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Abstract This article employs LES to simulate temporal mixing layers with Mach numbers ranging from
Mc = 0.3 to Mc = 1.2. A form of approximate deconvolution together with a dynamic Smagorinsky subgrid
model are employed as subgrid models. A large computational domain is used along with relatively good res-
olution. The LES results regarding growth rate, turbulence levels, turbulence anisotropy, and pressure–strain
correlation show excellent agreement with those available from previous experimental and DNS results of
the same flow configuration, underlining the effectiveness and accuracy of properly conducted LES. Coherent
structures during the transitional stage change from spanwise aligned rollers to streamwise-aligned thinner
vortices at high Mach number. In the quasi-self-similar turbulent stage, the resolved-scale vorticity is more
isotropic at higher Mc, and its vertical correlation length scale is smaller. The ratio of the vertical integral
length scale of streamwise velocity fluctuation to a characteristic isotropic estimate is found to decrease with
increasing Mc. Thus, compressibility leads to increased spatial decorrelation of turbulence which is one reason
for the reduction in pressure–strain correlation with increasing Mc. The balance of the resolved-scale fluctuat-
ing vorticity is examined, and it is observed that the linear production by mean shear becomes less important
compared to nonlinear vortex stretching at high Mc. A spectral decomposition of the pressure fluctuations into
low- and intermediate-to-high-wave numbers is performed. The low-wave number part of the pressure field
is found not to correlate with the strain field, although it does have a significant contribution to the r.m.s of
the fluctuating pressure. As a consequence, the pressure–strain correlation can be analyzed using a simplified
Green’s function for the Poisson equation as is demonstrated here using the LES data.

Keywords Compressible turbulence · Temporal mixing layer · Pressure–strain correlation ·
Large-eddy simulation · Enstrophy · Spectral-decomposition

1 Introduction

Efficient technology for supersonic aviation, particularly scramjet engines, motivates the interest in compress-
ible turbulent flows. Since compressible flows occur during mixing processes, the transition to turbulence,
compression and combustion, simplified flow configurations need to be studied to isolate and distinguish
between different compressibility effects, therefore enabling us to get a better understanding. One such sim-
plified flow is the mixing layer between two streams, an important part of any engine. At high speeds, fluid
compressibility has been found to strongly affect the behavior of the mixing layer. In order to characterize
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such compressibility effects, the convective Mach number Mc has been introduced by Bogdanoff [3], defined
as Mc = (U1 − U2)/(c1 + c2), with U1, c1 and U2, c2 denoting the velocity and speed of sound in the high
speed stream and low speed stream, respectively.

Numerous investigations, experimentally [5,7–9,17,29,32,37] as well as numerically [13,14,23,28,34,39,
40,50,52] have tried to understand the influence of compressibility in mixing layers. One of the most impor-
tant observations is the reduced turbulent shear layer growth rate with increasing convective Mach number
[5,9,17,32,29], leading to a stabilization of the flow in the supersonic regime as shown by Sarkar [40]. This
reduced thickness of the shear layer has been linked to the decreased turbulent production using an analytical
expression by Vreman et al. [50]. In compressible uniform shear flow, the reduced turbulent kinetic energy
growth rate has also been shown to be a consequence of reduced turbulent production [40]. This reduction in the
turbulent production was shown by DNS studies to be associated with a decrease in the pressure fluctuations,
reducing the pressure–strain terms in the turbulent stress balances, in the case of a shear layer by Vreman
et al. [50]) and in the case of uniform shear by Sarkar [41]. Later, a study of the annular mixing layer by
Freund et al. [13] and a mixing layer by Pantano et al. [28] also found a reduction in pressure fluctuations and
pressure–strain terms among other results.

The fluctuating pressure equation has been the subject of analysis to understand the observed compressibil-
ity effects. Pantano et al. [28] performed a Green’s function analysis without shear for the center of the mixing
layer and found that the finite speed of sound in compressible flow causes a time delay for a signal passing a
turbulent eddy, causing thereby a decorrelation between adjacent points in this eddy. Recently, Thacker et al.
[49] investigated the influence of compressibility on the rapid pressure–strain rate by deriving an exact Green’s
function for the convected wave equation for pressure fluctuations in homogeneous shear flow. They extended
the work done by Papamoschou [30], who used ray theory to investigate the consequence of the wave operator
on pressure fluctuations, instead of the usual Poisson equation in incompressible flow, and of Papamoschou et
al. [31] who found reduced pressure fluctuation communication in the axial direction in DNS of vortex rings.
The Green’s function derived by [49] is a combination of parabolic cylinder functions that depend explicitly
on the turbulent Mach number Mt = urms/c and the gradient Mach number Mg = S̄lI/c, introduced by
Cambon et al. [6] and Sarkar [40], with S̄ being the mean shear rate and lI the transverse integral scale. Their
results, analyzed in spectral space, indicate, that for higher Mg the stabilizing effect on compressible shear
flows increases. Although the Green’s function analysis is exact, Thacker et al. [49] introduced simplifications
and assumptions, to make the calculation of the pressure–strain correlation analytically tractable. They intro-
duced an isotropic energy spectral density and a form for the anisotropic energy spectrum, together with the
assumption of homogeneous shear and an isentropic relation between the pressure and density fluctuations.
Contrary to using a convective wave equation for the pressure fluctuations, Foysi et al. [12] and Mahle et al.
[23] analyzed a compressible Poisson equation for the pressure fluctuations in supersonic channel flow and in
a reacting shear layer with strong heat release. The terms involving time derivatives of the density fluctuations
were neglected, as they turned out to be negligible in the calculation of the pressure–strain terms. Such an
assumption directly leads to a Green’s function solution of the Poisson equation which coincides with the
incompressible Green’s function solution, as obtained, e.g., by Kim [16]. In view of the results obtained by
[49], the fact that the incompressible Green function works for the investigated compressible channel flows in
Foysi et al. [12] can be understood by the low Mt and Mg.

The structure of the flow is found to become strongly three-dimensional for convective Mach numbers
greater than 0.6 [8,19], whereas for lower Mach numbers similar roll-up and pairing mechanisms as in incom-
pressible flow can be observed [7,18]. Furthermore, linear stability analysis [34,39,53] of temporal and spatial
stability problems showed the two-dimensional nature of the most amplified disturbances up to convective
Mach numbers of 0.6, whereas for higher Mach number the Kelvin–Helmholtz instability is inhibited (Normand
[27]). In addition, the turbulent structures decrease in size with increasing convective Mach number (Lesieur
et al. [19] and references therein), demanding better resolution and therefore larger computational re-
sources for higher Mach numbers. Despite the low Reynolds number limitations, direct numerical sim-
ulations are capable of providing valuable insight into the processes involved in compressible mixing
layers.

