Skip to main content

Advertisement

Log in

Lysosomal cysteine peptidase cathepsin L protects against cardiac hypertrophy through blocking AKT/GSK3β signaling

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

The lysosomal cysteine peptidase cathepsin L (CTSL) is an important lysosomal proteinase involved in a variety of cellular functions including intracellular protein turnover, epidermal homeostasis, and hair development. Deficiency of CTSL in mice results in a progressive dilated cardiomyopathy. In the present study, we tested the hypothesis that cardiac overexpression of human CTSL in the murine heart would protect against cardiac hypertrophy in vivo. The effects of constitutive human CTSL expression on cardiac hypertrophy were investigated using in vitro and in vivo models. Cardiac hypertrophy was produced by aortic banding (AB) in CTSL transgenic mice and control animals. The extent of cardiac hypertrophy was quantitated by two-dimensional and M-mode echocardiography as well as by molecular and pathological analyses of heart samples. Constitutive overexpression of human CTSL in the murine heart attenuated the hypertrophic response, markedly reduced apoptosis, and fibrosis. Cardiac function was also preserved in hearts with increased CTSL levels in response to hypertrophic stimuli. These beneficial effects were associated with attenuation of the Akt/GSK3β signaling cascade. Our in vitro studies further confirmed that CTSL expression in cardiomyocytes blunts cardiac hypertrophy through blocking of Akt/GSK3β signaling. The study indicates that CTSL improves cardiac function and inhibits cardiac hypertrophy, inflammation, and fibrosis through blocking Akt/GSK3β signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Palermo C, Joyce JA (2008) Cysteine cathepsin proteases as pharmacological targets in cancer. Trends Pharmacol Sci 29:22–28

    Article  PubMed  CAS  Google Scholar 

  2. Lutgens SP, Cleutjens KB, Daemen MJ, Heeneman S (2007) Cathepsin cysteine proteases in cardiovascular disease. FASEB J 21:3029–3041

    Article  PubMed  CAS  Google Scholar 

  3. Vasiljeva O, Reinheckel T, Peters C, Turk D, Turk V, Turk B (2007) Emerging roles of cysteine cathepsins in disease and their potential as drug targets. Curr Pharm Des 13:387–403

    Article  PubMed  CAS  Google Scholar 

  4. Mohamed MM, Sloane BF (2006) Cysteine cathepsins: multifunctional enzymes in cancer. Nat Rev Cancer 6:764–775

    Article  PubMed  CAS  Google Scholar 

  5. Reinheckel T, Deussing J, Roth W, Peters C (2001) Towards specific functions of lysosomal cysteine peptidases: phenotypes of mice deficient for cathepsin B or cathepsin L. Biol Chem 382:735–741

    Article  PubMed  CAS  Google Scholar 

  6. Ohashi K, Naruto M, Nakaki T, Sano E (2003) Identification of interleukin-8 converting enzyme as cathepsin L. Biochim Biophys Acta 1649:30–39

    PubMed  CAS  Google Scholar 

  7. Huang X, Vaag A, Carlsson E, Ahrén B, Groop L (2003) Impaired cathepsin L gene expression in skeletal muscle is associated with type 2 diabetes. Diabetes 52:2411–2418

    Article  PubMed  CAS  Google Scholar 

  8. Sever S, Altintas MM, Nankoe SR, Möller CC, Ko D, Wei C, Henderson J, del Re EC, Hsing L, Erickson A, Cohen CD, Kretzler M, Kerjaschki D, Rudensky A, Nikolic B, Reiser J (2007) Proteolytic processing of dynamin by cytoplasmic cathepsin L is a mechanism for proteinuric kidney disease. J Clin Invest 117:2095–2104

    Article  PubMed  CAS  Google Scholar 

  9. Kitamoto S, Sukhova GK, Sun J, Yang M, Libby P, Love V, Duramad P, Sun C, Zhang Y, Yang X, Peters C, Shi GP (2007) Cathepsin L deficiency reduces diet-induced atherosclerosis in low-density lipoprotein receptor-knockout mice. Circulation 115:2065–2075

    Article  PubMed  CAS  Google Scholar 

  10. Stypmann J, Gläser K, Roth W, Tobin DJ, Petermann I, Matthias R, Mönnig G, Haverkamp W, Breithardt G, Schmahl W, Peters C, Reinheckel T (2002) Dilated cardiomyopathy in mice deficient for the lysosomal cysteine peptidase cathepsin L. Proc Natl Acad Sci U S A 99:6234–6239

    Article  PubMed  CAS  Google Scholar 

  11. Petermann I, Mayer C, Stypmann J, Biniossek ML, Tobin DJ, Engelen MA, Dandekar T, Grune T, Schild L, Peters C, Reinheckel T (2006) Lysosomal, cytoskeletal, and metabolic alterations in cardiomyopathy of cathepsin L knockout mice. FASEB J 20:1266–1268

