Skip to main content
Log in

Comprehensive two and three-dimensional QSAR studies of 3-substituted 6-butyl-1,2dihydropyridin-2-ones derivatives as angiotensin II receptor antagonists

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

In this paper, an attempt was made to develop a two and three-dimensional QSAR models on a series of 3-substituted 6-butyl-1,2 dihydropyridin-2-ones derivatives acting as angiotensin II receptor antagonists using partial least squares regression method. Various 2D descriptors were calculated and used in the present analysis. For model validation, the dataset was divided into various training and test sets using random selection procedures. The whole dataset was divided into training set (24 compounds) and test set (5 compounds). The statistically significant best 2D-QSAR model having correlation coefficient (r 2 = 0.9062) was selected for further study. The model was further validated by means of crossed squared correlation coefficient (q 2 = 0.7314 and pred_r 2 = 0.8133) which shows model has good predictive ability. The optimum QSAR model showed that the parameters SdsCHE-index, T_N_N_3, fluorines count, and SaaNHE-index contributed highly positive, while SsCH3count contributed negatively for antihypertensive activity. Using kNNMFA approach, various 3D-QSAR models were generated and selected on the basis of q 2 and predictive r 2 values. 3D-QSAR study was performed using k-nearest neighbor molecular field analysis approach for steric, electrostatic, and hydrophobic fields. Molecular field analysis was used to construct the best 3D-QSAR model using simulated annealing method. The significant best 3D-QSAR model-6 having model with good external and internal predictivity for the training and test sets has shown cross-validation (q 2) and external validation (pred_r2) values of 0.8534 and 0.8020, respectively. The steric, electrostatic, and hydrophobic descriptors at the grid points S_415, S_1059, E_1523, E_1045, E_1308, and H_153 play an important role in the design of new molecule. This model was found to yield reliable clues for further optimization of 3-substituted 6-butyl-1,2dihydropyridin-2-ones in the data set. The information rendered by 2D- and 3D-QSAR models may lead to a better understanding of structural requirements of 3-substituted 6-butyl-1,2dihydropyridin-2-ones derivatives and also aid in designing novel potent antihypertensive molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Afantitis A, Melagraki G, Sarimveis H, Igglessi-Markopoulou O, Kollias G (2009) Novel QSAR model for predicting the inhibition of CXCR3 receptor by 4-N-aryl-[1,4] diazepane ureas. Eur J Med Chem 44:877–884

    Article  PubMed  CAS  Google Scholar 

  • Ajmani S, Kulkarni SA (2008) A dual-response partial least squares regression QSAR model and its application in design of dual activators of PPARα and PPARγQSAR. Comb Sci 27:1291–1304

    Article  CAS  Google Scholar 

  • Ajmani S, Jhadav K, Kulkarni SA (2006) Three-dimensional QSAR using the k-nearest neighbor method and its interpretation. J Chem Inf Model 46:24–31

    Article  PubMed  CAS  Google Scholar 

  • Aquitlera G, Marusic ET (1971) Role of the renin angiotensin system on the biosynthesis of aldosterone. Endocrinology 89:1524–1529

    Article  PubMed  CAS  Google Scholar 

  • Baumann K (2000) An alignment-independent versatile structure descriptor for QSAR and QSPR based on the distribution of molecular features. J Chem Inf Comput Sci 42:26–35

    Google Scholar 

  • Catanzaro DF, Mullins JJ, Morris BJ (1983) The biosynthetic pathway of renin in mouse submandibular gland. J Biol Chem 258:7364–7368

    PubMed  CAS  Google Scholar 

  • Catt KJ, Carson MC, Hausdorff WP, Leach-Harper CM, Baukal AJ, Guillemette G, Balla T, Aguilera G (1987) Angiotensin II receptors and mechanisms of action in adrenal glomerulosa cells. J Steroid Biochem 27:915–927

    Article  PubMed  CAS  Google Scholar 

  • Cramer RD, Patterson DE, Bunce JD (1988) Comparative molecular field analysis (CoMFA) 1. Effect of shape on binding of steroids to carrier proteins. J Am Chem Soc 110:5959–5967

    Article  PubMed  CAS  Google Scholar 

  • Darlington RB (1990) Regression and linear models. McGraw-Hill, New York

    Google Scholar 

  • De Gasparo MD (2002) AT1 and AT2 angiotensin II receptors: key features [in French]. Drugs 62(1):1–10