Vreman et al. [52] performed a detailed study of various subgrid models in the turbulent mixing layer at
a low value of Mc = 0.2 corresponding to quasi-incompressible behavior. In tests at Reω0 = 50 (Reynolds
number based on the initial vorticity thickness), a value low enough to be accessible to DNS, the dynamic
mixed model was found to give the best overall agreement between the filtered DNS and the LES. In LES at
higher Reynolds number, Reω0 = 500 and Reωf = 5000, the dynamic eddy viscosity model was found to
outperform other models with respect to showing self-similar evolution. Vreman et al. [51] considered subgrid
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modeling for compressible terms by performing LES of a mixing layer at low Reω0 = 50, and two values of
Mc = 0.4 and 0.6. They found that, at Mc = 0.6, inclusion of a model for the subgrid dissipation in the energy
equation led to a noticeable improvement. The LES study of these authors did not focus on the influence of
Mc on the flow evolution.

This work revisits the compressible mixing layer to address unresolved issues. It has not been demonstrated
that LES has the ability to capture self-similar evolution of the high-speed mixing layer and accurately repre-
sent the strong compressibility effects that were briefly reviewed in the preceding sections. We will perform
LES for a Reynolds number based on the final vorticity thickness, Reω, as high as 20, 000 and demonstrate
again that LES, when properly conducted, has the ability to capture compressibility effects in the mixing layer.
The reduction of the pressure fluctuations with increasing Mc is not well understood. We will investigate the
pressure field using spectral decomposition, a Green’s function analysis, and visualization to gain insight. The
pressure–strain correlation will also be analyzed. Lastly, the LES database will be examined for compressibility
effects on the resolved vorticity field using statistical analysis.

2 Mathematical formulation

The present code has the capability to solve for the compressible Navier–Stokes equations using either the
total energy equation or the internal energy equation. Here, the latter equation is used since it proved to be
more stable in the context of LES. Figure 1 shows the flow configuration, where two streams with different
velocities U1 = −U2 = �U/2 but equal densities are considered. Table 1 shows some reference parameters
at the start of the simulation. A large domain size is used to obtain quasi-self-similar evolution, as discussed
in Appendix A. The large scales of the flow are well-represented by the chosen domain as demonstrated using
two-point correlations in Appendix B. The simulation is not a DNS, since the grid size is much larger than
the Kolmogorov scale, for example, �x2 varies between 300η during the initial transient and 50η during
the quasi-self-similar stage. Thus, the LES approach is adopted with a subgrid model described later in this
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Fig. 1 Sketch of the domain and flow configuration (in this article U2 = −U1, ρ2 = ρ1)

Table 1 Initial parameters of the simulation

Case Re Mc Reω0 δθ0 δω0 N1 N2 N3
L1
δθ0

L2
δθ0

L3
δθ0

LES03 800 0.3 705 0.093 0.41 768 193 64 1720 387 172
LES07 800 0.7 705 0.093 0.41 512 193 140 1147 344 269
LES09 800 0.9 705 0.093 0.41 768 193 96 1720 344 118
LES10 800 1.0 705 0.093 0.41 512 193 160 1147 344 172
LES12 800 1.2 705 0.093 0.41 512 193 160 1147 344 172

δθ0 and δω0 denote the initial momentum and vorticity thickness, respectively, Reω0 the Reynolds number based on the initial
vorticity thickness. Li are the domain lengths and Ni the corresponding number of grid points
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section. The LES grid is relatively fine in the sense that the energy-containing scales are well-resolved; during
the self-similar evolution, there are 20–40 grid points per integral scale in the streamwise direction.

The final value of the Reynolds number Reω, is as large as 20,000. The Prandtl number is set to 0.7, while
the ratio of the specific heats is γ = 1.4. Periodic boundary conditions are used in the streamwise and spanwise
direction, whereas non-reflecting boundary conditions [48] together with grid stretching and a sponge layer are
used in the normal direction [21]. The initial velocity profile for u1 is given as u1 = (�U/2) tanh(−x2/δθ (0)).
To trigger the transition to turbulence, broadband disturbances are superimposed on the initial velocity profiles.
The disturbances are calculated using random fields for the velocity vector potential, �, on which a spectrum
of the form 	̂i ∝ exp(−2(k/k0)) is imposed, where k is the wave vector magnitude and k0/δθ0 = 23.66 the
peak wave number. The resultant disturbance field is then restricted to the shear layer by multiplying it with
a shape function of the form exp(−(x2/(2δθ (0)))2). The velocity fluctuations are then obtained by taking the
curl of the vector potential u′ = ∇ × �, thus guaranteeing solenoidality. The broadband forcing used here
enabled a fast transition to turbulence and limited the emission of acoustic waves initially. This reduction of
compressibility transients when using quasi-solenoidal initial perturbations was demonstrated by [10].

The following two sections give an overview of the governing equations and the LES models employed
here.

2.1 Governing equations

The Navier–Stokes equations in conservative form for the density, momentum and temperature are filtered
using a top-hat filter with filter width �, indicating the smallest resolved scale on the LES grid. The filter width
� in a given direction was chosen to be the corresponding value of 2�xi (see Vreman et al. [50] and discussion
therein). As a consequence, a flow variable f can be decomposed as f = f̄ + fsg, with the filtered large-scale
part f̄ and the unresolved subgrid part fsg. After Favre [11], a mass weighted filtering operation, f̃ = ρ f /ρ̄,
is used, simplifying the equations considerably. The filtered compressible Navier–Stokes equations used here
are:
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+ ∂ρ̄ũ j T̃

∂x j

)
− γ − 1

γ Re
σ̄i j

∂ ũi
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∂ ũi

∂x j
+ ∂ ũ j
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and the resolved heat flux,
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Here, δi j is the Kronecker delta and the viscosity μ is calculated using Sutherland’s law. Other subgrid con-
tributions of the molecular diffusivity to the momentum transport equation,
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were found negligible and only that of the subgrid stress tensor,

τi j = ũi u j − ũi ũ j , (4)

is retained. Similarly, in the temperature equation, the subgrid heat flux

Q j = Cv(ρ̄˜u j T − ρ̄ũ j T̃ ). (5)
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Table 2 Comparison of grid size of the current LES, normalized with δθ0

