Skip to main content
Log in

Hybrid LES–RANS technique based on a one-equation near-wall model

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

In order to reduce the high computational effort of wall-resolved large-eddy simulations (LES), the present paper suggests a hybrid LES–RANS approach which splits up the simulation into a near-wall RANS part and an outer LES part. Generally, RANS is adequate for attached boundary layers requiring reasonable CPU-time and memory, where LES can also be applied but demands extremely large resources. Contrarily, RANS often fails in flows with massive separation or large-scale vortical structures. Here, LES is without a doubt the best choice. The basic concept of hybrid methods is to combine the advantages of both approaches yielding a prediction method, which, on the one hand, assures reliable results for complex turbulent flows, including large-scale flow phenomena and massive separation, but, on the other hand, consumes much fewer resources than LES, especially for high Reynolds number flows encountered in technical applications. In the present study, a non-zonal hybrid technique is considered (according to the signification retained by the authors concerning the terms zonal and non-zonal), which leads to an approach where the suitable simulation technique is chosen more or less automatically. For this purpose the hybrid approach proposed relies on a unique modeling concept. In the LES mode a subgrid-scale model based on a one-equation model for the subgrid-scale turbulent kinetic energy is applied, where the length scale is defined by the filter width. For the viscosity-affected near-wall RANS mode the one-equation model proposed by Rodi et al. (J Fluids Eng 115:196–205, 1993) is used, which is based on the wall-normal velocity fluctuations as the velocity scale and algebraic relations for the length scales. Although the idea of combined LES–RANS methods is not new, a variety of open questions still has to be answered. This includes, in particular, the demand for appropriate coupling techniques between LES and RANS, adaptive control mechanisms, and proper subgrid-scale and RANS models. Here, in addition to the study on the behavior of the suggested hybrid LES–RANS approach, special emphasis is put on the investigation of suitable interface criteria and the adjustment of the RANS model. To investigate these issues, two different test cases are considered. Besides the standard plane channel flow test case, the flow over a periodic arrangement of hills is studied in detail. This test case includes a pressure-induced flow separation and subsequent reattachment. In comparison with a wall-resolved LES prediction encouraging results are achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baggett, J.S.: On the feasibility of merging LES with RANS in the near-wall region of attached turbulent flows. In: Annu. Res. Briefs-1998. Center Turbul. Res., Stanford University, California, pp. 267–277 (1998)

  2. Batten, P., Goldberg, U., Chakravarthy, S.: LNS—an approach towards embedded LES. AIAA Paper 2002–0427 (2002)

  3. Batten P., Goldberg U. and Chakravarthy S. (2004). Interfacing statistical turbulence closures with large-eddy simulation. AIAA J. 42(3): 485–492

    Article  Google Scholar 

  4. Breuer M. and Rodi W. (1996). Large-eddy simulation of complex turbulent flows of practical interest. In: Hirschel, E.H. (eds) Flow Simulation with High-Performance Computers II, Notes on Numerical Fluid Mechanics, vol. 52, pp 258–274. Vieweg Verlag, Braunschweig

    Google Scholar 

  5. Breuer M. (1998). Large-eddy simulation of the sub-critical flow past a circular cylinder: numerical and modeling aspects. Int. J. Num. Methods Fluids 28: 1281–1302

    Article  ADS  MATH  Google Scholar 

  6. Breuer, M.: Direkte Numerische Simulation und Large-eddy Simulation turbulenter Strömungen auf Hochleistungsrechnern. Habilitationsschrift, Univ. Erlangen–Nürnberg, Berichte aus der Strömungstechnik, ISBN: 3-8265-9958-6 (2002)

  7. Breuer, M., Jaffrézic, B., Peller, N., Manhart, M., Fröhlich, J., Hinterberger, Ch., Rodi, W., Deng, G., Chikhaoui, O., Sarić, S., Jakirlić, S.: A comparative study of the turbulent flow over a periodic arrangement of smoothly contoured hills. In: Lamballais, E., Friedrich, R., Geurts, B.J., Métais, O. (eds.) Sixth International ERCOFTAC Workshop on DNS and LES: DLES-6, Poitiers, France, Sept. 12–14, 2005, ERCOFTAC Series, vol. 10, pp. 635–642, Direct and Large-eddy Simulation VI, ISBN-10 1-4020-4909-9, Springer, Heidelberg (2006)

