Skip to main content
Log in

Screening and field evaluation of synthetic volatile blends attractive to adults of the tea weevil, Myllocerinus aurolineatus

  • Research Paper
  • Published:
Chemoecology Aims and scope Submit manuscript

Abstract

Plant volatiles are known to play a role in host location in many herbivorous insects. Although a few studies have determined the role of specific chemicals from herbivore-induced plant volatiles (HIPVs) in mediating interactions between conspecifics in insects belonging to Curculionidae, little is known about how this process works when different components are used. By measuring the behavioral responses of the tea weevil, Myllocerinus aurolineatus (Voss) (Coleoptera: Curculionidae), to a series of chemicals in a Y-tube olfactometer, we found that a blend containing (E/Z)-β-ocimene and (Z)-3-hexenyl acetate was attractive to male M. aurolineatus adults, and a blend containing 2-phenylethanol and (Z)-3-hexenyl acetate was attractive to female M. aurolineatus adults; both blends were as attractive to the insects as the volatiles emitted by the tea plants infested with adult weevils. A net cage experiment in the laboratory showed that traps baited with (E/Z)-β-ocimene plus (Z)-3-hexenyl acetate attracted the male herbivores, whereas the traps baited with 2-phenylethanol and (Z)-3-hexenyl acetate did not. Field experiments verified that tea plants exposed to a blend of (E/Z)-β-ocimene plus (Z)-3-hexenyl acetate attracted significantly more weevils than did the control plants or sticky traps baited with the above lure. These results suggest that the blend of (E/Z)-β-ocimene and (Z)-3-hexenyl acetate is an important signal which the tea weevil uses to locate its host, and is a strong candidate for an attractant that could be used to control the weevil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Birkett MA, Bruce TJA, Martin JL, Smart LE, Oakley J, Wadhams LJ (2004) Responses of female orange wheat blossom midge, Sitodiplosis mosellana, to wheat panicle volatiles. J Chem Ecol 7:1319–1328

    Article  Google Scholar 

  • Blight MM, Pickett JA, Smith MC, Wadhams LJ (1984) An aggregation pheromone of Sitona lineatus—identification and initial field studies. Naturwissenschaften 71:480

    Article  CAS  Google Scholar 

  • Bruce TJA, Wadhams LJ, Woodcock CM (2005) Insect host location: a volatile situation. Trends Plant Sci 10:269–274

    Article  PubMed  CAS  Google Scholar 

  • Byers JA (1992) Attraction of bark beetles, Tomicus piniperda, Hylurgops palliatus, and Trypodendron domesticum and other insects to short-chain alcohols and monoterpenes. J Chem Ecol 18:2385–2402

    Article  CAS  Google Scholar 

  • Byers JA, Lanne BS, Löfqvist J, Schlyter F, Bergström G (1985) Olfactory recognition of host-tree susceptibility by pine shoot beetles. Naturwissenschaften 72:324–326

    Article  CAS  Google Scholar 

  • Byers JA, Zhang QH, Birgersson G (2000) Strategies of a bark beetle, Pityogenes bidentatus, in an olfactory landscape. Naturwissenschaften 87:503–507

    Article  PubMed  CAS  Google Scholar 

  • Cha DH, Nojima S, Hesler SP, Zhang AJ, Linn CE, Roelofs WL, Loeb GM (2008) Identification and field evaluation of grape shoot volatiles attractive to female grape berry moth (Paralobesia viteana). J Chem Ecol 34:1180–1189

    Article  PubMed  CAS  Google Scholar 

  • De Moraes CM, Mescher MC, Tumlinson JH (2001) Caterpillar-induced nocturnal plant volatiles repel conspecific females. Nature 410:577–580

    Article  PubMed  Google Scholar 

  • Delphia CM, Mescher MC, De Moraes CM (2007) Induction of plant volatiles by herbivores with different feeding habits and the effects of induced defenses on host-plant selection by thrips. J Chem Ecol 33:997–1012

    Article  PubMed  CAS  Google Scholar 

  • Deng JY, Wei HY, Huang YP, Du JW (2004) Enhancement of attraction to sex pheromones of Spodoptera exigua by volatile compounds produced by host plants. J Chem Ecol 10:2037–2045