Case �x1 min. �x2 max. �x2 �x3

LES03 2.24 1.73 5.32 2.69
LES07 2.24 1.73 3.21 1.92
LES09 2.24 1.73 3.21 1.23
LES10 2.24 1.73 3.21 1.08
LES12 2.24 1.73 3.21 1.08

The DNS of [28] has a lower Reynolds number, and grid spacing of 0.67 for all simulations as well as directions

is retained while the subgrid molecular dissipation rate is neglected. The spatial derivatives are calculated
using explicit finite difference dispersion relation preserving (DRP) schemes having the summation by parts
(SBP) property [15] for the first derivatives. These schemes are of sixth order in the interior and of third order
at the boundary. The second derivatives in the viscous terms are calculated using SBP operators of fourth order
[25]. Time integration was performed by using a fourth order explicit low dissipation-dispersion Runge–Kutta
scheme of Berland et al. [2]. The code was validated by performing DNS of a temporal mixing layer with the
same parameters as that of case A3 in Pantano et al. [28] and successfully comparing the statistics.

2.2 Subgrid modeling

Table 2 shows the grid spacing of the current LES simulations, as compared to the constant grid spacing of
0.67 in the DNS of Pantano et al. [28]. Although the number of grid points is comparable to the number of grid
points in the referred DNS, the grid spacing is much coarser due to the extended domain size. It was found that
a large number of grid points was required to obtain smooth statistics, especially in the context of the pressure
Poisson equation to be discussed later.

The number of points required in the spanwise direction proved to be crucial, since the transition process
changes dramatically with increasing Mc. This is illustrated in Fig. 2, comparing cases LES03 and LES10 dur-
ing three different time instants. Spanwise coherent vortices with cross-links can be seen at Mc = 0.3 unlike the
thinner streamwise-elongated structures, reminiscent of Lambda vortices at Mc = 1.0. These results, although
surely dependent on initial perturbation level and exact form of the spectrum, are consistent with the summary
in the book of Lesieur et al. [19] that, above Mc = 0.6, no roll-up and helical pairing occur since the Kel-
vin–Helmholtz instability is inhibited, the transition process gets three-dimensional and the pressure becomes
reconnected into longitudinal tubes. Figure 3 shows isosurfaces of the pressure fluctuations (the value was cho-
sen to be approximately prms) for the same LES cases in the quasi-self-similar stage. Although the differences
are less substantial than during transition, again one observes less spanwise coherence and slightly smaller
structures for higher Mc. Overall, it is found that the Mc = 1.0 case requires more grid points and slightly
longer domains in the spanwise direction compared to the Mc = 0.3 case to represent the vortical structures.
This conclusion was found to hold when an alternate eduction criteria, the Q invariant, was used.

The subgrid model used is a combination of the direct filtering version of the approximate deconvolution
model of ADM, originally proposed by Stolz et al. [46], which has been successfully used by Mathew et al.
[24] and later Bogey et al. [4] and the compressible variant of the dynamic Smagorinsky model [26]. This com-
bination was chosen due to the observations that reconstruction type models, e.g., scale-similarity model and
ADM are able to predict well the subgrid scale tensor structure and its related anisotropic and disequilibrium
effects, but lacks the physical contribution of the unresolved fine scales and has less energy transfer [42,38].
The subgrid model used here can also be viewed as deconvolution combined with the dynamic Smagorinsky
model for regularization.

2.2.1 Dynamic Smagorinsky

The stress τi j is decomposed into a deviatoric and isotropic part τi j = τD
i j + τ Iδi j , with τ I set to zero in the

following. The deviatoric part is modeled as [26]
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1/2 and (Cs�)2 determined using the dynamic procedure as
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Fig. 2 Pressure isosurfaces (viewed from the top for cases LES03 and LES10 at x2 = 0 during three different instants during
transition: t�u/δθ =125 (top), t�u/δθ = 250 (middle) and t�u/δθ = 375 (bottom)

Fig. 3 Pressure isosurfaces for cases LES03 and LES10 at x2 = 0 during the quasi-self-similar stage
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and α = (�̂/�)2 = 4. The test filter operation on f is written as f̂ and is an explicit midpoint filter having

twice the filter width. The Favre-filtered analogy is ˘̃f = ρ̂ f / ˆ̃ρ. The subgrid heat flux is modeled as [19]

Q j = Cvρ̄(˜u j T − ũ j T̃ ) = −Cv
ρ̄νt

Prt

∂ T̃

∂x j
,

with νt coming from the dynamic Smagorinsky model and the turbulent Prandtl number chosen as Prt = 0.71.
The simulations proved to be quite insensitive with respect to the value of Prt .

2.2.2 Approximate deconvolution modeling (ADM)

ADM [46] models avoid the closure problem, by replacing the fields in the nonlinear terms by their approx-
imate deconvolved counterparts, obtained by applying the approximate deconvolution operator Q ≈ G−1

to a quantity f to obtain f ∗ = Q ∗ f̄ = Q ∗ G ∗ f , with the filter operator denoted by G. The nonlinear

term in the momentum equation
∂ρui u j

∂x j
, for example, is replaced by

∂ρ∗u∗
i u∗

j
∂x j

. Mathew et al. [24] show that
ADM is equivalent to filtering after each timestep: the filtering operation G ∗ u and the approximate inverse
Q = ∑N

n=0(I − G)n [46] can be combined into one equivalent filtering step Q ∗ G ∗ u =: GT ∗ u. Instead
of calculating Q via the series expansion as outlined above, which is quite expensive, an 11-point filter with
a transfer function similar to QT was designed by [4] and used here in the homogeneous directions. In the
vertical direction this approach proved to be too dissipative, due to the applied grid stretching. Therefore, Q∗G
with N = 4 was used, applying the filter developed by [47] for non-equidistant grids. Bogey et al. [4] found
it sufficient to filter the flow every second timestep. Due to the combination with the dynamic Smagorinsky
model, filtering after every 20 timesteps for LES03 was performed to retain numerical stability, whereas for
the LES09 and LES12 case filtering was applied after every other timestep, according to [4,24]. For the latter
cases shocklets, indicated by strong negative dilatation started to form.

