Skip to main content

Advertisement

Log in

3-to-1: unraveling structural transitions in ureases

  • Original Paper
  • Published:
Naturwissenschaften Aims and scope Submit manuscript

Abstract

Ureases are nickel-dependent enzymes which catalyze the hydrolysis of urea to ammonia and carbamate. Despite the apparent wealth of data on ureases, many crucial aspects regarding these enzymes are still unknown, or constitute matter for ongoing debates. One of these is most certainly their structural organization: ureases from plants and fungi have a single unit, while bacterial and archaean ones have three-chained structures. However, the primitive state of these proteins — single- or three-chained — is yet unknown, despite many efforts in the field. Through phylogenetic inference using three different datasets and two different algorithms, we were able to observe chain number transitions displayed in a 3-to-1 fashion. Our results imply that the ancestral state for ureases is the three-chained organization, with single-chained ureases deriving from them. The two-chained variants are not evolutionary intermediates. A fusion process, different from those already studied, may explain this structural transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abascal F, Zardoya R, Posada D (2005) ProtTest: selection of best-fit models of protein evolution. Bioinformatics 21:2104–2105

    Article  PubMed  CAS  Google Scholar 

  • Aguetoni Cambuí C, Gaspar M, Mercier H (2009) Detection of urease in the cell wall and membranes from leaf tissues of bromeliad species. Physiol Plant 136:86–93

    Article  PubMed  Google Scholar 

  • Arango CP (2003) Molecular approach to the phylogenetics of sea spiders (Arthropoda: Pycnogonida) using partial sequences of nuclear ribosomal DNA. Mol Phylogenet Evol 28:588–600

    Article  PubMed  CAS  Google Scholar 

  • Balasubramanian A, Ponnuraj K (2010) Crystal structure of the first plant urease from jack bean: 83 years of journey from its first crystal to molecular structure. J Mol Biol 400:274–283

    Article  PubMed  CAS  Google Scholar 

  • Benini S, Rypniewski WR, Wilson KS, Miletti S, Ciurli S, Mangani S (1999) A new proposal for urease mechanism based on the crystal structures of the native and inhibited enzyme from Bacillus pasteurii: why urea hydrolysis costs two nickels. Structure 7:205–216

    Article  PubMed  CAS  Google Scholar 

  • Câmara MP, Palm ME, van Berkum P, O'Neill NR (2002) Molecular phylogeny of Leptosphaeria and Phaeosphaeria. Mycologia 94:630–640

    Article  PubMed  Google Scholar 

  • Carlini CR, Polacco JC (2008) Toxic properties of ureases. Crop Sci 48:1665–1672

    Article  CAS  Google Scholar 

  • Carter EL, Flugga N, Boer JL, Mulrooney SB, Hausinger RP (2009) Interplay of metal ions and urease. Metallomics 1:207–221

    Article  PubMed  CAS  Google Scholar 

  • Carter EL, Boer JL, Farrugia MA, Flugga N, Towns CL, Hausinger RP (2011) Function of UreB in Klebsiella aerogenes urease. Biochemistry 50:9296–9308

    Article  PubMed  CAS  Google Scholar 

  • Contreras-Rodriguez A, Quiroz-Limon J, Martins AM, Peralta H, Avila-Calderon E, Sriranganathan N, Boyle SM, Lopez-Merino A (2008) Enzymatic, immunological and phylogenetic characterization of Brucella suis urease. BMC Microbiol 8:121

    Article  PubMed  Google Scholar 

  • Defferrari MS, Demartini DR, Marcelino TB, Pinto PM, Carlini CR (2011) Insecticidal effect of Canavalia ensiformis major urease on nymphs of the milkweed bug Oncopeltus fasciatus and characterization of digestive peptidases. Insect Biochem Mol Biol 41:388–399

    Article  PubMed  CAS  Google Scholar 

  • Demartini DR, Carlini CR, Thelen JJ (2011) Global and targeted proteomics in developing jack bean (Canavalia ensiformis) seedlings: an investigation of urease isoforms mobilization in early stages of development. Plant Mol Biol 75:53–65

    Article  PubMed  CAS  Google Scholar 

  • Dixon NE, Gazzola C, Blakeley RL, Zerner B (1975) Jack bean urease (EC 3.5.1.5). A metalloenzyme. A simple biological role for nickel? J Am Chem Soc 97:4131–4133

