). doi:10.1016/j.jcp.2011.08.012

    Article  MathSciNet  MATH  Google Scholar 

  34. Lele S.K.: Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103, 16–42 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  35. Lockard, D., Choudhari, M.: Noise radiation from a leading-edge slat. AIAA Paper 09-3101, 15th AIAA/CEAS Aeroacoustics Conference, Miami, Florida (2009)

  36. Lund T., Wu X., Squires K.: Generation of turbulent inflow data for spatially-developping boundary layer simulations. J. Comput. Phys. 140, 233–258 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  37. Mary I., Sagaut P.: Large eddy simulation of flow around an airfoil near stall. AIAA J. 40(6), 1139–1145 (2002)

    Article  Google Scholar 

  38. McMullan W., Gao S., Coats C.: The effect of inflow conditions on the transition to turbulence in large eddy simulations of spatially developping mixing layers. Int. J. Heat Fluid Flows 30, 1054–1066 (2009)

    Article  Google Scholar 

  39. Menter F.: Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 32(8), 1598–1605 (1994)

    Article  Google Scholar 

  40. Menter, F., Kuntz, M., Bender, R.: A scale-adaptive simulation model for turbulent flow predictions. AIAA Paper 03-0767, 41th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada (2003)

  41. Moreau, P., Labbe, J., F., D., Borghi, R.: Experimental and numerical study of a turbulent recirculation zone with combustion. In: 5th Symposium on Turbulence and Shear Flows (1985)

  42. Pamiès M., Garnier E., Merlen A., Sagaut P.: Response of a spatially developping turbulent boundary layer to active control strategies in the framework of opposition control. Phys. Fluids 19, 108102 (2007)

    Article  Google Scholar 

  43. Pamiès M., Weiss P., Garnier E., Deck S., Sagaut P.: Generation of synthetic turbulent inflow data for large eddy simulation of spatially evolving wall-bounded flows. Phys. Fluids 21, 045103 (2009)

    Article  Google Scholar 

  44. Péchier M., Guillen P., Caysac R.: Magnus effect over finned projectiles. AIAA J. Spacecr. Rockets 38(4), 542–549 (2001)

    Article  Google Scholar 

  45. Richez F., Mary I., Gleize V., Basdevant C.: Zonal RANS/LES coupling simulation of a transitional and separated flow around an airfoil near stall. Theor. Comput. Fluid Dyn. 22, 305–315 (2008)

    Article  MATH  Google Scholar 

  46. Riou J., Garnier E., Basdevant C.: Compressibility effects on the vortical flows over a 65 deg sweep wing. Phys. Fluids 22, 035102 (2010)

    Article  Google Scholar 

  47. Riou J., Garnier E., Deck S., Basdevant C.: Improvement of delayed-detached eddy simulation applied to separated flow over missile fin. AIAA J. 47(2), 345–358 (2009)

    Article  Google Scholar 

  48. Sagaut, P.: Large eddy simulation for incompressible flows, 3rd edn. Springer, Berlin (2005)

  49. Sagaut P., Deck S.: Large eddy simulation for aerodynamics: status and perpectives. Phil. Trans. R. Soc. A. 367, 2849–2860 (2009). doi:10.1098/rsta.2008.0269

    Article  MATH  Google Scholar 

  50. Sagaut, P., Deck, S., Terracol, M.: Multiscale and Multiresolution Approaches in Turbulence. Imperial College Press, London (2006)

  51. Sainte-Rose B., Bertier N., Deck S., Dupoirieux F.: A DES method applied to a backward facing step reactive flow. C. R. de Mécanique 337, 340–351 (2010). doi:10.1016/j.crme.2009.06.017

    Article  Google Scholar 

  52. Scotti A., Meneveau C.: Generalized smagorinsky model for anisotropic grids. Phys. Fluids 5(9), 2306–2308 (1993)

    Article  MATH  Google Scholar 

  53. Shur M., Spalart P., Strelets M.: Noise prediction for increasingly complex jets. Part I: methods and tests. Int. J. Aeroacoust. 4, 247–256 (2005)

    Article  Google Scholar 

  54. Shur M., Spalart P., Strelets M., Travin A.: A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities. Int. J. Heat Fluid Flows 29(6), 1638–1649 (2008)