    Article  PubMed  CAS  Google Scholar 

  • De Gasparo MD, Catt KJ, Inagami T, Wright JW, Unger T (2000) International union of pharmacology. XXIII. The angiotensin II receptors. Pharmacol Rev 52:415–472

    PubMed  CAS  Google Scholar 

  • Ghosh P, Bagchi MC (2009) Comparative QSAR studies of nitrofuranyl amide derivatives using theoretical structural properties. Mol Simul 35:1185–1200

    Article  CAS  Google Scholar 

  • Golbraikh A, Tropsha A (2002a) Predictive QSAR modeling based on diversity sampling of experimental datasets for the training and test set selection. J Comput Aided Mol Des 16:357–369

    Article  PubMed  CAS  Google Scholar 

  • Golbraikh A, Tropsha A (2002b) Beware of q2! J Mol Graph Model 20:269–276

    Article  PubMed  CAS  Google Scholar 

  • Goodfriend TL (2000) Angiotensin receptors: history and mysteries. Am J Hypertens 13(4):442–449

    Article  PubMed  CAS  Google Scholar 

  • Guyon I, Elisseeff A (2003) An introduction to variable and feature selection. J Mach Learn Res 3:1157–1182

    Google Scholar 

  • Halgren TA (1996) Merck molecular force field. III. Molecular geometries and vibrational frequencies for MMFF94. J Comput Chem 17:553–586

    Article  CAS  Google Scholar 

  • Hansch C (1969) Quantitative approach to biochemical structure–activity relationships. Acc Chem Res 2(8):232–239

    Article  CAS  Google Scholar 

  • Hansch C, McClaris J, Klein T, Langridge R (1985) A quantitative structure–activity relationship and molecular graphics study of carbonic anhydrase inhibitors. Mol Pharmacol 27:493–498

    PubMed  CAS  Google Scholar 

  • Hasegawa K, Kimura T, Funatsu K (1999) GA strategy for variable selection in QSAR studies: enhancement of comparative molecular binding energy analysis by GA-based PLS method. Quant Struct-Act Relat 18:262–272

    Article  CAS  Google Scholar 

  • Holland JH (1992) Genetic algorithms. Sci Am 267:66–72

    Article  Google Scholar 

  • Kambayashi Y, Bardhan S, Takahashi K, Tsuzuki S, Inui H, Hamakubo T, Inagami T (1993) Molecular cloning of a novel angiotensin II receptor isoform involved in phosphotyrosine phosphatase inhibition. J Biol Chem 268:24543–24546

    PubMed  CAS  Google Scholar 

  • Kirkpatrick S, Gelatt CDJ, Vecchi MP (1983) Optimization by simulated annealing. Science 220:671–680

    Article  PubMed  CAS  Google Scholar 

  • Klebe G, Abraham U, Mietzner T (1994) Molecular similarity indexes in a comparative-analysis (CoMSIA) of drug molecules to correlate and predict their biological-activity. J Med Chem 37:4130–4146

    Article  PubMed  CAS  Google Scholar 

  • Kulkarni SS, Kulkarni VM (1999) Three-dimensional quantitative structure-activity relationship of interleukin 1-beta converting enzyme inhibitors: a comparative molecular field analysis study. J Med Chem 42:373–380

    Article  PubMed  CAS  Google Scholar 

  • Murphy TJ, Alexander RW, Griendling KK, Runge MS, Bernstein KE (1991) Isolation of a cDNA encoding the vascular type-1 angiotensin II receptor. Nature 351:233–236

    Article  PubMed  CAS  Google Scholar 

  • Oparil S, Chen YF, Berecek KH (1995) The role of the central nervous system in hypertension. In: Laragh JH, Brenner BM (eds) Hypertension: pathophysiology, diagnosis and management. Raven Press, New York, pp 713–740

    Google Scholar 

  • Osswald M, Mederski WWKR, Schwarz M, Beier N, Ingeborg L, Klaus OM (1994) 3-substituted 6-butyl-1,2dihydropyridin-2-ones derivatives A new series of potent nonpeptide angiotensin II receptor antagonists. Bioorg Med Chem Lett 4(5):683–688