  8. Breuer, M., Jaffrézic, B., Šarić, S., Jakirlić, S., Deng, G., Chikhaoui, O., Fröhlich, J., von Terzi, D., Manhart, M., Peller, N.: Issues in hybrid LES–RANS and coarse grid LES of separated flows. EUROMECH Colloquium 469, Large-eddy Simulation of Complex Flows, TU Dresden, Germany, October 6–8, 2005

  9. Breuer, M.: New reference data for the hill flow test case. personal communication, http://www.hy.bv.tum.de/DFG-CNRS/ (2005)

  10. Davidson L. and Dahlström S. (2005). Hybrid LES–RANS: computation of the flow around a three-dimensional hill. In: Rodi, W. and Mulas, M. (eds) Engineering Turbulence Modeling and Experiments, vol. 6, pp 319–328. Elsevier, Amsterdam

    Chapter  Google Scholar 

  11. Davidson, L.: Hybrid LES–RANS: inlet boundary conditions. In: Skallerud, B., Andersson, H.I. (eds.) 3rd National Conference on Computational Mechanics—MekIT’05, Trondheim, Norway, 11–12 May 2005, pp. 7–22 (2005)

  12. De Langhe, C., Merci, B., Lodefier, K., Dick, E.: Hybrid LES/RANS simulations of swirling confined turbulent jets. In: 4th International Symposium on Turbulence and Shear Flow Phenomena, USA, June 27–29, 2005, pp. 1147–1152 (2005)

  13. Durbin P.A. (1991). Near-wall turbulence closure modeling without damping functions. Theoret. Comput. Fluid Dyn. 3: 1–13

    ADS  MATH  Google Scholar 

  14. Fröhlich J., Mellen C.P., Rodi W., Temmerman L. and Leschziner M.A. (2005). Highly resolved large-eddy simulation of separated flow in a channel with streamwise periodic constrictions. J. Fluid Mech. 526: 19–66

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Germano M., Piomelli U., Moin P. and Cabot W.H. (1991). A dynamic subgrid-scale eddy-viscosity model. Phys. Fluids A 3: 1760–1765

    Article  ADS  MATH  Google Scholar 

  16. Germano, M.: From RANS to DNS: towards a bridging model. In: Voke, P.R., Sandham, N.D., Kleiser, L. (eds) Direct and Large-Eddy Simulation III, Proceedings of the Isaac Newton Institute Symposium/ERCOFTAC Workshop on Direct and Large-Eddy Simulation, Cambridge, 12–14 May 1999, ERCOFTAC Series, vol. 7, Kluwer, Dordrecht, 1999, pp. 225–236 (1999)

  17. Hanjalić K., Hadžiabdić M., Temmerman L. and Leschziner M.A. (2004). Merging LES and RANS strategies: zonal or seamless coupling?. In: (eds) Direct and Large-eddy Simulation V, pp 451–464. Kluwer, Netherlands

    Google Scholar 

  18. Hoyas S. and Jiménez J. (2006). Scaling of the velocity fluctuations in turbulent channels up to Reτ = 2,003. Phys. Fluids 18: 011702-1–011702-4

    Article  ADS  Google Scholar 

  19. Jaffrézic, B., Breuer, M., Chikhaoui, O., Deng, G., Visonneau, M.: Towards hybrid LES–RANS-coupling for complex flows with separation. In: Cancès, E., J.-F. Gerbeau (eds.) ESAIM: Proceedings, CEMRACS 2005, Computational Aeroacoustics and CFD in Turbulent Flows, Marseille, July 18–August 26, 2005, vol. 16, pp 89–113 (2007)

  20. Jakirlić, S., Jester-Zürker, R., Tropea, C. (eds.) (2001) Report on 9th ERCOFTAC/IAHR/COST Workshop on Refined Flow Modeling. Darmstadt University of Technology, Germany, October 4–5, 2001

  21. Keating, A., De Prisco, G., Piomelli, U., Balaras, E.: Interface conditions for hybrid RANS/LES calculations. In: Rodi, W. (ed.) Engineering Turbulence Modelling and Experiments, vol. 6, pp. 349–358 (2005)

  22. Manceau, R., Bonnet, J.-P., Leschziner, M.A., Menter, F. (eds.): 10th Joint ERCOFTAC (SIG-15)/IAHR/QNET-CFD Workshop on Refined Flow Modeling. Université de Poitiers, France, Oct. 10–11, 2002