    Article  Google Scholar 

  • Dicke M (1986) Volatile spider-mite pheromone and host-plant kairomone, involved in spaced-out gregariousness in the spider mite Tetranychus urticae. Physiol Entomol 11:251–262

    Article  Google Scholar 

  • Dickens JC (1989) Green leaf volatiles enhance aggregation pheromone of boll weevil, Anthonomus grandis. Entomol Exp Appl 52:191–203

    Article  CAS  Google Scholar 

  • Dickens JC, Smith JW, Light DM (1993) Green leaf volatiles enhance sex attractant pheromone of the tobacco budworm, Heliothis virescens (Lep.: Noctuidae). Chemoecology 4:175–177

    Article  CAS  Google Scholar 

  • Engelberth J, Alborn HT, Schmelz EA, Tumlinson JH (2004) Airborn signals prime plants against insect herbivore attack. Proc Nat Acad Sci USA 101:1781–1785

    Article  PubMed  CAS  Google Scholar 

  • Farag MA, Fokar M, Abd H, Zhang HM, Allen RD, Paré PW (2005) (Z)-3-Hexenol induces defense genes and downstream metabolites in maize. Planta 220:900–909

    Article  PubMed  CAS  Google Scholar 

  • Germinara GS, De Cristofaro A, Rotundo G (2008) Behavioral responses of adult Sitophilus granarius to individual cereal volatiles. J Chem Ecol 34:523–529

    Article  PubMed  CAS  Google Scholar 

  • Giblin-Davis RM, Gries R, Crespi B, Robertson LN, Hara AH, Gries G, O’Brien CW, Pierce HD (2000) Aggregation pheromones of two geographical isolates of the New Guinea sugarcane weevil, Rhabdoscelus obscurus. J Chem Ecol 12:2763–2780

    Article  Google Scholar 

  • Heil M, Lion U, Boland W (2008) Defense-inducing volatiles: in search of the active motif. J Chem Ecol 34:601–604

    Article  PubMed  CAS  Google Scholar 

  • Ibrahim MA, Nissinen A, Holopainen JK (2005) Response of Plutella xylostella and its parasitoid Cotesia plutellae to volatile compounds. J Chem Ecol 9:1969–1984

    Article  Google Scholar 

  • Innocenzi PJ, Hall DR, Cross JV (2001) Components of the male aggregation pheromone of strawberry blossom weevil, Anthonomus rubi Herbst. (Coleoptera: Curculionidae). J Chem Ecol 27:1203–1218

    Article  PubMed  CAS  Google Scholar 

  • James DG (2003) Synthetic herbivore-induced plant volatiles as field attractants for beneficial insects. Environ Entomol 32:977–982

    Article  CAS  Google Scholar 

  • James DG (2005) Further field evaluation of synthetic herbivore-induced plant volatiles as attractants for beneficial insects. J Chem Ecol 3:481–495

    Article  Google Scholar 

  • Kännaste A, Nordenhem H, Nordlander G, Borg-Karlson AK (2009) Volatiles from a mite-infested spruce clone and their effects on pine weevil behavior. J Chem Ecol 35:1262–1271

    Article  PubMed  Google Scholar 

  • Kost C, Heil M (2006) Herbivore-induced plant volatiles induce an indirect defence in neighbouring plants. J Ecol 94:619–628

    Article  CAS  Google Scholar 

  • Linn CE Jr, Dambroski H, Nojima S, Feder JL, Berlocher SH, Roelofs WL (2005) Variability in response specificity of apple, hawthorn, and flowering dogwood-infesting Rhagoletis flies to host fruit volatile blends: implications for sympatric host shifts. Entomol Exp App 116:55–64

    Article  Google Scholar 

  • McCall PJ, Turlings TCJ, Loughrin J, Proveaux AT, Tumlinson JH (1994) Herbivore-induced volatile emissions from cotton (Gossypium hirsutum L.) seedings. J Chem Ecol 12:3039–3050

    Article  Google Scholar 

  • Otálora-Luna F, Hammock JA, Alessandro RT, Lapointe SL, Dickens JC (2009) Discovery and characterization of chemical signals for citrus root weevil, Diaprepes abbreviatus. Arthropod-Plant Interact 3:63–73