3 Compressibility effects on turbulence statistics

If LES is to fulfill its promise, compressibility effects seen in DNS and experiments, for example, the reduc-
tion of the growth rate, the decrease in the magnitude of the Reynolds stresses, production and pressure–strain
correlation should be observed. The cross-stream coordinate will be normalized by either the vorticity thick-
ness, δω = �U/(d < U >/dx2)max, or the momentum thickness, δθ , with the former preferred when previous
laboratory or simulation results are given in terms of the vorticity thickness. In the self-similar stage, δω � 5δθ .

Reynolds averages are denoted by 〈·〉 and Favre averages by

〈φ〉 f = 〈ρφ〉
〈ρ〉 .

Reynolds averages in the LES simulations are calculated by using plane averaging in the x1, x3-directions.
Reynolds fluctuating quantities are denoted by φ′ and Favre fluctuations as φ′′ in the following. The turbulent
stress tensor is written as (overbar and tilde to indicate filtered quantities are omitted in the following to ease
readability, otherwise explicitly stated)

Ri j = 〈ρu′
i u

′
j 〉

〈ρ〉 . (9)

The turbulent production, resolved dissipation, subgrid dissipation, transport, pressure strain, and muss flux
terms in the Reynolds stress transport equation
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3.1 Growth rates

Figure 4 shows the momentum thickness, defined as

δθ (t) = 1

ρ0�u2
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)(
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After a short initial transient, the mixing layer grows almost linearly with growth rates of dδθ/dt/�u = 0.0161,
0.00785, 0.0065, and 0.006 for cases LES03, LES09, LES10, and LES12, respectively. Incompressible tem-
porally evolving mixing layers exhibit growth rates of approximately 0.016 (Rogers et al. [36]). The case
LES03 has a convective Mach number small enough for compressibility effects to be considered negligible,
its growth rate of 0.0161 is therefore in excellent agreement with the expected growth rate. The shear layer
thickness, normalized with its value at the start of the simulation, is plotted along with experiments and DNS
data against the convective Mach number in Fig. 5. The strong reduction with increasing Mc is captured by the
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Fig. 5 Shear layer growth rate dependence on Mc, comparison with experimental and DNS data

present LES. Furthermore, the data is in excellent agreement with the so-called ’Langley Experimental Curve’,
which is obtained from a compilation of results corresponding to air–air shear layer experiments. Experimental
data below the Langley curve are most likely due to density-ratio differences. Another detailed compilation
of mixing layer growth rates obtained from various experiments and linear stability analysis can be found
in Rossmann et al. [37]. These authors performed experiments at convective Mach numbers ranging from
Mc = 0.80 to Mc = 2.25. However, they used different gases and temperatures for the two streams, resulting
in a much stronger decrease of the growth rate than observed and predicted by the ‘Langley Experimental
Curve’ and in the numerical simulations reported in this article. As pointed out in the Appendix, a big sample
size was necessary to achieve almost self-similarity and get this close agreement between LES and the air–air
mixing layer experiments. A smaller domain in the vertical direction results in values which lie further above
the Langley curve.

3.2 Turbulent intensities

One further check to validate the present LES is comparison of turbulent intensities in the self-similar region
(calculated by averaging over profiles plotted in similarity coordinates) seen in Fig. 6, where the turbulent
intensity in the streamwise direction

√
R11/�u is compared to DNS and experimental data. Interestingly, at

Mc = 0.3, the LES agrees better with experimental [44] and DNS [36] data in the incompressible shear layer
than the DNS results of Pantano et al. [28]. Numerical tests showed the extent of the vertical direction to be a
decisive factor, too small a domain led to decreased peak values due to a stronger influence of the boundaries,
especially during the late phase of the simulation. It is likely that the DNS would have profited from a somewhat
larger vertical domain size. Figures 7a–d show the influence of compressibility on the turbulent intensities. As
discussed already in the introduction, the peak intensities are reduced with increasing Mc as shown in Table 3.

3.3 Anisotropy of the Reynolds stresses

Being part of advanced turbulence closures, the anisotropy tensor,

bi j = Ri j − 2
3 K δi j

2K
, (18)

is an important characteristic of turbulent flows. As pointed out by [28], previous studies report different
results as to whether the diagonal components change as a function of Mc. Whereas some see only minor
changes, other studies indicate that the diagonal components of bi j increase substantially in magnitude, due
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to a stronger decrease in R22 and R33 than R11 with increasing Mc. Figure 8 shows b11, b22 and b12, obtained
by employing the Reynolds stresses and turbulent kinetic energy, integrated over the shear layer (two vorticity
thicknesses), as a function of the non-dimensional time τ = t�u/δθ0. During an initial transient, a peak whose
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Table 3 Comparison of peak turbulent intensities in experiment, DNS and LES (R33 of [28] not available)

Mc
√

R11/�u
√

R22/�u
√

R33/�u
√

R12/�u
√

R22/R11
√

R12/R11

Bell et al. [1] 0 0.18 0.14 0.146 0.100 0.777 0.555
Present LES 0.3 0.174 0.129 0.143 0.106 0.747 0.609
Pantano et al. [28] 0.3 0.155 0.134 0.145 0.103 0.788 0.606
Present LES 0.9 0.146 0.10 0.115 0.084 0.685 0.575
Pantano et al. [28] 1.1 0.141 0.095 n.a. 0.083 0.674 0.588
Present LES 1.2 0.138 0.094 0.105 0.078 0.681 0.580
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Fig. 8 Evolution of the anisotropy tensor bi j for a Mc = 0.3, b Mc = 0.9, and c Mc = 1.2

value strongly depends on the convective Mach number is obtained, before the anisotropies reach an almost
asymptotic constant value in the self-similar region. Table 4 shows a comparison of the current LES with DNS
results of Pantano et al. [28], for values obtained from the data in the self similar region. A slight increase in
magnitude with increasing Mc is observed for the diagonal terms b11 and b22, whereas the DNS data shows an
increase only for b22, with b11 being almost constant. The shear stress anisotropy, b12, has negligible change
among the different cases, only the DNS data for Mc = 0.3 exhibits a slightly elevated value. The observation
of [28], that the anisotropies are strongly affected by Mc during their initial evolution, whereas there are only
minor changes during their self-similar evolution, holds for the present LES study, too. Furthermore, quantities
like

√
R22/R11 and

√
R12/R11, measuring anisotropies and shown in Table 3 for the same time interval, are

very similar among the simulations.
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Table 4 Comparison of Reynolds stress anisotropy during the self-similar development in DNS and LES