  23. Mathey, F., Cokljat, D., Bertoglio, J.P., Sergent, E. (2003) Specification of LES inlet boundary condition using vortex method. In: Hanjalić, K., Nagano, Y., Tummers, M. (eds.) Turbulence, Heat and Mass Transfer IV. Begell House

  24. Mellen C.P, Fröhlich J. and Rodi W. (2000). Large-eddy simulation of the flow over periodic hills. In: Deville, M. and Owens, R. (eds) Proceedings of 16th IMACS World Congress, pp. Lausanne, Switzerland

    Google Scholar 

  25. Ménéveau C., Lund T.S. and Cabot W.H. (1996). A Lagrangian dynamic subgrid-scale model of turbulence. J. Fluid Mech. 319: 353–385

    Article  ADS  MATH  Google Scholar 

  26. Moser R.D., Kim J. and Mansour N.N. (1999). DNS of turbulent channel flow up to Re τ  =  590. Phys. Fluids 11: 943–945

    Article  ADS  Google Scholar 

  27. Nikitin N.V., Nicoud F., Wasistho B., Squires K.D. and Spalart P.R. (2000). An approach to wall modeling in large-eddy simulations. Phys. Fluids 12(7): 1629–1632

    Article  ADS  Google Scholar 

  28. Peller, N., Manhart, M.: DNS of the periodic hill flow test case at Re b  = 5,600. personal communication (2007)

  29. Piomelli U. and Chasnov J.R. (1996). Large-eddy simulations: theory and applications. In: Hallbäck, M., Henningson, D.S., Johansson, A.V. and Alfredson, P.H. (eds) Turbulence and Transition Modelling, pp 269–331. Kluwer, Dordrecht

    Google Scholar 

  30. Piomelli U., Balaras E., Pasinato H., Squires K.D. and Spalart P.R. (2003). The inner-outer interface in large-eddy simulations with wall-layer model. Int. J. Heat Fluid Flow 24: 538–550

    Article  Google Scholar 

  31. Pope S.B. (2000). Turbulent Flows. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  32. Rhie C.M. and Chow W.L. (1983). Numerical study of the turbulent flow past an airfoil with trailing-edge separation. AIAA J. 21: 1525–1532

    Article  MATH  Google Scholar 

  33. Rodi W., Mansour N.N. and Michelassi V. (1993). One-equation near-wall turbulence modeling with the aid of direct simulation data. J. Fluids Eng. 115: 196–205

    Article  Google Scholar 

  34. Sagaut P. (2001). Large eddy Simulation for Incompressible Flows—an Introduction. Springer, Heidelberg

    MATH  Google Scholar 

  35. Šarić, S., Jakirlić, S., Breuer, M., Jaffrézic, B., Deng, G., Chikhaoui, O., Fröhlich, J., von Terzi, D., Manhart, M., Peller, N.: Evaluation of detached-eddy simulations for predicting the flow over periodic hills. In: Cancès, E., J.-F. Gerbeau (eds.) ESAIM: Proceedings, CEMRACS 2005, “Computational Aeroacoustics and CFD in Turbulent Flows", Marseille, July 18–August 26, 2005, vol. 16, pp 133–145 (2007)

  36. Schlüter J.U., Pitsch H. and Moin P. (2004). Large-eddy simulation inflow conditions for coupling with Reynolds-averaged flow solvers. AIAA J. 42(3): 478–484

    Article  Google Scholar 

  37. Schumann U. (1975). Subgrid-scale model for finite-difference simulations of turbulent flows in plane channels and annuli. J. Comput. Phys. 18: 376–404

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Sergent, E.: Vers une Méthodologie de Couplage entre la Simulation des Grandes Echelles et les Modeles Stochastiques. Phd Thesis, Ecole Centrale de Lyon (2002)

  39. Shur, M., Spalart, P.R., Strelets, M., Travin, A.: Detached-eddy simulation of an airfoil at high angle of attack. In: Rodi, W., Laurence, D. (eds) Fourth International Symposium on Engineering Turbulence Modeling and Measurements, Corsica, 24–26 May 1999. Engineering Turbulence Modeling and Experiments, vol. 4, Elsevier, Amsterdam, 1999, pp. 669–678 (1999)

  40. Smagorinsky J. (1963). General circulation experiments with the primitive equations, I, The basic experiment. Month. Weather Rev. 91: 99–165

    Article  ADS  Google Scholar 

  41. Spalart P.R. and Allmaras S.R. (1994). A one-equation turbulence model for aerodynamic flows. La Recherche Aérospatiale 1: 5–21

