Skip to main content
Log in

Incidence of milrinone blood levels outside the therapeutic range and their relevance in children after cardiac surgery for congenital heart disease

  • Pediatric Original
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Purpose

To evaluate whether variability in milrinone blood levels (MBL) occurs during administration to critically ill children after surgical repair of congenital heart disease, and the clinical relevance of this variability.

Methods

Prospective cohort study conducted in the pediatric intensive care unit of a tertiary care teaching and referral hospital. MBL were measured at three time periods after starting milrinone infusion (9–12, 18–24, 40–48 h) and at the end of the infusion. MBL were categorized as within (100–300 ng/ml) or outside the therapeutic range. Low cardiac output syndrome was defined by elevation of either lactate (>2 mmol/l) or arteriovenous oxygen difference (>30 %). Five other clinical outcomes were evaluated. Regression analyses evaluated the relationships between MBL and outcomes.

Results

Sixty-three patients were included with a total of 220 MBL. Quantification of MBL was by high-performance liquid chromatography. Overall, 114 (52 %) MBL were outside the therapeutic range: 78 (36 %) subtherapeutic, and 36 (16 %) supratherapeutic. Repeated-measures analysis found a significant association between supratherapeutic MBL and low cardiac output syndrome (p = 0.02), and supratherapeutic MBL were associated with arterial–central venous oxygen saturation difference >30 % at time 3 (p = 0.007).

Conclusions

In this cohort, nontherapeutic MBL were common. Further investigation of milrinone dosing recommendations may improve the postoperative outcomes of children.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bishara T, Seto WTW, Trope A, Parshuram Ch (2010) Use of milrinone in critically ill children. Can J Hosp Pharm 63(6):420–428

    PubMed  Google Scholar 

  2. Hoffman TM, Wernovsky G, Atz AM et al (2003) Efficacy and safety of milrinone in preventing low cardiac output syndrome in infants and children after corrective surgery for congenital heart disease. Circulation 107(7):996–1002

    Article  PubMed  CAS  Google Scholar 

  3. Rapundalo ST, Grupp I, Grupp G, Abdul Matlib M, Solaro RJ, Schwartz A (1986) Myocardial actions of milrinone: characterization of its mechanism of action. Circulation 73((3pt-20):III):134–144

    Google Scholar 

  4. Earl CQ, Linden J, Weglicki WB (1986) Inhibition of cyclic AMP-dependent protein kinase activity by the cardiotonic drugs amrinone and milrinone. Life Sci 39(20):1901–1908

    Article  PubMed  CAS  Google Scholar 

  5. Alousi AA, Johnson D (1986) Pharmacology of the bipyridines: amrinone and milrinone. Circulation 73((suppIII)):III10–III24

    PubMed  CAS  Google Scholar 

  6. Sys SU, Goenen MJ, Chalant CH, Brutsaert DL (1986) Inotropic effects of amrinone and milrinone on contraction and relaxation of isolated cardiac muscle. Circulation 73((suppIII)):III25–III35

    PubMed  CAS  Google Scholar 

  7. Honerjäger P (1989) Pharmacology of positive inotropic phosphodiesterase III inhibitors. Eur Heart J 10(Suppl C):25–31

    Article  PubMed  Google Scholar 

  8. Scholz H, Meyer W (1986) Phosphodiesterase-inhibiting properties of newer inotropic agents. Circulation 73((Supp III)):III99–III108

    PubMed  CAS  Google Scholar 

  9. Endoh M, Yanagisawa T, Taira N, Blinks JR (1986) Effects of new inotropic agents on cyclic nucleotide metabolism and calcium transients in canine ventricular muscle. Circulation 73((3pt2)):III117–III133

    PubMed  CAS  Google Scholar 

  10. Kauffman RF, Schenck KW, Utterback BG, Crowe VG, Cohen ML (1987) In vitro vascular relaxation by new inotropic agents: relationship to phosphodiesterase inhibition and cyclic nucleotides. J Pharmacol Exp Ther 242(3):864–872

    PubMed  CAS  Google Scholar 

  11. Carcillo JA, Fields AI (2002) American College of Critical Care Medicine Task Force Committee M. Clinical practice parameters for hemodynamic support of pediatric and neonatal patients in septic shock. Crit Care Med 30(6):1365–1378