Mc b11 b22 b12

Present LES 0.3 0.13 −0.05 0.16
Pantano et al. [28] 0.3 0.14 −0.06 0.18
Present LES 0.9 0.14 −0.08 0.15
Pantano et al. [28] 1.1 0.14 −0.10 0.16
Present LES 1.2 0.16 −0.09 0.16
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Fig. 9 Production and subgrid dissipation, the dominant terms of the turbulent kinetic energy balance, normalized by �u3/δθ0
for the different LES cases. The resolved dissipation and subgrid production are both negligible

3.4 Turbulent kinetic energy production and dissipation

Figure 9 shows the two dominant terms in the turbulent kinetic energy budget, obtained by taking half the
trace of the Reynolds stress transport equation. Compared to the subgrid dissipation, the resolved dissipation
is negligible. As found in Vreman et al. [50] and later DNS studies, the production term clearly decreases from
the case with Mc = 0.3 to Mc = 0.9. The further decrease for case LES12 is small, the same being true for
the magnitude of the dissipation. When comparing the turbulent kinetic energy dissipation here with the DNS
results in [28], one immediately recognizes the stronger compressibility effect in the present LES relative to
the DNS results that showed only a minor influence of compressibility on the dissipation. The extra dissipation
is most likely due to filtering, calculated as [28]

ε f = k − k∗

n�t
.

It was estimated to be around 5% of the actual dissipation in case LES03 and 7% for LES09 and LES12. Here,
n is the number of time steps between filtering and k∗ denotes the turbulent kinetic energy just after application
of the filter.

4 Resolved-scale vorticity

Lesieur et al. [19] observed that the coherent vortical structures decrease strongly in size with increasing Mc,
making it necessary to increase the resolution when simulating high-Mc flows. The budget for the resolved-
scale enstrophy can be of help to understand the generation and change of large-scale vortical structures in a
statistical framework. Since a large part of the vorticity is associated with small-scale motion, LES will clearly
miss the small scale vorticity contributions to the various terms in the enstrophy budget. Nevertheless, it is
interesting to use the LES database to investigate the effect of Mc on the resolved vorticity, especially the vor-
ticity production through mean shear and the vortex stretching. We emphasize that all the results in this section
apply to the vorticity of the resolved-scale field; DNS is required for inferences about the fine-scale vorticity.
da Silva [43], however, demonstrate using DNS and LES of temporal plane jets, that the dynamic Smagorinsky
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model reliably predicts the enstrophy budget, provided that the LES resolutions are at most a factor two to
four coarser in each spatial direction, which happens to be the case for the present LES simulations.

The transport equation for the fluctuating resolved-scale enstrophy ω′ ·ω′/2 is given as ω = (ω1, ω2, ω3)):

∂

∂t

ω′·ω′

2
= 〈ω3〉

(
〈ω′

1ω
′
2〉 +

〈
∂u′′

i

∂x3
ω′′

i

〉)
︸ ︷︷ ︸

A1

+ 〈ω′ · S′ω′〉︸ ︷︷ ︸
A2

− ∂

∂x2

〈
u′

2
|ω′|
2

〉
︸ ︷︷ ︸

A3

+
〈[

∇ ×
(

1

ρ
∇ · σ

)]′
· ω′

〉
︸ ︷︷ ︸

V 1

+
〈[

∇ ×
(

1

ρ
∇ · τ

)]′
· ω′

〉
︸ ︷︷ ︸

V 2

− 〈ω3〉〈ω′
3d ′〉︸ ︷︷ ︸

D1

−
〈|ω′|

2
d ′
〉

︸ ︷︷ ︸
D2

− 〈u′
2ω

′
3〉

∂〈ω3〉
∂x2︸ ︷︷ ︸

K

+
〈[

1

ρ2 ∇ρ × ∇ p

]
·ω′

〉
︸ ︷︷ ︸

B

, (19)

denoting production by the mean shear (A1, 〈ω3〉 = ∂〈u1〉
∂x2

), vortex stretching (A2), transport (A3), viscous
(V 1) and subgrid dissipation (V 2), vorticity–dilation correlations (D1, D2), production by the mean vorticity
field (K ) and baroclinic production (B), respectively.

Figure 10 shows plots of the different terms for three of the LES cases simulated here. The dominant
sources terms are A1, A2 and the dominant sinks are the subgrid (V 2) and filter dissipation (F D, defined
here as the negative of the sum of the terms in the enstrophy balance). A1 is only marginally affected by
compressibility, but the production and subgrid dissipation increase strongly with increasing convective Mach
number. Interestingly, term K , which describes the exchange of enstrophy between the mean and fluctuating
vorticity fields is negligible. The resolved fluctuating enstrophy is therefore mainly produced by stretching
and distortion of fluctuating vorticity and, to a lesser extent, by stretching and distortion of the mean vorticity,
〈ω3〉. This effect is intensified with increasing Mach number. The opposite has been observed, for example,
in non-rotating and spanwise rotating channel flows [20], where in the near-wall region A1 is the dominant
production term, followed by B2. This is of course due to the low Reynolds number near the wall and the high
velocity gradients there.

Interestingly, the ratio of A1 (production by mean shear) to A2 (vortex stretching) seems to decreases dra-
matically between Mc = 0.3 and 0.9. This shows that, at higher Mc, the contribution of the ‘linear’ mechanism
(perhaps related to instabilities) to the amplification of vorticity fluctuations is less important. This is also
consistent with a change of large-scale structures between the two cases as seen in Fig. 2 and as stated by [19].
Figure 11a furthermore shows a vorticity correlation length scale, defined as

Lω = 1

〈ω′2〉
∫

dr〈ω′(xi + rδi2)ω
′(xi )〉, (20)

which decreases with increasing Mc indicating, too, smaller vortical structures. Figure 11b shows the vorticity
magnitude. Here, a clear increase in the vorticity magnitude with higher Mc is seen, contrary to most other
turbulent quantities, which decrease. This behaviour goes hand in hand with the increase of the dominant source
term A2 in the enstrophy budget. This vortex stretching term can be written as ω′ · (S′ω′). The magnitude of
the vector S′ω′ and it’s orientation with the vorticity vector are shown in Fig. 12. The magnitude, |S′

i jω
′
j |, turns

out to be much larger at higher Mc, whereas the alignment between the vectors mentioned above changes only
to a small degree. Thus, the major increase of A2 is due to the increased magnitudes of the two vectors. The
smaller and increasingly random coherent structures for convective Mach numbers larger than 0.6, as observed
in Fig. 2, imply a strong change in the anisotropy of the vorticity field. Figure 13 shows the anisotropy of the
vorticity field, defined as bω

i = 〈ω′2
i 〉/〈|ω′|〉. For high convective Mach number all components obtain values

around 0.3, which indicates equal contributions of all components to the resolved-scale vorticity.