    Article  PubMed  CAS  Google Scholar 

  • Du L, Damoiseaux R, Nahas S, Gao K, Hu H, Pollard JM, Goldstine J, Jung ME, Henning SM, Bertoni C, Gatti RA (2009) Nonaminoglycoside compounds induce readthrough of nonsense mutations. J Exp Med 206:2285–2297

    Article  PubMed  CAS  Google Scholar 

  • Dunning Hotopp JC (2011) Horizontal gene transfer between bacteria and animals. Trends Genet 27:157–163

    Article  PubMed  CAS  Google Scholar 

  • Estiu G, Merz KM Jr (2007) Competitive hydrolytic and elimination mechanisms in the urease catalyzed decomposition of urea. J Phys Chem B 111:10263–10274

    Article  PubMed  CAS  Google Scholar 

  • Ferreira-DaSilva CT, Gombarovits ME, Masuda H, Oliveira CM, Carlini CR (2000) Proteolytic activation of canatoxin, a plant toxic protein, by insect cathepsin-like enzymes. Arch Insect Biochem Physiol 44:162–171

    Article  PubMed  CAS  Google Scholar 

  • Flicek P, Amode MR, Barrell D, Beal K, Brent S, Carvalho-Silva D, Clapham P, Coates G, Fairley S, Fitzgerald S, Gil L, Gordon L, Hendrix M, Hourlier T, Johnson N, Kähäri AK, Keefe D, Keenan S, Kinsella R, Komorowska M, Koscielny G, Kulesha E, Larsson P, Longden I, McLaren W, Muffato M, Overduin B, Pignatelli M, Pritchard B, Riat HS et al (2012) Ensembl 2012. Nucleic Acids Res 40:D84–D90

    Article  PubMed  CAS  Google Scholar 

  • Fujiwara S, Noguchi T (1995) Degradation of purines: only ureidoglycollate lyase out of four allantoin-degrading enzymes is present in mammals. Biochem J 312:315–318

    PubMed  CAS  Google Scholar 

  • Gaylarde PM, Crispim CA, Neilan BA, Gaylarde CC (2005) Cyanobacteria from Brazilian building walls are distant relatives of aquatic genera. Omics 9:30–42

    Article  PubMed  CAS  Google Scholar 

  • Gernert D (2007) Ockham’s razor and its improper use. J Sci Explor 21:135–140

    Google Scholar 

  • Gueneau P, Loiseaux-De Goër S (2002) Helicobacter: molecular phylogeny and the origin of gastric colonization in the genus. Infect. Genet Evol 1:215–223

    Article  CAS  Google Scholar 

  • Ha NC, Oh ST, Sung JY, Cha KA, Lee MH, Oh BH (2001) Supramolecular assembly and acid resistance of Helicobacter pylori urease. Nat Struct Biol 8:505–509

    Article  PubMed  CAS  Google Scholar 

  • Hausinger RP (1993) Urease. In: Hausinger RP (ed) Biochemistry of nickel. Plenum, New York, pp 23–57

    Google Scholar 

  • Hernández-Pinzón I, de Jesús E, Santiago N, Casacuberta JM (2009) The frequent transcriptional readthrough of the tobacco Tnt1 retrotransposon and its possible implications for the control of resistance genes. J Mol Evol 68:269–278

    Article  PubMed  Google Scholar 

  • Hess PN, Russo CAM (2007) An empirical test of the midpoint rooting method. Biol J Linn Soc 92:669–674

    Article  Google Scholar 

  • Hirayama C, Sugimura M, Saito H, Nakamura M (2000) Host plant urease in the hemolymph of the silkworm, Bombyx mori. J Insect Physiol 46:1415–1421

    Article  PubMed  CAS  Google Scholar 

  • Holm L, Sander C (1997) An evolutionary treasure: unification of a broad set of amidohydrolases related to urease. Proteins 28:72–82

    Article  PubMed  CAS  Google Scholar 

  • Huber C, Eisenreich W, Hecht S, Wächtershäuser G (2003) A possible primordial peptide cycle. Science 301:938–940

    Article  PubMed  CAS  Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755

    Article  PubMed  CAS  Google Scholar 

  • Hunt T, Vogler AP (2008) A protocol for large-scale rRNA sequence analysis: towards a detailed phylogeny of Coleoptera. Mol Phylogenet Evol 47:289–301