    Article  CAS  Google Scholar 

  • Peach MJ (1977) Renin-angiotensin system: biochemistry and mechanisms of action. Physiol Rev 57:313–370

    PubMed  CAS  Google Scholar 

  • Sakai RR, He PF, Yang XD, Ma LY, Guo YF, Reilly JJ, Moga CN, Fluharty SJ (1994) Intracerebroventricular administration of AT1 receptor antisense oligonucleotides inhibits the behavioral actions of angiotensin II. J Neurochem 62:2053–2056

    Article  PubMed  CAS  Google Scholar 

  • Scior T, Medina-Franco JL, Do QT, Martınez-Mayorga K, Yunes Rojas JA, Bernard P (2009) How to recognize and workaround pitfalls in QSAR studies: a critical review. Curr Med Chem 16:4297–4313

    Article  PubMed  CAS  Google Scholar 

  • Sharma MC, Kohli DV (2011a) 3D QSAR studies on series of 2, 3-dihydro-4(1H)-quinazolinone derivatives angiotensin II receptor antagonists: kNNMFA approach. Am-Euras J Sci Res 6(2):85–94

    Google Scholar 

  • Sharma MC, Kohli DV (2011b) 3D QSAR kNNMFA approach studies on series of substituted piperidin-2-one biphenyl tetrazoles as angiotensin II receptor antagonists. Am-Euras Toxicol Sci 3(2):75–84

    Google Scholar 

  • Sharma MC, Kohli DV (2011c) QSAR study on sulfonylcarbamate derivatives: an insight into the structural requirement for the angiotensin II receptor antagonist. Eur J Appl Sci 3(1):9–14

    Google Scholar 

  • Sharma MC, Kohli DV (2011d) 3D-QSAR studies of some substituted imidazolinones angiotensin II receptor antagonists. World Appl Sci J 12(11):2129–2134

    Google Scholar 

  • Sharma MC, Kohli DV (2011e) 3D QSAR studies on a series of-[(1-Benzyl-1H-Imidazol-5-yl)-alkyl]-amino derivatives as angiotensin II AT1 antagonists. Am-Euras J Sci Res 6(2):79–84

    CAS  Google Scholar 

  • Sharma MC, Kohli DV (2011f) 3D QSAR approach on substituted isoxazolidines derivatives as angiotensin II receptor antagonist. Am-Euras Toxicol Sci 3(2):85–91

    Google Scholar 

  • Sharma MC, Kohli DV (2011g) 3D QSAR studies of substituted-4(3H) quinazolinones derivatives as angiotensin II receptor antagonists. Eur J Appl Sci 3(1):15–23

    Google Scholar 

  • Sharma MC, Kohli DV (2011h) Predicting alkylbenzimidazole derivatives as angiotensin II receptor antagonists: 3D QSAR by kNN-MFA approach. Adv Biol Res 5(3):161–169

    CAS  Google Scholar 

  • Sharma MC, Kohli DV (2011i) 3D QSAR studies on a series of sulfonylcarbamate isostere derivatives as non-peptide angiotensin II receptor antagonists: kNNMFA method. Am-Euras J Sci Res 6(2):64–70

    CAS  Google Scholar 

  • Sharma MC, Kohli DV (2011j) Exploration of quantitative structure activity relationship studies on a series of substituted quinazolinones as angiotensin II AT1 receptor antagonists. World Appl Sci J 12(11):2111–2119

    Google Scholar 

  • Sharma MC, Kohli DV (2011k) 2D- and 3D- QSAR studies of substituted 4H-pyrido [1,2-a] pyrimidin-4-ones angiotensin II receptor antagonists. Am-Euras Toxicol Sci 3(2):92–100

    Google Scholar 

  • Sharma MC, Kohli DV (2011l) An insight into the structural requirement QSAR approach on substituted isoxazolidines derivatives as angiotensin II receptor antagonist. Am-Euras J Sci Res 6(2):71–78

    CAS  Google Scholar 

  • Sharma MC, Kohli DV (2011m) QSAR analysis and 3D QSAR kNN-MFA approach on a series of substituted quinolines derivatives as angiotensin II receptor antagonists. Arab J Chem. doi:10.1016/j.arabjc.2011.07.008