5 Pressure strain correlation

As discussed in the introduction, the reduced growth rate of the shear layer has been linked to a reduction in
pressure fluctuations and in the pressure–strain correlation. Figure 14 presents the pressure–strain terms �11
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and �22, integrated over the shear layer, compared with the DNS data of [28]. The drop of these terms with
increasing Mc is clearly observed and the agreement with the DNS data is very good. A strong decrease of the
pressure fluctuations is also seen.
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[49] performed a Green’s function analysis of the equation governing pressure fluctuations in homogeneous
shear flow. The pressure–strain rate spectral function 	i j (k) is shown to be

	i j (k) = 2 < ρ > G(k)

(
Mg

Mt

)
klλlm[Emi (k)k j + Emj (k)ki ],
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where G(k) is related to the Green’s function and Emi (k) is the anisotropic energy spectrum. The authors
identify two quantities of importance, the Mach number ratio Mg

Mt
on the one hand and (introduced by a model

energy spectrum) a length scale ratio L2/L , with

L2 = 1

〈(u′′
1)

2〉
∫

dr〈u′′
1(xi + rδi2)u

′′
1(xi )〉, L = K 3/2/ε. (21)

Although the analysis of [49] is not directly applicable to the present inhomogeneous case, the turbulence
statistics in the center of the mixing layer have similarities to those in homogeneous shear flow, and it is
therefore useful to examine the implications of Eq. 21 using the current database. The Mach number ratio was
found to be almost constant between the different LES cases here. Figure 15 on the other hand shows a new
result from the LES database: the length scale ratio L2/L clearly reduces from cases LES03 to LES10 which
indicates an increased spatial decorrelation with increasing Mc. The drop is of the same order as the drop seen
in the peak of the pressure–strain tensor (Fig. 14). Recall, that the cross-stream correlation length scale of the
resolved-scale vorticity, shown earlier in Fig. 11, also showed a substantial reduction with increasing Mach
number. A reduction in the vertical extent of the large-scale vortical structures provides a physical link to the
reduction of L2/L and, thus, the pressure–strain correlation.

5.1 Modal decomposition

Low-wave number (high wavelength) modes in a turbulent flow have larger Mach number based on mean
velocity difference or fluctuation velocity difference and are, therefore, expected to be more susceptible to
compressibility effects. Low-wave number modes also have an important role in aerodynamic sound. The
potential difference between high-and low-wave number modes in the pressure field is assessed in this sec-
tion. A Fourier decomposition as a function of horizontal wave numbers, kx , kz , is performed, modes with
wave numbers smaller than a cutoff value are retained in p< and the remaining modes are retained in p>.
Results with two cutoff values, (kx = 8, kz = 2) and (kx = 12, kz = 2), corresponding to non-dimensional val-
ues of (kxδθ = 0.96, kzδθ = 1.64) and (kxδθ = 1.44, kzδθ = 1.64), respectively, are shown in Fig. 16. Here, δθ

is the local value of momentum thickness and the cutoff-wave numbers chosen here separates modes with
horizontal wavelength larger than a few momentum thicknesses from those below. The longitudinal integral
scale is approximately 2.5δθ . Clearly, both low and high- wave numbers contribute to the r.m.s pressure with
the contribution of the low-wave number part increasing with increasing value of the cutoff. Furthermore,
the low-wave number component, p<, has a wider spatial envelope in the cross-stream direction relative to
the more compact p> field. This is consistent with the low-wave number component being associated with
near-field acoustics. Figure 17 shows the pressure–strain component �11 for the Mc = 1.1 case, obtained using
the unmodified LES data as well as the spectrally decomposed parts �<

11 and �>
11 for the same cutoff-wave

numbers employed earlier in Fig. 16 for the r.m.s pressure. Fig. 17a show that the low-wave number modes
have negligible contribution to the pressure–strain while increasing the cutoff value in part Fig. 17b still results
in a relatively small contribution of the low-wave number modes. Thus, low-wave number modes contribute
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significantly to the r.m.s pressure but do not contribute to the pressure–strain correlation. Examination of the
other LES cases show that this conclusion applies to all the Mach numbers simulated here.

A hypothesis for explaining the unimportance of the low-wave number part of the pressure for the pressure–
strain term is a low correlation of this part of the pressure with the strain field. If the pressure–strain correlation
is rewritten by using the correlation coefficient C(p′, S′

i j ) as

�i j = 〈p′S′
i j 〉 = {p}rms

{
Si j

}
rms C(p′, S′

i j ), (22)

a spectral decomposition of the pressure fluctuations would reveal a reduced correlation for p′> with the
strain if this hypothesis is true. Figure 18 shows the correlation coefficients C(p′, S′

11) and C(p′, S′
33) for case

LES12. When comparing the correlation coefficient with the ones obtained by using p> and p< it is evi-
dent that C(p′>, S′

i j ) almost coincides with the complete C, whereas the correlation of the low-wave number
component, p′<, with the strain rate is much lower.

6 Green’s function analysis of the pressure–strain correlation

Turbulence closures at the level of transport equations for the Reynolds stress tensor require a model for the
pressure–strain tensor. There is a long history [22,33,35,45] in the case of incompressible flow wherein the
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pressure–strain tensor is modeled by analysis of a Poisson equation for the pressure. The steps are as follows:
obtain a Green’s function solution to the Poisson equation for the pressure fluctuations, obtain a formal solution
for the pressure–strain correlation by using the Green’s function along with the r.h.s of the Poisson equation,
and finally, closure by introduction of a model for velocity correlation tensors or, for analysis in spectral space,
introduction of a model for the energy spectrum tensor. The objective of this section is not the derivation of
a pressure–strain model but is more limited, simply to assess whether the Green’s function step can be per-
formed by consideration of a simplified Poisson equation instead of the convected wave equation for pressure.
The motivation stems from the LES result of the previous section that “compressible” modes with low wave
numbers do not contribute to the pressure–strain correlation.