    Article  PubMed  CAS  Google Scholar 

  • Jabri E, Carr MB, Hausinger RP, Karplus PA (1995) The crystal structure of urease from Klebsiella aerogenes. Science 268:998–1004

    Article  PubMed  CAS  Google Scholar 

  • Jones CD, Begun DJ (2005) Parallel evolution of chimeric fusion genes. Proc Natl Acad Sci USA 102:11373–11378

    Article  PubMed  CAS  Google Scholar 

  • Jones BD, Mobley HL (1989) Proteus mirabilis urease: nucleotide sequence determination and comparison with jack bean urease. J Bacteriol 171:6414–6422

    PubMed  CAS  Google Scholar 

  • Kaessman H (2010) Origins, evolution, and phylogenetic impact of new genes. Genome Res 20:1313–1326

    Article  Google Scholar 

  • Karplus PA, Pearson MA, Hausinger RP (1997) 70 years of crystalline urease: what have we learned? Acc Chem Res 30:330–337

    Article  CAS  Google Scholar 

  • Korber B, Gaschen B, Yusim K, Thakallapally R, Kesmir C, Detours V (2001) Evolutionary and immunological implications of contemporary HIV-1 variation. Br Med Bull 58:19–42

    Article  PubMed  CAS  Google Scholar 

  • Krajewska B (2009) Ureases I. Functional, catalytic and kinetic properties: a review. J Mol Catal B Enzym 59:9–21

    Article  CAS  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) ClustalW and ClustalX version 2. Bioinformatics 23:2947–2948

    Article  PubMed  CAS  Google Scholar 

  • Liang H, Sandberg WS, Terwilliger TC (1993) Genetic fusion of subunits of a dimeric protein substantially enhances its stability and rate of folding. Proc Natl Acad Sci USA 90:7010–7014

    Article  PubMed  CAS  Google Scholar 

  • Lole KS, Bollinger RC, Paranjape RS, Gadkari D, Kulkarni SS, Novak NG, Ingersoll R, Sheppard HW, Ray SC (1999) Full-length human immunodeficiency virus type 1 genomes from subtype C-infected seroconverters in India, with evidence of intersubtype recombination. J Virol 73:152–160

    PubMed  CAS  Google Scholar 

  • Ma J, Lemieux L, Gennis RB (1993) Genetic fusion of subunits I, II, and III of the cytochrome bo ubiquinol oxidase from Escherichia coli results in a fully assembled and active enzyme. Biochemistry 32:7692–7697

    Article  PubMed  CAS  Google Scholar 

  • Mobley HL, Island MD, Hausinger RP (1995) Molecular biology of microbial ureases. Microbiol Rev 59:451–480

    PubMed  CAS  Google Scholar 

  • Mulinari F, Stanisçuaski F, Bertholdo-Vargas LR, Postal M, Oliveira-Neto OB, Rigden DJ, Grossi-de-Sá MF, Carlini CR (2007) Jaburetox-2Ec: an insecticidal peptide derived from an isoform of urease from the plant Canavalia ensiformis. Peptides 28:2042–2050

    Article  PubMed  CAS  Google Scholar 

  • Mulinari F, Becker-Ritt AB, Demartini DR, Ligabue-Braun R, Stanisçuaski F, Verli H, Fragoso RR, Schroeder EK, Carlini CR, Grossi-de-Sá MF (2011) Characterization of JBURE-IIb isoform of Canavalia ensiformis (L.) DC urease. Biochim Biophys Acta 1814:1758–1768

    Article  PubMed  CAS  Google Scholar 

  • Nacu S, Yuan W, Kan Z, Bhatt D, Rivers CS, Stinson J, Peters BA, Modrusan Z, Jung K, Seshagiri S, Wu TD (2011) Deep RNA sequencing analysis of readthrough gene fusions in human prostate adenocarcinoma and reference samples. BMC Med Genomics 4:11

    Article  PubMed  CAS  Google Scholar 

  • Navarathna DH, Harris SD, Roberts DD, Nickerson KW (2010) Evolutionary aspects of urea utilization by fungi. FEMS Yeast Res 10:209–213

    Article  PubMed  CAS  Google Scholar 

  • Nedelcu AM, Lee RW, Lemieux C, Gray MW, Burger G (2000) The complete mitochondrial DNA sequence of Scenedesmus obliquus reflects an intermediate stage in the evolution of the green algal mitochondrial genome. Genome Res 10:819–831

