Skip to main content
Log in

LTR-retrotransposons Tnt1 and T135 markers reveal genetic diversity and evolutionary relationships of domesticated peppers

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Plant genetic resources often constitute the foundation of successful breeding programs. Pepper (Capsicum annuum L.) is one of the most economically important and diversely utilized Solanaceous crop species worldwide, but less studied compared to tomato and potato. We developed and used molecular markers based on two copia-type retrotransposons, Tnt1 and T135, in a set of Capsicum species and wild relatives from diverse geographical origins. Results showed that Tnt1 and T135 insertion polymorphisms are very useful for studying genetic diversity and relationships within and among pepper species. Clusters of accessions correspond to cultivar types based on fruit shape, pungency, geographic origin and pedigree. Genetic diversity values, normally reflective of past transposition activity and population dynamics, showed positive correlation with the average number of insertions per accession. Similar evolutionary relationships are observed to that inferred by previous karyosystematics studies. These observations support the possibility that retrotransposons have contributed to genome inflation during Capsicum evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9:211–215

    Google Scholar 

  • Bennett MD, Leitch IJ (2005) Nuclear DNA amounts in angiosperms: progress, problems and prospects. Ann Bot 95:45–90

    Article  PubMed  CAS  Google Scholar 

  • Bennetzen JL (2002) Mechanisms and rates of genome expansion and contraction in flowering plants. Genetica 115:29–36

    Article  PubMed  CAS  Google Scholar 

  • Bennetzen JL (2005) Transposable elements, gene creation and genome rearrangement in flowering plants. Curr Opin Genet Dev 15:621–627

    Article  PubMed  CAS  Google Scholar 

  • Berenyi MS, Gichuki T, Schmidt J, Burg K (2002) Ty1-copia retrotransposon-based S-SAP (sequence-specific amplified polymorphism) for genetic analysis of sweet potato. Theor Appl Genet 105:862–869

    Article  PubMed  CAS  Google Scholar 

  • Biemont C, Vieira C (2006) Junk DNA as an evolutionary force. Nature 443:521–524

    Article  PubMed  CAS  Google Scholar 

  • Costa AP, Scortecci KC, Hashimoto RY, Araujo PG, Grandbastien M-A, Van Sluys M-A (1999) Retrolyc1–1, a member of the Tntl retrotransposon super-family in the Lycopersicon peruvianum genome. Genetica 107:65–72

    Article  CAS  Google Scholar 

  • Djian-Caporalino C, Lefebvre V, Sage-Daubèze AM, Palloix A (2006) Capsicum. In: Singh RJ (ed) Genetic resources, chromosome engineering, and crop improvement series. CRC Press, Florida, pp 185–243

    Google Scholar 

  • Ellis THN, Poyser SJ, Knox MR, Vershinin AV, Ambrose MJ (1998) Polymorphism of insertion sites of Ty1-copia class retrotransposons and its use for linkage and diversity analysis in pea. Mol Gen Genet 260:9–19

    PubMed  CAS  Google Scholar 

  • Eshbaugh WH, Guttman SL, McLeod M (1983) The origin and evolution of domesticated Capsicum species. Ethnobiology 3:49–54

    Google Scholar 

  • Falush D, Stephens D, Pritchard JK (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes 7:574–578

    Article  PubMed  CAS  Google Scholar 

  • Geleta LF, Labuschagne MT, Viljoen CD (2005) Genetic variability in pepper (Capsicum annuum L.) estimated by morphological data and amplified fragment length polymorphism markers. Biodivers Conserv 14:2361–2375

    Article  Google Scholar 

  • Grandbastien M-A, Spielmann A, Caboche M (1989) Tnt1, a mobile retroviral-like transposable element of tobacco isolated by plant cell genetics. Nature 26:376–380

    Article  Google Scholar 

  • Gribbon BM, Pearce SR, Kalendar R, Schulman AH, Paulin L, Jack P, Kumar A, Flavell AJ (1999) Phylogeny and transpositional activity of Ty1-copia group retrotransposons in cereal genomes. Mol Gen Genet 261:883–891

    Article  PubMed  CAS  Google Scholar 

  • Hammer K, Arrowsmith N, Gladis T (2003) Agrobiodiversity with emphasis on plant genetic resources. Naturwissenschaften 90:241–250