    Article  PubMed  CAS  Google Scholar 

  12. Spira D, Stypmann J, Tobin DJ, Petermann I, Mayer C, Hagemann S, Vasiljeva O, Günther T, Schüle R, Peters C, Reinheckel T (2008) Cell type-specific functions of the lysosomal protease cathepsin L in the heart. J Biol Chem 282:37045–3752

    Article  Google Scholar 

  13. Li HL, Liu C, de Couto G, Ouzounian M, Sun M, Wang AB, Huang Y, He CW, Shi Y, Chen X, Nghiem MP, Liu Y, Chen M, Dawood F, Fukuoka M, Maekawa Y, Zhang L, Leask A, Ghosh AK, Kirshenbaum LA, Liu PP (2008) Curcumin prevents and reverses murine cardiac hypertrophy. J Clin Invest 118:879–893

    Article  PubMed  CAS  Google Scholar 

  14. Haudek SB, Taffet GE, Schneider MD, Mann DL (2007) TNF provokes cardiomyocyte apoptosis and cardiac remodeling through activation of multiple cell death pathways. J Clin Invest 117:2692–2701

    Article  PubMed  CAS  Google Scholar 

  15. Li HL, Huang Y, Zhang CN, Williams GM, Liu DP, Liang CC (2006) Epigallocathechin-3 gallate inhibits cardiac hypertrophy through blocking reactive oxidative species-dependent and -independent signal pathways. Free Radic Biol Med 40:1756–1775

    Article  PubMed  CAS  Google Scholar 

  16. Heineke J, Molkentin JD (2006) Regulation of cardiac hypertrophy by intracellular signalling pathways. Nat Rev Mol Cell Biol 7:589–600

    Article  PubMed  CAS  Google Scholar 

  17. Shiojima I, Walsh K (2006) Regulation of cardiac growth and coronary angiogenesis by the Akt/PKB signaling pathway. Genes Dev 20:3347–3365

    Article  PubMed  CAS  Google Scholar 

  18. DeBosch B, Sambandam N, Weinheimer C, Courtois M, Muslin AJ (2006) Akt2 regulates cardiac metabolism and cardiomyocyte survival. J Biol Chem 281:32841–32851

    Article  PubMed  CAS  Google Scholar 

  19. Sugden PH, Fuller SJ, Weiss SC, Clerk A (2008) Glycogen synthase kinase 3 (GSK3) in the heart: a point of integration in hypertrophic signalling and a therapeutic target? A critical analysis. Br J Pharmacol 153:S137–S153

    Article  PubMed  CAS  Google Scholar 

  20. Wang Y (2007) Mitogen-activated protein kinases in heart development and diseases. Circulation 116:1413–1423

    Article  PubMed  CAS  Google Scholar 

  21. Molkentin JD (2004) Calcineurin-NFAT signaling regulates the cardiac hypertrophic response in coordination with the MAPKs. Cardiovasc Res 63:467–475

    Article  PubMed  CAS  Google Scholar 

  22. Leask A (2007) TGFbeta, cardiac fibroblasts, and the fibrotic response. Cardiovasc Res 74:207–212

    Article  PubMed  CAS  Google Scholar 

  23. Van Empel VP, Bertrand AT, Hofstra L, Crijns HJ, Doevendans PA, De Windt LJ (2005) Myocyte apoptosis in heart failure. Cardiovasc Res 67:21–29

    Article  PubMed  Google Scholar 

  24. Rutschow S, Li J, Schultheiss HP, Pauschinger M (2006) Myocardial proteases and matrix remodeling in inflammatory heart disease. Cardiovasc Res 69:646–656

    Article  PubMed  CAS  Google Scholar 

  25. Li HL, She ZG, Li TB, Wang AB, Yang Q, Wei YS, Wang YG, Liu DP (2007) Overexpression of myofibrillogenesis regulator-1 aggravates cardiac hypertrophy induced by angiotensin II in mice. Hypertension. 49(6):1399–1408

    Article  PubMed  CAS  Google Scholar 

Download references

Sources of funding

National Natural Science Foundation of China (30771193), Research Fund for the Doctoral Program of Higher Education of China (no. 20050025002) and Beijing Natural Science Foundation (5072007) to Wei Wang. National Natural Science Foundation of China (30670216), Research Fund for the Doctoral Program of Higher Education of China (no. 2007042086103) to Qizhu Tang.

Conflict of interests

None declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qizhu Tang.

Additional information

Qizhu Tang, Jun Cai and Wei Wang contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM Fig. 1

 (PDF 1.31 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, Q., Cai, J., Shen, D. et al. Lysosomal cysteine peptidase cathepsin L protects against cardiac hypertrophy through blocking AKT/GSK3β signaling. J Mol Med 87, 249–260 (2009). https://doi.org/10.1007/s00109-008-0423-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-008-0423-2

Keywords

Navigation