    Google Scholar 

  42. Spalart, P.R., Jou, W.-H., Strelets, M., Allmaras, S.R.: Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach. In: Liu, C., Liu, Z. (eds.) Advances in DNS/LES, 1st AFOSR International Conference on DNS/LES, August 4–8, 1997, Greyden, Columbus (1997)

  43. Spalart, P.R.: Trends in turbulence treatments. AIAA Paper 2000–2306. In: FLUIDS 2000, Computational Fluid Dynamics Symposium, Denver, Colorado, USA, 19–22 June 2000

  44. Spalart P.R. (2000). Strategies for turbulence modeling and simulations. Int. J. Heat Fluid Flow 21: 252–263

    Article  Google Scholar 

  45. Speziale C.G. (1996). Turbulence modeling for time-dependent RANS and VLES: a review. AIAA J. 36(2): 173–184

    Article  Google Scholar 

  46. Speziale C.G. (1998). A combined large-eddy simulation and time-dependent RANS capability for high-speed compressible flows. J. Sci. Comput. 13: 253–274

    Article  MathSciNet  MATH  Google Scholar 

  47. Strelets, M.: Detached-eddy simulation of massively separated flows. AIAA Paper 2001–0879 (2000)

  48. Squires, K.D., Forsythe J.R., Spalart, P.R.: Detached-eddy simulation of the separated flow around a forebody cross-section. In: Geurts, B.J., Friedrich, R., Métais, O. (eds) Fourth Workshop on Direct and Large-eddy Simulation, Enschede, The Netherlands, 18–20 July 2001, ERCOFTAC Series, Direct and Large-eddy Simulation IV, Kluwer, Dordrecht, 2001, pp. 484–500 (2001)

  49. Temmerman L., Leschziner M.A., Mellen C.P. and Fröhlich J. (2003). Investigation of wall-function approximations and subgrid-scale models in large eddy simulation of separated flow in a channel with streamwise periodic constrictions. Int. J. Heat Fluid Flow 24: 157–180

    Article  Google Scholar 

  50. Temmerman L., Hadžiabdić M., Leschziner M.A. and Hanjalić K. (2005). A hybrid two-layer URANS-LES approach for large-eddy simulation at high Reynolds numbers. Int. J. Heat Fluid Flow 26: 173–190

    Article  Google Scholar 

  51. Templeton J.A., Medic G. and Kalitzin G. (2005). An eddy-viscosity based near-wall treatment for coarse grid large-eddy simulation. Phys. Fluids 17: 105101-1–105101-6

    Article  ADS  Google Scholar 

  52. Travin, A., Shur, M., Strelets, M., Spalart, P.R.: Detached-eddy simulations past a circular cylinder. J. Flow Turbul. Combust. 63(1/4), 293–313, Kluwer, Dordrecht (2000)

    Google Scholar 

  53. Travin, A., Shur, M., Strelets, M., Spalart, P.R.: Physical and numerical upgrades in the detached-eddy simulation of complex turbulence flows. In: Fluid mechanics and its application: advances in LES of complex flows (2002)

  54. von Terzi, D., Hinterberger, C., García-Villalba, M., Fröhlich, J., Rodi, W., Mary, I.: LES with downstream RANS for flow over periodic hills and a model combustor flow. EUROMECH Colloquium 469, Large-eddy Simulation of Complex Flows, TU Dresden, Germany, October 6–8, 2005

  55. Wagner, C., Hüttl, T., Sagaut, P. (eds.): Large-eddy Simulation for Acoustics. ISBN-13: 978052-187-1440, ISBN-10: 052-187-1441, Cambridge University Press, Cambridge (2007)

  56. Wolfshtein M. (1969). The velocity and temperature distribution in one dimensional flow with turbulence augmentation and pressure gradient. Int. J. Heat Mass Transf. 12: 301–318

    Article  Google Scholar 

  57. Yoshizawa A. and Horiuti K. (1985). A statistically-derived subgrid-scale kinetic energy model for the large-eddy simulation of turbulent flows. J. Phys. Soc. Jpn. 54(8): 2834–2839

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Breuer.

Additional information

Communicated by R.D. Moser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Breuer, M., Jaffrézic, B. & Arora, K. Hybrid LES–RANS technique based on a one-equation near-wall model. Theor. Comput. Fluid Dyn. 22, 157–187 (2008). https://doi.org/10.1007/s00162-007-0067-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-007-0067-9

Keywords

PACS

Navigation