Skip to main content
Log in

Mukoviszidose

Cystic fibrosis

  • Leitthema
  • Published:
Monatsschrift Kinderheilkunde Aims and scope Submit manuscript

Zusammenfassung

Charakteristika

Die autosomal-rezessiv vererbte Mukoviszidose ist eine chronisch progrediente Systemerkrankung aller exokrinen Drüsen. Verursacht wird sie durch Mutationen im CFTR-Gen („cystic fibrosis transmembrane conductance regulator gene“), die in einer Präzipitation und Retention muköser Sekrete in den Ausführungsgängen der exokrinen Drüsen und einer Disposition der Atemwege zur Infektion resultieren.

Diagnose

Die Diagnose wird anhand von pathologisch erhöhten Chloridkonzentrationen oder 2 obligat krankheitsauslösenden CFTR-Mutationen gestellt. Bei nicht informativer Genetik und/oder Chloridkonzentrationen im Intermediärbereich ist bei klinischem Verdacht eine weiterführende CFTR-Funktionsdiagnostik indiziert. Der Verlauf der gastrointestinalen und pulmonalen Manifestation muss durch regelmäßige standardisierte Kontrolluntersuchungen überwacht werden.

Therapie

Die Standardtherapie der gastrointestinalen Symptomatik beinhaltet die Substitution von magensäureresistenten Pankreasenzymen und fettlöslicher Vitamine sowie eine hochkalorische, fettreiche Ernährung. Wesentliche Säulen der gegenwärtigen Therapie der pulmonalen Symptomatik sind eine großzügige und frühzeitige antimikrobielle Chemotherapie, Inhalationen, antiinflammatorische Behandlung sowie Sport und Physiotherapie. Bei fortgeschrittenem pulmonalem Krankheitsprozess kommen zusätzlich Sauerstofflangzeittherapie, nichtinvasive Maskenbeatmung und letztlich eine Lungentransplantation in Frage.

Resümee

Die pulmonale Manifestation bestimmt für gegenwärtig nahezu 90 % der Patienten den Verlauf und die Prognose der CF. Eine möglichst frühe Diagnose und Betreuung an einem CF-Zentrum wirken sich günstig aus.

Abstract

Characteristics

Cystic fibrosis (CF) is an autosomal recessive hereditary systemic disease with a chronic progressive course affecting all exocrine glands. It is caused by a mutation in the cystic fibrosis transmembrane conductance regulator gene (CFTR gene) which results in precipitation and retention of mucous secretions in the ducts of exocrine glands and a disposition to respiratory infections.

Diagnosis

The diagnosis of CF is based on a pathologically increased chloride concentration or two mandatory disease-triggering CFTR gene mutations. If the genetic tests and/or chloride concentrations in intermediate ranges are uninformative but CF is clinically suspected, extended CFTR functional diagnostics should be carried out. The course of gastrointestinal and pulmonary manifestations must be monitored by regular standardized control investigations.

Therapy

The standard therapy of gastrointestinal symptoms includes substitution of gastric acid-resistant pancreatic enzymes, a high calorie fat-rich diet and substitution of fat soluble vitamins. The essential pillars of the current therapy of pulmonary symptoms are liberal and early antimicrobial chemotherapy, inhalation, anti-inflammatory treatment, sport and physiotherapy. In cases of advanced pulmonary disease processes, long-term oxygen therapy, non-invasive mask ventilation and ultimately lung transplantation are further options.

Conclusions

The pulmonary manifestations are critical factors which currently determine the course and prognosis of cystic fibrosis in nearly 90 % of patients. The earliest possible diagnosis and nursing in a CF center have advantageous effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Boucher RC (2007) Evidence for airway surface dehydration as the initiating event in CF airway disease. J Intern Med 261:5–16

    Article  PubMed  CAS  Google Scholar 

  2. Chotirmall SH, Smith SG, Gunaratnam C et al (2012) Effect of estrogen on Pseudomonas mucoidy and exacerbations in cystic fibrosis. N Engl J Med 366:1978–1986

    Article  PubMed  CAS  Google Scholar 

  3. Cramer N, Wiehlmann L, Ciofu O et al (2012) Molecular epidemiology of chronic Pseudomonas aeruginosa airway infections in cystic fibrosis. PLoS One 7:e50731

    Article  PubMed  CAS  Google Scholar 

  4. Dasenbrook EC, Checkley W, Merlo CA et al (2010) Association between respiratory tract methicillin-resistant Staphylococcus aureus and survival in cystic fibrosis. JAMA 303:2386–2392

    Article  PubMed  CAS  Google Scholar 

  5. Eckford PD, Li C, Ramjeesingh M, Bear CE (2012) Cystic fibrosis transmembrane conductance regulator (CFTR) potentiator VX-770 (ivacaftor) opens the defective channel gate of mutant CFTR in a phosphorylation-dependent but ATP-independent manner. J Biol Chem 287:36.639–36.649

    Article  Google Scholar 

  6. Esther CR Jr, Esserman DA, Gilligan P et al (2010) Chronic Mycobacterium abscessus infection and lung function decline in cystic fibrosis. J Cyst Fibros 9:117–123