    Google Scholar 

  • Sharma MC, Kohli DV (2011n) Two dimensional and k-Nearest neighbor molecular field analysis approach on substituted triazolone derivatives: an insight into the structural requirement for the angiotensin II receptor antagonist. J Saudi Chem Soc. doi:10.1016/j.jscs.2011.10.008

    Google Scholar 

  • Sharma MC, Kohli DV (2011o) Insight into the structural requirement of substituted quinazolinone biphenyl acylsulfonamides derivatives as angiotensin II receptor antagonists: 2D and 3D QSAR approach. J Saudi Chem Soc. doi:10.1016/j.jscs.2011.05.011

    Google Scholar 

  • Sharma MC, Kohli DV (2011p) QSAR studies on substituted benzimidazoles as angiotensin II receptor antagonists: kNNMFA approach. Arab J Chem. doi:10.1016/j.arabjc.2011.05.015

    Google Scholar 

  • Sharma MC, Kohli DV (2011q) QSAR analysis of imidazo[4, 5-b] pyridine substituted α-phenoxyphenylacetic acids as angiotensin II AT1 receptor antagonists. J Saudi Chem Soc. doi:10.1016/j.jscs.2011.07.013

    Google Scholar 

  • Sharma MC, Kohli DV (2011r) Predicting substituted 2-butylbenzimidazoles derivatives as angiotensin II receptor antagonists: three-dimensional QSAR and pharmacophore mapping. J Saudi Chem Soc. doi:10.1016/j.jscs.2011.09.001

    Google Scholar 

  • Sharma MC, Kohli DV (2011s) QSAR Studies of a series of angiotensin II receptor substituted benzimidazole bearing acidic heterocycles derivatives. J Saudi Chem Soc. doi:10.1016/j.jscs.2011.08.005

    Google Scholar 

  • Sharma MC, Kohli DV (2011t) An approach to design antihypertensive agents by 2D QSAR studies on series of substituted benzimidazoles derivatives as angiotensin II receptor antagonists. Arab J Chem. doi:10.1016/j.arabjc.2011.04.016

    Google Scholar 

  • Sharma MC, Kohli DV (2011u) Insight into the structural requirement of aryltriazolinone derivatives as angiotensin II AT1 receptor: 2D and 3D-QSAR k-nearest neighbor molecular field analysis approach. Med Chem Res. doi:10.1007/s00044-011-9815-x

    Google Scholar 

  • Sharma MC, Kohli DV (2011v) A comprehensive structure–activity analysis 2,3,5-trisubstituted 4,5-dihydro-4-oxo-3H-imidazo [4,5-c] pyridine derivatives as angiotensin II receptor antagonists: using 2D- and 3D-QSAR approach. Med Chem Res. doi:10.1007/s00044-012-0040-z

    Google Scholar 

  • Sharma MC, Kohli DV (2012) Quantitative structure–activity analysis studies on triazolinone aryl and nonaryl substituents as angiotensin II receptor antagonists. J Saudi Chem Soc. doi:10.1016/j.jscs.2011.12.023

    Google Scholar 

  • Sharma MC, Kohli DV, Chaturvedi SC, Sharma S (2009) Molecular modeling studies of some substituted 2-butylbenzimidazoles angiotensin II receptor antagonists as antihypertensive agents. Digest J Nanomater Biostruct 4(4):843–856

    Google Scholar 

  • Sharma MC, Kohli DV, Sharma S (2010a) Synthesis and biological activity of 4′- (5-amino-6-chloro-2-substituted-benzoimidazol-1-ylmethyl)]-biphenyl-2-carboxylic acid as antihypertensive agents. Digest J Nanomater Biostruct 5(3):605–621

    Google Scholar 

  • Sharma MC, Kohli DV, Sharma S (2010b) Synthesis and biological evaluation of some new benzimidazoles derivatives 4′-{5-amino-2-[2-substituted-phenylamino)-phenyl-methyl]-benzimidazol-1 ylmethyl}-biphenyl-2-carboxylic acid: nonpeptide angiotensin II receptor antagonists. Int J Drug Deliv 2:265–277

    Article  CAS  Google Scholar 

  • Sharma MC, Kohli DV, Sharma S (2010c) Benzimidazole derivatives with (2-{6-Chloro-5-nitro-1-[2-(1H-tetrazol-5-yl) biphenyl-4-ylmethyl] 1H-benzoimidazol-2-yl}-phenyl)-(substituted-benzylidene)-amine with potential angiotensin II receptor antagonists as antihypertensive activity. I. Int J Drug Deliv 2:228–237