6.1 Poisson equation for the pressure

An equation for the pressure can be obtained by taking the divergence of the momentum equation:

�p = −(ρui u j ),i j + (ρτi j ),i j + σi j,i j + ∂2ρ

∂t2 , (23)

where the over-bar due to filtering has been dropped to ease readability in the following. Using the shorthand
f,i = ∂ f

∂xi
and inserting the definition of the Reynolds and Favre averages in the Poisson equation above gives

�p′ = −2〈U 〉 f
i, j (〈ρ〉u′′

j ), j − 2〈U 〉 f
i,i (〈ρ〉u′′

j ),i − (〈ρ〉u′′
i u′′

j ) − 〈ρu′′
i u′′

j 〉),i j

−2〈U 〉 f
i,i j (〈ρ〉u′′

j ) − ρ′(〈U 〉 f
i,i )

2 − ρ′(〈U 〉 f
i, j 〈U 〉 f

j,i )

−2〈U 〉 f
i, j (ρ

′u′′
j ),i − 2〈U 〉 f

i,i (ρ
′u′′

j ), j − 2〈U 〉 f
i,i j (ρ

′u′′
j )

−(ρ′u′′
i u′′

j ),i j + D2

Dt2 ρ′ + σ ′
i j,i j + (ρτi j )

′
,i j

=: f, (24)

with

D2

Dt2 ρ′ :=
(

∂2

∂t2 + 2〈U 〉 f
j

∂2

∂x j∂t
+ 〈U 〉 f

i 〈U 〉 f
j

∂2

∂xi∂x j

)
ρ′

= ∂2ρ′

∂t2 − 2〈U 〉 f
j (ρu′′

i )i j − 2〈U 〉 f
j ρ

′〈U 〉 f
i,i j

−2〈U 〉 f
j ρ

′
,i 〈U 〉 f

i, j − 2〈U 〉 f
j ρ

′
, j 〈U 〉 f

i,i − 〈U 〉 f
i 〈U 〉 f

j ρ
′
,i j . (25)
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The r.h.s of Eq. 24 involves terms dependent on the mean density, fluctuations in density, viscosity and the
subgrid stress. If an isentropic relation p′ = 〈c〉2ρ′ is used to relate the pressure to the density fluctuations
following a given fluid particle, a convective wave equation for the pressure fluctuation can be obtained. An
alternate viewpoint is to treat the second derivative of the density fluctuations as an additional source term
on the r.h.s of a Poisson equation. Although the interpretation of a wave equation for the pressure is lost, the
advantage is an explicit analytical solution for the pressure as show below. The pressure field is given by the
following formal solution of the Poisson equation after introduction of a Green’s function:

p′(x1, x2, x3) =
Lx2∫
0

G∗ f (x1, x2, x3; x ′
2) dx ′

2 (26)

where the convolution G∗ f is the inverse Fourier transform of Ĝ f̂ i.e,

G ∗ f (x1, x2, x3; x ′
2) = 1

(2π)2

∞∫
−∞

dk1

∞∫
−∞

dk3 exp(ik · x) Ĝ(k, x2; x ′
2) f̂ (k1, k3; x ′

2), (27)

and a closed-form solution for Ĝ can be written, for example, as in Kim [16]. The Green’s function,
G(kx1, kx3, x2, x ′

2), peaks at x2 = x ′
2 and decays with increasing distance, r2 = |x2 − x ′

2|, from the source
region. The rate of decay decreases with decreasing magnitude of horizontal wave number as shown in Fig. 19,
indicating that the cross-stream extent of the domain of influence of the Green’s function increases with
increasing horizontal length scale of the chosen spectral mode.

After introduction of the Green’s function, the pressure–strain correlation can be written as

�i j (x2) =
Lx2∫
0

〈G ∗ f ′(x1, x2, x3; x ′
2)s

′
i j 〉 dx ′

2 (28)

The quantity, 〈G ∗ f (x1, x2, x3; x ′
2)s

′
i j 〉, which is a function of the observer cross-stream position, x2, and

the source cross-stream position, x ′
2, is numerically obtained by averaging the instantaneous values of G ∗

f (x1, x2, x3; x ′
2)s

′
i j over x1, x3 planes as well as ensembles at different times.

6.2 Pressure–strain correlation using the Green’s function

In the following analysis, we will solve the Poisson equation (24) using the incompressible Green’s function
and treating the second derivatives of the density fluctuation as an additional source term. The LES database



584 H. Foysi, S. Sarkar

(a) (b)

-0.0025

-0.002

-0.0015

-0.001

-0.0005

 0

 0.0005

-4 -2  0  2  4

Π
11

δ θ
/u

3

x2/δθ

LES data

GF

-0.0012

-0.001

-0.0008

-0.0006

-0.0004

-0.0002

 0

 0.0002

-4 -2  0  2  4

Π
11

δ θ
/u

3

x2/δθ

LES data

GF

Fig. 20 Pressure strain terms �11 normalized by �u3/δθ . Comparison of Green’s function solution and the LES data. a Mc = 0.7,
b Mc = 1.2

-0.0012

-0.001

-0.0008

-0.0006

-0.0004

-0.0002

 0

 0.0002

-4 -2  0  2  4

Π
11

δ θ
/u

3

x2/δθ

LES data

GF

GF, no Dtt ρ’

Fig. 21 Influence of the density fluctuation term, D2ρ′/t2, on the Green’s function solution for the pressure–strain correlation.
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enables us to calculate the source term and thus evaluate the merit of the Poisson equation assumption with
respect to the pressure–strain correlation.

Figure 20 shows the 11-component of the pressure–strain correlation for Mc = 0.7 and 1.2. The Green’s
function solution, Eq. 28, is in very good agreement with the pressure–strain correlation extracted directly
from the LES data.(The same is true for the other components of �i j , not shown here). It is possible to make a
further simplification by dropping the term, D2ρ′/Dt2, from the r.h.s. of the Poisson equation for the pressure.
As shown by Fig. 21, dropping this term has no impact on the pressure–strain correlation. Thus, D2ρ′/Dt2, the
term from which the wave equation for pressure follows, has little influence on the pressure–strain correlation.
It has to be emphasized that the simplification of a Poisson equation for the pressure applies to the special case
of pressure–strain correlation; the contribution of the low wave number “compressible” modes to the r.m.s
pressure is significant as was shown earlier in Fig. 16.