    Article  PubMed  Google Scholar 

  12. Vogt W, Läer S (2011) Prevention for pediatric low cardiac output syndrome: results from the European survey EuLoCOS-Paed. Pediatric Anesthesia 21:1176–1184

    Article  PubMed  Google Scholar 

  13. De Luca L, Proietti P, Palombaro GL, Battagliese A, Celotto A, Bucciarelli Ducci C, Fedele F (1986) New positive inotropic agents for congestive heart failure. N Engl J Med 315(6):396–397

    Article  Google Scholar 

  14. Rettig GF, Schieffer HJ (1989) Acute effects of intravenous milrinone in heart failure. Eur Heart J 10(Suppl C):39–43

    Article  PubMed  Google Scholar 

  15. Young RA, Ward A (1988) Milrinone. A preliminary review of its pharmacological properties and therapeutic use. Drugs 36(2):158–192

    Article  PubMed  CAS  Google Scholar 

  16. Bailey JM, Miller BE, Lu W, Tosone SR, Kanter KR, Tam VK (1999) The pharmacokinetics of milrinone in pediatric patients after cardiac surgery. Anesthesiology 90(4):1012–1018

    Article  PubMed  CAS  Google Scholar 

  17. Bailey JM, Levy JH, Kikura M, Szlam F, Hug CC Jr (1994) Pharmacokinetics of intravenous milrinone in patients undergoing cardiac surgery. Anesthesiology 81(3):616–622

    Article  PubMed  CAS  Google Scholar 

  18. Prielipp RC, MacGregor DA, Butterworth JFt et al (1996) Pharmacodynamics and pharmacokinetics of milrinone administration to increase oxygen delivery in critically ill patients. Chest 109(5):1291–1301

    Article  PubMed  CAS  Google Scholar 

  19. De Hert SG, Moens MM, Jorens PG, Delrue GL, DePaep RJ, Vermeyen KM (1995) Comparison of two different loading doses of milrinone for weaning from cardiopulmonary bypass. J Cardiothorac Vasc Anesth 9(3):264–271

    Article  PubMed  Google Scholar 

  20. Wernovsky G, Wypij D, Jonas RA (1995) Postoperative course and hemodynamic profile after the arterial switch operation in neonates and infants: a comparison of low-flow cardiopulmonary bypass and circulatory arrest. Circulation 92:2226–2235

    Article  PubMed  CAS  Google Scholar 

  21. Lindsay CA, Barton P, Lawless S et al (1998) Pharmacokinetics and pharmacodynamics of milrinone lactate in pediatric patients with septic shock. J Pediatr 132(2):329–334

    Article  PubMed  CAS  Google Scholar 

  22. Ramamoorthy C, Anderson GD, Williams GD, Lynn AM (1998) Pharmacokinetics and side effects of milrinone in infants and children after open heart surgery. Anesth Analg 86(2):283–289

    PubMed  CAS  Google Scholar 

  23. Bailey JM, Hoffman TM, Wessel DL et al (2004) A population pharmacokinetic analysis of milrinone in pediatric patients after cardiac surgery. J Pharmacokinet Pharmacodyn 31(1):43–59

    Article  PubMed  CAS  Google Scholar 

  24. Edelson J, Koss RF, Baker JF, Park GB (1983) High-performance liquid chromatographic analysis of milrinone in plasma and urine. Intravenous pharmacokinetics in the dog. J Chromatogr 276(2):456–462

    PubMed  CAS  Google Scholar 

  25. Paradisis M, Jiang X, McLachlan AJ et al (2007) Population pharmacokinetics and dosing regimen design of milrinone in preterm infants. Arch Dis Child Fetal Neonatal 92(3):F204–F209

    Article  Google Scholar 

  26. Cheung PY, Chui N, Joffe AR, Rebeyka IM, Robertson CM (2005) Postoperative lactate concentrations predict the outcome of infants aged 6 weeks or less after intracardiac surgery: a cohort follow-up to 18 months. J Thorac Cardiovasc Surg 130(3):837–843