    Article  Google Scholar 

  • Reddy GV, Guerrero A (2000) Behavioral responses of the diamondback moth, Plutella xylostella, to green leaf volatiles of Brassica oleracea subsp. capitata. J Agric Food Chem 48:6025–6029

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Saona C, Crafts-Brandner SJ, Paré PW, Henneberry TJ (2001) Exogenous methyl jasmonate induces volatile emission in cotton plants. J Chem Ecol 4:679–695

    Article  Google Scholar 

  • Ruiz-Montiel C, González-Hernández H, Leyva J, Llanderal-Cazares C, Cruz-López L, Rojas JC (2003) Evidence for a male-produced aggregation pheromone in Scyphophorus acupunctatue Gyllenhal (Coleoptera: Curculionidae). J Econ Entomol 4:1126–1131

    Article  Google Scholar 

  • Shimoda T (2010) A key volatile infochemical that elicits a strong olfactory response of the predatory mite Neoseiulus californicus, an important natural enemy of the two-spotted spider mite Tetranychus urticae. Exp Appl Acarol 50:9–22

    Article  PubMed  CAS  Google Scholar 

  • Sun XL, Wang GC, Cai XM, Jin S, Gao Y, Chen ZM (2010) The tea weevil, Myllocerinus aurolineatus, is attracted to volatiles induced by conspecifics. J Chem Ecol 4:388–395

    Article  Google Scholar 

  • Szendrei Z, Averill A, Alborn H, Rodriguez-Saona C (2011) Identification and field evaluation of attractants for the cranberry weevil, Anthonomus musculus Say. J Chem Ecol 37:387–397

    Article  PubMed  CAS  Google Scholar 

  • Tasin M, Bäckman AC, Coracini M, Casado D, Ioriatti C, Witzgall P (2007) Synergism and redundancy in a plant volatile blend attracting grapevine moth females. Phytochemistry 68:203–209

    Article  PubMed  CAS  Google Scholar 

  • Toshova TB, Velchev DI, Subchev MA, Thóth M, Vuts J, Pickett JA, Dewhirst SY (2010) Electrophysiological responses and field attraction of the grey corn weevil, Tanymecus (Episomecus) dilaticollis Gyllenhal (Coleoptera: Curculionidae) to synthetic plant volatiles. Chemoecology 20:199–206

    Article  CAS  Google Scholar 

  • Weissling TJ, Giblin-Davis RM, Scheffrahn RH (1993) Laboratory and field evidence for male-produced aggregation pheromone in Rhynchophorus cruentatus (F.) (Coleoptera: Curculionidae). J Chem Ecol 19(6):1195–1203

    Article  CAS  Google Scholar 

  • Zhang QH, Ma JH, Yang QQ, Byers JA, Klein MG, Zhao FY, Luo YQ (2011) Olfactory and visual responses of the long-legged chafer Hoplia spectabilis Medvedev (Coleoptera: Scarabaeidae) in Qinghai province, China. Pest Manag Sci 67:162–169

    Article  PubMed  CAS  Google Scholar 

  • Zhu JQ, Shang JN, Guo MM (1988) Study of the spatial distribution pattern and sampling technique of Myllocerinus aurolineatus Voss adults in the field. Entom Knowl 5:277–280

    Google Scholar 

  • Zhu JW, Park KC, Baker TC (2003) Identification of odors from overripe mango that attract vinegar flies, Drosophila melanogaster. J Chem Ecol 29(4):899–909

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Emily Wheeler for editorial assistance. We thank Liqun Chen and Biao Gao, who came from Jilin Agricultural University and Yangtze University as summer students to our group, for collecting and rearing weevils. We thank Zongxiu Luo, who drew the draft of trap. The study was sponsored by National Program on Key Basic Research Project (973 Program) (2012CB114104), National Natural Science Foundation of China (31171862), the Division of Science and Technology of Zhejiang Province (2011C22043), and the Planning Subject of ‘the Twelfth Five-Year-Plan’ in National Science and Technology (2011BAD01B02-5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Ling Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, XL., Wang, GC., Gao, Y. et al. Screening and field evaluation of synthetic volatile blends attractive to adults of the tea weevil, Myllocerinus aurolineatus . Chemoecology 22, 229–237 (2012). https://doi.org/10.1007/s00049-012-0110-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00049-012-0110-1

Keywords

Navigation