    Article  PubMed  Google Scholar 

  7. Fuchs SI, Ellemunter H, Eder J et al (2012) Feasibility and variability of measuring the lung clearance index in a multi-center setting. Pediatr Pulmonol 47:649–657

    Article  PubMed  Google Scholar 

  8. Hansen CR, Pressler T, Nielsen KG et al (2010) Inflammation in Achromobacter xylosoxidans infected cystic fibrosis patients. J Cyst Fibros 9:51–58

    Article  PubMed  CAS  Google Scholar 

  9. He L, Kota P, Aleksandrov AA et al (2012) Correctors of {Delta}F508 CFTR restore global conformational maturation without thermally stabilizing the mutant protein. FASEB J 27(2):536–545

    Article  PubMed  Google Scholar 

  10. Junge S, Tümmler B (2013) Mukoviszidose. Forum Sanitas 1:11–13

    Google Scholar 

  11. Kieninger E, Singer F, Fuchs O et al (2011) Long-term course of lung clearance index between infancy and school-age in cystic fibrosis subjects. J Cyst Fibros 10:487–490

    Article  PubMed  Google Scholar 

  12. Martin B, Schechter MS, Jaffe A et al (2012) Comparison of the US and Australian cystic fibrosis registries: the impact of newborn screening. Pediatrics 129:e348–e355

    Article  PubMed  Google Scholar 

  13. Mendoza JL, Schmidt A, Li Q et al (2012) Requirements for efficient correction of ΔF508 CFTR revealed by analyses of evolved sequences. Cell 148:164–174

    Article  PubMed  CAS  Google Scholar 

  14. Paugam A, Baixench MT, Demazes-Dufeu N et al (2010) Characteristics and consequences of airway colonization by filamentous fungi in 201 adult patients with cystic fibrosis in France. Med Mycol [Suppl 1] 48:S32–S36

  15. Pezzulo AA, Tang XX, Hoegger MJ et al (2012) Reduced airway surface pH impairs bacterial killing in the porcine cystic fibrosis lung. Nature 487:109–113

    Article  PubMed  CAS  Google Scholar 

  16. Quinton PM (2010) Role of epithelial HCO3 transport in mucin secretion: lessons from cystic fibrosis. Am J Physiol Cell Physiol 299:C1222–C1233

    Article  PubMed  CAS  Google Scholar 

  17. Quinton P, Molyneux L, Ip W et al (2012) β-adrenergic sweat secretion as a diagnostic test for cystic fibrosis. Am J Respir Crit Care Med 186:732–739

    Article  PubMed  Google Scholar 

  18. Rabeh WM, Bossard F, Xu H et al (2012) Correction of both NBD1 energetics and domain interface is required to restore ΔF508 CFTR folding and function. Cell 148:150–163

    Article  PubMed  CAS  Google Scholar 

  19. Rabin HR, Surette MG (2012) The cystic fibrosis airway microbiome. Curr Opin Pulm Med 18:622–627

    Article  PubMed  Google Scholar 

  20. Ramsey BW, Davies J, McElvaney NG et al (2011) A CFTR potentiator in patients with cystic fibrosis and the G551D mutation. N Engl J Med 365:1663–1672

    Article  PubMed  CAS  Google Scholar 

  21. Renna M, Schaffner C, Brown K et al (2011) Azithromycin blocks autophagy and may predispose cystic fibrosis patients to mycobacterial infection. J Clin Invest 121:3554–3563

    Article  PubMed  CAS  Google Scholar 

  22. Sens B, Stern M (Hrsg) (2012) Qualitätssicherung Mukoviszidose 2011. Hippocampus, Bad Honnef

  23. Stanke F, Becker T, Kumar V et al (2011) Genes that determine immunology and inflammation modify the basic defect of impaired ion conductance in cystic fibrosis epithelia. J Med Genet 48:24–31

    Article  PubMed  CAS  Google Scholar 

  24. Tümmler B, Koopman U, Grothues D et al (1991) Nosocomial acquisition of Pseudomonas aeruginosa by cystic fibrosis patients. J Clin Microbiol 29:1265–1267

    PubMed  Google Scholar 

  25. Wiehlmann L, Cramer N, Ulrich J et al (2012) Effective prevention of Pseudomonas aeruginosa cross-infection at a cystic fibrosis centre – results of a 10-year prospective study. Int J Med Microbiol 302:69–77

    Article  PubMed  Google Scholar 

  26. Wilschanski M, Miller LL, Shoseyov D et al (2011) Chronic Ataluren (PTC124) treatment of nonsense mutation cystic fibrosis. Eur Respir J 38:59–69

    Article  PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor weist auf folgende Beziehung hin: Der Autor ist Mitglied mehrerer Advisory Boards der Firma Vertex Pharmaceuticals Incorporated, die CFTR-Modulatoren entwickelt und vertreibt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Tümmler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tümmler, B. Mukoviszidose. Monatsschr Kinderheilkd 161, 399–405 (2013). https://doi.org/10.1007/s00112-012-2797-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00112-012-2797-z

Schlüsselwörter

Keywords

Navigation