    Article  PubMed  Google Scholar 

  27. Munoz R, Laussen PC, Palacio G, Zienko L, Piercey G, Wessel DL (2000) Changes in whole blood lactate levels during cardiopulmonary bypass for surgery for congenital cardiac disease: an early indicator of morbidity and mortality. J Thorac Cardiovasc Surg 119(1):155–162

    Article  PubMed  CAS  Google Scholar 

  28. Takami Y, Masumoto H (2005) Mixed venous-arterial CO2 tension gradient after cardiopulmonary bypass. Asian Cardiovasc Thorac Ann 13(3):255–260

    PubMed  Google Scholar 

  29. Hatherill M, Sajjanhar T, Tibby SM et al (1997) Serum lactate as a predictor of mortality after paediatric cardiac surgery. Arch Dis Child 77(3):235–238

    Article  PubMed  CAS  Google Scholar 

  30. Tibby SM, Murdoch IA (2003) Monitoring cardiac function in intensive care. Arch Dis Child 88(1):46–52

    Article  PubMed  CAS  Google Scholar 

  31. Tibby SM, Murdoch IA (2002) Measurement of cardiac output and tissue perfusion. Curr Opin Pediatr 14(3):303–309

    Article  PubMed  Google Scholar 

  32. Tibby SM, Hatherill M, Marsh MJ, Murdoch IA (1997) Clinicians’ abilities to estimate cardiac index in ventilated children and infants. Arch Dis Child 77(6):516–518

    Article  PubMed  CAS  Google Scholar 

  33. Romagnoli C, De Carolis MP, Muzii U et al (1992) Effectiveness and side effects of two different doses of caffeine in preventing apnea in premature infants. Ther Drug Monit 14(1):14–19

    Article  PubMed  CAS  Google Scholar 

  34. Olson KR, Benowitz NL, Woo OF, Pond SM (1985) Theophylline overdose: acute single ingestion versus chronic repeated overmedication. Am J Emerg Med 3(5):386–394

    Article  PubMed  CAS  Google Scholar 

  35. Dager WE, Albertson TE (1992) Impact of therapeutic drug monitoring of intravenous theophylline regimens on serum theophylline concentrations in the medical intensive care unit. Ann Pharmacother 26(10):1287–1291

    PubMed  CAS  Google Scholar 

  36. Paloucek FP, Rodvold KA (1988) Evaluation of theophylline overdoses and toxicities. Ann Emerg Med 17(2):135–144

    Article  PubMed  CAS  Google Scholar 

  37. Smith AH, Owen J, Borgman KY, Fish FA, Kannankeril PJ (2011) Relation of milrinone after surgery for congenital heart disease to significant postoperative tachyarrhythmias. Am J Cardiol 108:1620–1624

    Article  PubMed  CAS  Google Scholar 

  38. Baer AB, Holstege CP (2002) Milrinone overdose induced hypotension reversed by vasopressin and norepinephrine infusions. J Toxicol Clin Toxicol 40(5):690

    Google Scholar 

  39. Choong K, Bohn D, Fraser DD, Gaboury I, Hutchison JS, Joffe AR, Litalien C, Menon K, McNamara P, Ward RE (2009) Canadian Critical Care Trials Group. Vasopressin in pediatric vasodilatory shock: a multicenter randomized controlled trial. Am J Respir Crit Care Med 180(7):632–639

    Article  PubMed  CAS  Google Scholar 

  40. Plötz FB, Bouma AB, van Wijk JA, Kneyber MC, Bökenkamp A (2008) Pediatric acute kidney injury in the ICU: an independent evaluation of pRIFLE criteria. Intensive Care Med 34(9):1713–1717

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Financial support was provided by the Department of Pediatrics (University of Alberta) and Pediatric Critical Care Associates.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gonzalo Garcia Guerra or Christopher S. Parshuram.

Appendix

Appendix

See Table 5.

Table 5 Definitions of tachycardia and hypotension used in this study

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garcia Guerra, G., Joffe, A.R., Senthilselvan, A. et al. Incidence of milrinone blood levels outside the therapeutic range and their relevance in children after cardiac surgery for congenital heart disease. Intensive Care Med 39, 951–957 (2013). https://doi.org/10.1007/s00134-013-2858-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-013-2858-3

Keywords

Navigation