    Article  PubMed  CAS  Google Scholar 

  • Hawkins JS, Kim H, Nason JD, Wing RA, Wendel JF (2006) Differential lineage-specific amplification of transposable elements is responsible for genome size variation in Gossypium. Genome Res 16:1252–1261

    Article  PubMed  CAS  Google Scholar 

  • Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23:254–267

    Article  PubMed  CAS  Google Scholar 

  • IPGRI, AVRDC, CATIE (1995) Descriptors for Capsicum (Capsicum spp.). International Plant Genetic Resources Institute, Rome, Italy; the Asian Vegetable Research and Development Center, Taipei, Taiwan; and the Centro Agronomico Tropical de Investigacion y Ensenanza, Turrialba, Costa Rica

  • Kalendar R, Schulmann AH (2006) IRAP and REMAP for retrotransposon-based genotyping and fingerprinting. Nat Protoc 1:2478–2484

    Article  PubMed  CAS  Google Scholar 

  • Kalendar R, Grob T, Regina M, Suomeni A, Schulman AH (1999) IRAP and REMAP: two new retrotransposon-based DNA fingerprinting techniques. Theor Appl Genet 98:704–711

    Article  CAS  Google Scholar 

  • Kashkush K, Feldman M, Levy AA (2003) Transcriptional activation of retrotransposons alters the expression of adjacent genes in wheat. Nat Genet 33:102–106

    Article  PubMed  CAS  Google Scholar 

  • Kitching IJ, Forey PL, Humphries CJ, Williams DM (1998) Cladistics: the theory and practice of parsimony analysis, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  • Kwon YS, Lee JM, Yi GB, Yi SI, Kim KM, Soh EH, Bae KM, Park EK, Song IH, Kim BD (2005) Use of SSR markers to complement tests of distinctiveness, uniformity, and stability (DUS) of pepper (Capsicum annuum L.) varieties. Mol Cell 19:428–435

    CAS  Google Scholar 

  • Lanteri S, Acquadro A, Quagliotti L, Portis E (2003) RAPD and AFLP assessment of genetic variation in a landrace of pepper (Capsicum annuum L.) grown in North-West Italy. Genet Resour Crop Evol 50:723–735

    Article  CAS  Google Scholar 

  • Lefebvre V (2005) Molecular markers for genetics and breeding: development and use in pepper (Capsicum spp.). In: Lörz H, Wenzel G (eds) Molecular marker systems in plant breeding and crop improvement biotechnology in agriculture and forestry. Springer, Berlin, pp 189–214

    Chapter  Google Scholar 

  • Lefebvre V, Palloix A, Rives M (1993) Nuclear RFLP between pepper cultivars (Capsicum annuum L.). Euphytica 71(18):9–199

    Google Scholar 

  • Lefebvre V, Goffinet B, Chauvet JC, Caromel B, Signoret P, Brand R, Palloix A (2001) Evaluation of genetic distances between pepper inbred lines for cultivar protection purposes: comparison of AFLP, RAPD and phenotypic data. Theor Appl Genet 102:741–750

    Article  CAS  Google Scholar 

  • Leigh F, Kalendar R, Lea V, Lee D, Donini P, Schulman AH (2003) Comparison of the utility of barley retrotransposon families for genetic analysis by molecular marker techniques. Mol Genet Genomics 269:464–474

    Article  PubMed  CAS  Google Scholar 

  • Liedloff A (1999) Mantel nonparametric test calculator, version 2.0. Queensland University of Technology, Brisbane

    Google Scholar 

  • Livingstone KD, Lackney VK, Blauth JR, van Wijk R, Jahn MK (1999) Genome mapping in Capsicum and the evolution of genome structure in the Solanaceae. Genetics 152:1183–1202

    PubMed  CAS  Google Scholar 

  • Manetti M, Rossi M, Costa A, Clausen A, Van Sluys M-A (2007) Radiation of the Tnt1 retrotransposon superfamily in three Solanaceae genera. BMC Evol Biol 7

  • McLeod MJ, Guttman SI, Eshbaugh WH (1982) Early evolution of chili peppers (Capsicum). Econ Bot 36:361–368

    Google Scholar 

  • Melayah D, Lim KY, Bonnivard E, Chalhoub B, Dorlhac de Borne F, Mhiri C, Leitch AR, Grandbastien M-A (2004) Distribution of the Tnt1 retrotransposon family in the amphidiploid tobacco (Nicotiana tabacum) and its wild Nicotiana relatives. Biol J Linn Soc 82:639–649