    Article  PubMed  CAS  Google Scholar 

  • Peabody DS (1997) Subunit fusion confers tolerance to peptide insertions in a virus coat protein. Arch Biochem Biophys 347:85–92

    Article  PubMed  CAS  Google Scholar 

  • Pedrozo HA, Schwartz Z, Luther M, Dean DD, Boyan BD, Wiederhold ML (1996) A mechanism of adaptation to hypergravity in the statocyst of Aplysia californica. Hear Res 102:51–62

    Article  PubMed  CAS  Google Scholar 

  • Piovesan AR, Stanisçuaski F, Marco-Salvadori J, Real-Guerra R, Defferrari MS, Carlini CR (2008) Stage-specific gut proteinases of the cotton stainer bug Dysdercus peruvianus: role in the release of entomotoxic peptides from Canavalia ensiformis urease. Insect Biochem Mol Biol 38:1023–1032

    Article  PubMed  CAS  Google Scholar 

  • Rambaut A (2012) FigTree [http://tree.bio.ed.ac.uk/software/figtree/]

  • Sayers EW, Barrett T, Benson DA, Bolton E, Bryant SH, Canese K, Chetvernin V, Church DM, Dicuccio M, Federhen S, Feolo M, Fingerman IM, Geer LY, Helmberg W, Kapustin Y, Krasnov S, Landsman D, Lipman DJ, Lu Z, Madden TL, Madej T, Maglott DR, Marchler-Bauer A, Miller V, Karsch-Mizrachi I, Ostell J, Panchenko A, Phan L, Pruitt KD, Schuler GD et al (2012) Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 40:D13–D25

    Article  PubMed  CAS  Google Scholar 

  • Schaack S, Gilbert C, Feschotte C (2010) Promiscuous DNA: horizontal transfer of transposable elements and why it matters for eukaryotic evolution. Trends Ecol Evol 25:537–546

    Article  PubMed  Google Scholar 

  • Sirko A, Brodzik R (2000) Plant ureases: roles and regulation. Acta Bioch Pol 4:1189–1195

    Google Scholar 

  • Stanisçuaski F, Carlini CR (2012) Plant ureases and related peptides: understanding their entomotoxic properties. Toxins 4:55–67

    Article  PubMed  Google Scholar 

  • Sumner JB (1926) The isolation and crystallization of the enzyme urease. J Biol Chem 69:435–441

    CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed  CAS  Google Scholar 

  • Tonegawa S (1983) Somatic generation of antibody diversity. Nature 302:575–581

    Article  PubMed  CAS  Google Scholar 

  • von der Haar T, Tuite MF (2007) Regulated translational bypass of stop codons in yeast. Trends Microbiol 15:78–86

    Article  PubMed  Google Scholar 

  • Whelan S, Goldman N (2001) A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol 18:691–699

    Article  PubMed  CAS  Google Scholar 

  • Witte CP, Tiller S, Isidore E, Davies HV, Taylor MA (2005) Analysis of two alleles of the urease gene from potato: polymorphisms, expression, and extensive alternative splicing of the corresponding mRNA. J Exp Bot 56:91–99

    PubMed  CAS  Google Scholar 

  • Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci USA 87:4576–4579

    Article  PubMed  CAS  Google Scholar 

  • Zambelli B, Musiani F, Benini S, Ciurli S (2011) Chemistry of Ni2+ in urease: sensing, trafficking, and catalysis. Acc Chem Res 44:520–530

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Charley C. Staats, Cláudia L. Fernandes, Dennis M. Junqueira, and Marilene H. Vainstein for many insightful suggestions and friendly help with the methodology. This work was supported by the Brazilian agencies Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), MCT; Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), MEC; Financiadora de Estudos e Projetos (FINEP); and Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hugo Verli or Célia Regina Carlini.

Additional information

Communicated by: Sven Thatje

R. Ligabue-Braun and F.C. Andreis contributed equally to this work.

H. Verli and C.R. Carlini share senior authorship.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 14826kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ligabue-Braun, R., Andreis, F.C., Verli, H. et al. 3-to-1: unraveling structural transitions in ureases. Naturwissenschaften 100, 459–467 (2013). https://doi.org/10.1007/s00114-013-1045-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00114-013-1045-2

Keywords

Navigation