    Article  Google Scholar 

  55. Shur M., Spalart P., Strelets M., Travin A.: A rapid and accurate switch from RANS to LES in boundary layers using an overlap region. Flow Turbul. Combust. 86(2), 1–28 (2010)

    Google Scholar 

  56. Simon F., Deck S., Guillen P., Caysac R., Merlen A.: Zonal detached eddy simulation of projectiles in the subsonic and transsonic regimes. AIAA J. 45(7), 1606–1619 (2006)

    Article  Google Scholar 

  57. Simon F., Deck S., Guillen P., Sagaut P.: Reynolds averaged Navier Stokes/large eddy simulations of supersonic base flow. AIAA J. 44(11), 2578–2590 (2006)

    Article  Google Scholar 

  58. Simon F., Deck S., Guillen P., Sagaut P., Merlen A.: Numerical simulation of the compressible mixing layer past an axisymmetric trailing edge. J. Fluid Mech. 591, 215–253 (2007)

    Article  MATH  Google Scholar 

  59. Spalart P.: Strategies for turbulence modelling and simulations. Int. J. Heat Fluid Flows 21(3), 252–263 (2000)

    Article  Google Scholar 

  60. Spalart P.: Detached eddy simulation. Annu. Rev. Fluid Mech. 41, 181–202 (2009)

    Article  Google Scholar 

  61. Spalart, P., Allmaras, S.: A one equation turbulence model for aerodynamic flows. AIAA Paper 92-0439 (1992)

  62. Spalart P., Allmaras S.: A one equation turbulence model for aerodynamic flows. La Rech. Aérosp. 1, 5–21 (1994)

    Google Scholar 

  63. Spalart P., Deck S., Shur M., Squires K., Strelets M., Travin A.: A new version of detached-eddy simulation, resistant to ambiguous grid densities. Theor. Comput. Fluid Dyn. 20, 181–195 (2006)

    Article  MATH  Google Scholar 

  64. Spalart, P., Jou, W., Strelets, M., Allmaras, S.: Comments on the feasibility of LES for wings and on a hybrid RANS/LES approach. In: Proceedings of the 1st AFSOR International Conference on DNS/LES, Ruston, pp. 137–147 (1998)

  65. Tenaud C., Pellerin S., Dulieu A., Ta Phuoc L.: Large eddy simulation of a spatially developing incompressible 3d mixing layer using the v−ω formulation. Comput. Fluids 34, 67–96 (2005)

    Article  MATH  Google Scholar 

  66. Terracol M., Manoha E., Herrero E., Labourasse E., Redonnet S., Sagaut P.: Hybrid methods for airframe noise numerical prediction. Theor. Comput. Fluid Dyn. 19(3), 197–227 (2005)

    Article  MATH  Google Scholar 

  67. Trapier S., Deck S., Duveau P.: Delayed detached eddy simulation and analysis of supersonic inlet buzz. AIAA J. 46(1), 118–131 (2008)

    Article  Google Scholar 

  68. Tucker P.: Novel MILES computation for jet flows and noise. Int. J. Heat Fluid Flows 25(4), 625–635 (2004)

    Article  Google Scholar 

  69. Urbin G., Knight D.: Large-eddy simulation of a supersonic boundary layer using an unstructured grid. AIAA J. 39(7), 1288–1295 (2001)

    Article  Google Scholar 

  70. Weiss P., Deck S.: Control of the antisymmetric mode (m = 1) for high reynolds axisymmetric separating/reattachinf flows. Phys. Fluids 23, 095102 (2011)

    Article  Google Scholar 

  71. Weiss P., Deck S., Sagaut P., Robinet J.: On the dynamics of axisymmetric turbulent separating/reattaching flow. Phys. Fluids 21, 075103 (2009)

    Article  Google Scholar 

  72. Wild, J., Pott-Pollenske, M., Nagel, B.: An integrated design approach for low noise exposing high-lift devices. AIAA Paper 2006–2843 (2006)

  73. Xia H., Tucker P., Eastwood S.: Large eddy simulations of chevron jet flows with noise prediction. Int. J. Heat Fluid Flows 30(1), 1067–1079 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sébastien Deck.

Additional information

Communicated by S. Sarkar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deck, S. Recent improvements in the Zonal Detached Eddy Simulation (ZDES) formulation. Theor. Comput. Fluid Dyn. 26, 523–550 (2012). https://doi.org/10.1007/s00162-011-0240-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-011-0240-z

Keywords

Navigation