    Article  CAS  Google Scholar 

  • Sharma MC, Kohli DV, Sharma S (2010d) Synthesis and biological evaluation of potent antihypertensive activity: 2-[(Substituted-phenyl amino)-phenyl-methyl]-1-[2′-(1H-tetrazol-5-yl) biphenyl-3-ylmethyl]-1H-benzoimidazol-5-ylamine derivatives. Int J Adv Pharm Sci 1:284–298

    CAS  Google Scholar 

  • Sharma MC, Kohli DV, Sharma S (2010e) Synthesis and antihypertensive activity of 4′-(2-{2-[(2-chloro-benzylidene)-amino]-phenyl}-5-nitro-benzoimidazol-1-ylmethyl)] biphenyl-2-carboxylic acid. Int J Adv Pharm Sci 1:249–262

    CAS  Google Scholar 

  • Sharma MC, Sharma S, Sahu NK, Kohli DV (2011a) QSAR Studies of some substituted imidazolinones angiotensin II receptor antagonist using partial least squares regression (PLSR) based feature selection. J Saudi Chem Soc. doi:10.1016/j.jscs.2011.03.005

    Google Scholar 

  • Sharma MC, Sharma S, Sahu NK, Kohli DV (2011b) QSAR Studies of some substituted imidazolinones angiotensin II receptor antagonist using partial least squares regression (PLSR) based feature selection. J Saudi Chem Soc. doi:10.1016/j.jscs.2011.03.012

    Google Scholar 

  • Sharma MC, Sharma S, Kohli DV (2012) Structural insights for 5-β-ketosulfoxide imidazolyl biphenyl sulfonylureas derivatives as angiotensin II AT1 receptor antagonists using kNN-MFA with genetic algorithm. J Saudi Chem Soc. doi:10.1016/j.jscs.2012.01.010

    Google Scholar 

  • Shen M, Xiao Y, Golbraikh A, Gombar VK, Tropsha A (2003) Development and validation of k-nearest-neighbor QSPR models of metabolic stability of drug candidates. J Med Chem 46:3013–3020

    Article  PubMed  CAS  Google Scholar 

  • VLife MDS 3.5 (2008) Molecular design suite. Vlife Sciences Technologies Pvt. Ltd., Pune. www.vlifesciences.com. Accessed 22 July 2010

  • Wagener M, Sadowski J, Gasteiger J (1995) Autocorrelation of molecular surface properties for modeling corticosteroid binding globulin and cytosolic Ah receptor activity by neural networks. J Am Chem Soc 117:7769–7775

    Article  CAS  Google Scholar 

  • Weisinger RS, Blair-West JR, Burns P, Denton DA, Tarjan E (1997) Role of brain angiotensin in thirst and sodium appetite of rats. Peptides 18:977–984

    Article  PubMed  CAS  Google Scholar 

  • Wold S (1995) PLS for multivariate linear modeling. In: van de Waterbeemd H (ed) Chemometric methods in molecular design. VCH, Weinheim, pp 195–218

    Google Scholar 

  • Zaman MA, Oparil S, Calhoun DA (2002) Drugs targeting the renin–angiotensin–aldosterone system. Nature Rev Drug Discov 1:621–636

    Article  CAS  Google Scholar 

  • Zehr JE, Kurz KD, Seymour AA, Schultz HD (1980) Mechanisms controlling renin release. Adv Exp Med Biol 130:135–170

    Article  PubMed  CAS  Google Scholar 

  • Zheng W, Tropsha A (2000) Novel variable selection quantitative structure–property relationship approach based on the k-nearest neighbor principle. J Chem Inf Comput Sci 40:185–194

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to V-Life Sciences Technologies Private Limited, 1 Akshay, 50 Anand Park, Aundh, Pune, India for providing trial version of the software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mukesh C. Sharma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, M.C., Kohli, D.V. Comprehensive two and three-dimensional QSAR studies of 3-substituted 6-butyl-1,2dihydropyridin-2-ones derivatives as angiotensin II receptor antagonists. Med Chem Res 22, 1107–1123 (2013). https://doi.org/10.1007/s00044-012-0110-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-012-0110-2

Keywords

Navigation