7 Conclusions

Large eddy simulations of temporally developing mixing layers were conducted with convective Mach num-
bers ranging from 0.3 to 1.2 and Reynolds numbers based on the vorticity thickness as high as 20,000 during
the self-similar stage. A large computational domain was chosen to ensure a sample size sufficiently large
to achieve converged statistics. The cross-stream extent of the domain was found to be especially crucial in
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order to minimize the effect of cross-stream boundaries on the growth rate and other turbulent quantities.
All simulations were initialized using the same broadband disturbances and showed, consistent with pre-
vious work, transition scenarios that change with Mach number. The suppression of the Kelvin–Helmholtz
instability for convective Mach numbers larger than 0.6 resulted in smaller and streamwise elongated, less



586 H. Foysi, S. Sarkar

coherent pressure tubes. As a consequence, a higher resolution in high Mach number simulations is required for
accuracy.

The present simulations clearly show that, when properly conducted, LES can accurately represent com-
pressibility effects in a mixing layer. The study is not a DNS because the grid size is two orders of magnitude
larger than the Kolmogorov scale and the resolved-scale molecular dissipation is negligible compared to the
dissipation provided by the subgrid model. Nevertheless, the LES cell size is sufficiently small for good res-
olution of the structures that carry turbulent kinetic energy and Reynolds shear stress. The decrease of the
momentum thickness with increasing Mc was captured, and the resulting growth rates obtained during the
quasi-self-similar phase showed excellent agreement with the Langley experimental curve, a compilation of
air-in-air measurements of mixing layers. It is worth noting that there are data sets with growth rates less
than the Langley curve. Some of the differences might be due to a difference in composition and density
between the free streams. Previous DNS of a shear layer between streams with different density has shown
that unequal densities can reduce the growth rate but further LES and laboratory studies that allow access to a
wide composition/density space at fixed Mc are desirable. Comparison of the present LES results with DNS
data of [28] and experiments of [1] in the canonical air–air shear layer revealed excellent agreement of the
Reynolds stresses and their anisotropies. Furthermore, the decay of the pressure fluctuations and the pressure
strain terms with increasing Mc agrees well with the DNS database. Unlike conventional Reynolds-averaged
closures, no explicit compressibility modifications were required to the LES model in order to capture the
influence of Mc on the flow.

The vorticity of the resolved-scale field was analyzed in a statistical framework to investigate large-scale
vortical structures that are thought to be related to entrainment, growth rate and Reynolds stresses. Com-
parison of the production terms in the balance of resolved-scale enstrophy led to an interesting result. With
increasing Mach number, the ratio of the production by mean shear to the production by vortex stretching
decreased strongly. This indicates that the amplification of vorticity fluctuations by linear effects (related to
perhaps large-scale instabilities) becomes less important with increasing Mach number. Visualizations clearly
showed that, consistent with previous linear analysis, there is a different route to turbulence at high Mc that
results in smaller, less coherent vortices. The resolved-scale vorticity was found to grow in magnitude with
increasing Mach number contrary to the other turbulent quantities which decrease. Insofar as the nonlinear
vortex stretching term ω′

i S′
i jω

′
j , the magnitude of |S′

i jω
′
j | increased with increasing Mc while there was little

change in the alignment between the fluctuating vorticity vector and the action of the strain on the vorticity
S′

i jω
′
j . In addition, at high Mach numbers, the anisotropy of the resolved-scale vorticity field, measured by

the relative contribution of each component to the r.m.s fluctuation, was found to decrease, consistent with the
lack of organized Kelvin–Helmholtz rollers.

The pressure–strain correlation has received attention in previous simulations and theoretical analysis of
compressible turbulence. The vertical correlation length scale of the two-point velocity correlation, when
normalized by an isotropic estimate, is observed to decrease in the present LES. Such a decrease in length
scale ratio, when input into the analytical formula of [49], would lead to a decrease in the pressure–strain
correlation. The vertical length scale of the two-point correlation of the resolved-scale vorticity is found to
decrease with increasing Mc. These results from the LES, when combined with previous laboratory results
showing increased three-dimensionalization and smaller vortical structures, show that reduced spatial corre-
lation of turbulence at high Mc is an important contributor to the observed compressibility effect of reduced
pressure–strain correlation.

A modal decomposition of the pressure fluctuations was employed and it was found that low-wave number
modes contribute to the r.m.s pressure but not the pressure–strain correlation. The reason is the low correlation
coefficient between the ‘compressible’ low-wave number modes and the fluctuating strain rate. A model of the
pressure–strain correlation is required in turbulence closures at the level of Reynolds stress transport equations.
The use of a Green’s function for the Poisson equation for pressure is a customary starting point for development
of pressure–strain models in incompressible flow. It is demonstrated using the LES database that, although
the flow studied here is compressible, the Poisson equation simplification, neglecting the term D2ρ′/Dt2, is
valid insofar as the pressure–strain correlation is concerned. The reason is that the term D2ρ′/Dt2, the one
that leads to a wave equation for pressure after assuming isentropy, contributes solely to the low wave number
modes of pressure which, as discussed earlier, have negligible contribution to the pressure–strain correlation.
Use of a simplified Green’s function as in this article, instead of the complicated Green’s function of [49]
for a convected wave equation, would lead to simpler and more tractable functional forms for pressure–strain
models.
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Appendix A: A effect of domain-size

Different resolutions and domain sizes were tested, based on the original simulation domain of [28]. The large
number of points used here was necessary to obtain smooth and converged statistics. Using the domain sizes
of [28] with a grid resolution as given in Table 2 did not show self-similar growth for the cases with Mc > 0.7.
Quasi-self-similar behavior was obtained on the other hand when increasing the sample size. The statistics
converged after increasing the vertical extent of the box successively, leading to the growth rates and values
given in this article. Figure 22 shows growth rates obtained for a small vertical domain size, L2/δθ0 = 200. The
influence of the boundaries produces larger growth rates than the ones compiled in the Langley experimental
curve. The large-domain LES results analyzed in the body of this article led to very good agreement with the
Langley curve as shown earlier in Fig. 5.

Appendix B: Two-point correlations

Figures 23 and 24 show the two-point correlations, Rui
ii = 〈ui (x + ei d)ui (x)〉, at the time corresponding to

the start of the self-similar behavior, plotted as a function of the separation d normalized with the momentum
thickness at that time. The streamwise correlations show excellent decrease and the spanwise correlations
show sufficient decrease with increasing separation, thus validating the chosen box size. For case LES03, we
furthermore tested two different domain sizes, L3 = 118δθ,0 and 172δθ,0 in the span-wise direction. There
was little effect of spanwise domain size on the evolution of shear layer thickness and turbulence intensities.
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