    Article  Google Scholar 

  • Morgan MT (2001) Transposable element number in mixed mating populations. Genet Res 77:261–275

    Article  PubMed  CAS  Google Scholar 

  • Morrison DA (2005) Networks in phylogenetic analysis: new tools for population biology. Int J Parasitol 35:567–582

    Article  PubMed  Google Scholar 

  • Moscone EA, Baranyi M, Ebert I, Greilhuber J, Ehrendorfer F, Hunziker AT (2003) Analysis of nuclear DNA content in Capsicum (Solanaceae) by flow cytometry and Feulgen densitometry. Ann Bot 92:21–29

    Article  PubMed  Google Scholar 

  • Nagy I, Stagel A, Sasvari Z, Roder M, Ganal M (2007) Development, characterization, and transferability to other Solanaceae of microsatellite markers in pepper (Capsicum annuum L.). Genome 50:668–688

    Article  PubMed  CAS  Google Scholar 

  • Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA 70:3321–3323

    Article  PubMed  CAS  Google Scholar 

  • Neumann P, Koblızkova A, Navratilova A, Macas J (2006) Significant expansion of Vicia pannonica genome size mediated by amplification of a single type of giant retroelement. Genetics 173:1047–1056

    Article  PubMed  CAS  Google Scholar 

  • Onus AN, Pickersgill B (2004) Unilateral incompatibility in Capsicum (Solanaceae): occurrence and taxonomic distribution. Ann Bot 94:289–295

    Article  PubMed  Google Scholar 

  • Paran I, Aftergoot E, Shifriss C (1998) Variation in Capsicum annuum revealed by RAPD and AFLP markers. Euphytica 99:167–173

    Article  CAS  Google Scholar 

  • Park Y-K, Park K-C, Park C-H, Kim N-S (2000) Chromosomal localization and sequence variation of 5S rDNA gene in five Capsicum species. Mol Cell 10:18–24

    Article  CAS  Google Scholar 

  • Pearce SR, Knox M, Ellis THN, Flavell AJ, Kumar A (2000) Pea Ty1-copia group retrotransposons: transpositional activity and use as markers to study genetic diversity in Pisum. Mol Gen Genet 263:898–907

    Article  PubMed  CAS  Google Scholar 

  • Petit M, Lim KY, Julio E, Poncet C, Dorlhac de Borne F, Kovarik A, Leitch AR, Grandbastien M-A, Mhiri C (2007) Differential impact of retrotransposon populations on the genome of allotetraploid tobacco (Nicotiana tabacum). Mol Genet Genomics 278:1–15

    Article  PubMed  CAS  Google Scholar 

  • Pickersgill B (1997) Genetic resources and breeding of Capsicum spp. Euphytica 96:129–133

    Article  Google Scholar 

  • Porceddu A, Albertini E, Barcaccia G, Marconi G, Bertoli FB, Veronesi F (2002) Development of S-SAP markers based on an LTR-like sequence from Medicago sativa L. Mol Genet Genomics 267:107–114

    Article  PubMed  CAS  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly PJ (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  • Purvis A, Rambaut A (1995) Comparative analysis by independent contrasts (CAIC): an Apple Macintosh application for analysing comparative data. Comput Appl Biosci 11:247–251

    PubMed  CAS  Google Scholar 

  • Ribeiro-Carvalho C, Guedes-Pinto H, Igrejas G, Stephenson P, Schwarzacher T, Heslop-Harrison JS (2004) High levels of genetic diversity throughout the range of the Portuguese wheat landrace ‘Barbela’. Ann Bot 94:699–705

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez JM, Berke T, Engle L, Nienhuis J (1999) Variation among and within Capsicum species revealed by RAPD markers. Theor Appl Genet 99:147–156

    Article  CAS  Google Scholar 

  • Rogers SA, Pauls KP (2000) Ty1-copia-like retrotransposons of tomato (Lycopersicon esculentum Mill.). Genome 43:887–894

    Article  PubMed  CAS  Google Scholar 

  • Saeidi H, Rahiminejad MR, Heslop-Harrison JS (2008) Retroelement insertional polymorphisms, diversity and phylogeography within diploid, D-genome Aegilops tauschii (Triticeae, Poaceae) sub-taxa in Iran. Ann Bot 101:855–861

    Article  PubMed  CAS  Google Scholar 

  • Sage-Palloix AM, Jourdan F, Phaly T, Nemouchi G, Lefebvre V, Palloix A (2007) Analysis of diversity in pepper genetic resources: distribution of horticultural and resistance traits in the INRA pepper germplasm. In: Niemirowicz-Szczytt K (ed) Progress in research on capsicum & eggplant. Warsaw University of Life Sciences Press, Warsaw

    Google Scholar 

  • Saitou N, Nei M (1987) The Neighbor Joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Sniegowski PD, Charlesworth B (1994) Transposable element numbers in cosmopolitan inversions from a natural population of Drosophila melanogaster. Genetics 137:815–827

    PubMed  CAS  Google Scholar 

  • Swofford DL (2002) PAUP* 4.0 beta 10. Phylogenetic Analysis using Parsimony (and other methods). Sinauer Associates, Sunderland

    Google Scholar 

  • Tam SM, Mhiri C, Vogelaar A, Kerkveld M, Pearce S, Grandbastien M-A (2005) Comparative analyses of genetic diversities within tomato and pepper collections detected by retrotransposon-based SSAP, AFLP and SSR. Theor Appl Genet 110:819–831

    Article  PubMed  CAS  Google Scholar 

  • Tam SM, Mhiri C, Grandbastien M-A (2007a) Transposable elements and the analysis of plant biodiversity. In: Morot-Gaudry JF, Lea P, Briat J-F (eds) Functional plant genomics. Science Publishers, Enfield, pp 529–558

    Google Scholar 

  • Tam SM, Causse M, Garchery C, Burck H, Mhiri C, Grandbastien M-A (2007b) The distribution of copia-type retrotransposons and the evolutionary history of tomato and related wild species. J Evol Biol 20:1056–1072

    Article  PubMed  CAS  Google Scholar 

  • Tanksley SD (1984) High rates of cross-pollination in Chile pepper. HortScience 19:580–582

    Google Scholar 

  • Vershinin AV, Allnut TR, Knox MR, Ambrose MJ, Ellis THN (2003) Transposable elements reveal the impact of introgression, rather than transposition in Pisum diversity, evolution and domestication. Mol Biol Evol 20:2067–2075

    Article  PubMed  CAS  Google Scholar 

  • Walsh BM, Hoot S (2001) Phylogenetic relationships of Capsicum (Solanaceae) using DNA sequences from two noncoding regions: the chloroplast atpB-rbcL spacer region and nuclear waxy introns. Int J Plant Sci 162:1409–1418

    Article  CAS  Google Scholar 

  • Waugh R, McLean K, Flavell AJ, Pearce SR, Kumar A, Thomas BBT, Powell W (1997) Genetic distribution of Bare-1-like retrotransposable elements in the barley genome revealed by sequence specific amplification polymorphisms (SSAP). Mol Gen Genet 253:687–694

    Article  PubMed  CAS  Google Scholar 

  • Wright SI, Schoen DJ (1999) Transposon dynamics and the breeding system. Genetica 107:139–148

    Article  PubMed  CAS  Google Scholar 

  • Wright SI, Agrawal N, Bureau TE (2003) Effects of recombination rate and gene density on transposable element distributions in Arabidopsis thaliana. Genome Res 13:1897–1903

    PubMed  CAS  Google Scholar 

  • Yeh FC, Boyle TJB (1997) Population genetic analysis of co-dominant and dominant markers and quantitative traits. Belg J Bot 129:157

    Google Scholar 

  • Yu GX, Wise RP (2000) An anchored AFLP- and retrotransposon-based map of diploid Avena. Genome 43:736–749

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are extremely grateful to Christian Parisod, Miki Okada and Kietsuda Leungwilai for their helpful comments and suggestions. This study was funded by the FP6 European Commission EC-QLRT-1999-31502.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-Angèle Grandbastien.

Additional information

Communicated by G. Bryan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1 (PDF 66 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tam, S.M., Lefebvre, V., Palloix, A. et al. LTR-retrotransposons Tnt1 and T135 markers reveal genetic diversity and evolutionary relationships of domesticated peppers. Theor Appl Genet 119, 973–989 (2009). https://doi.org/10.1007/s00122-009-1102-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-009-1102-6

Keywords

Navigation