
Journal of Fourier Analysis and Applications (2021) 27:37
https://doi.org/10.1007/s00041-021-09835-0

Construction andMonte Carlo Estimation of Wavelet
Frames Generated by a Reproducing Kernel

Ernesto De Vito1 · Zeljko Kereta2 · Valeriya Naumova3 · Lorenzo Rosasco4,5,6 ·
Stefano Vigogna4

Received: 30 November 2020 / Revised: 2 March 2021 / Accepted: 2 March 2021 /
Published online: 16 April 2021
© The Author(s) 2021

Abstract
We introduce a construction of multiscale tight frames on general domains. The frame
elements are obtained by spectral filtering of the integral operator associated with a
reproducing kernel. Our construction extends classical wavelets as well as generalized
wavelets on both continuous and discrete non-Euclidean structures such as Rieman-
nian manifolds and weighted graphs. Moreover, it allows to study the relation between
continuous and discrete frames in a random sampling regime, where discrete frames
can be seen as Monte Carlo estimates of the continuous ones. Pairing spectral regu-
larization with learning theory, we show that a sample frame tends to its population
counterpart, and derive explicit finite-sample rates on spaces of Sobolev and Besov
regularity. Our results prove the stability of frames constructed on empirical data, in
the sense that all stochastic discretizations have the same underlying limit regardless
of the set of initial training samples.
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1 Introduction

Wavelet systems have long been employed in time-frequency analysis and approxi-
mation theory to break the uncertainty principle and resolve local singularities against
global smoothness. Nonlinear approximation over redundant families of localized
waveforms has enabled the construction of efficient sparse representations, becoming
common practice in signal processing, source coding, noise reduction, and beyond.
Sparse dictionaries are also an important tool in machine learning, where the extrac-
tion of few relevant features can significantly enhance a variety of learning tasks,
making them scale with enormous quantities of data. However, the role of wavelets
in machine learning is still unclear, and the impact they had in signal processing has,
by far, not been matched. One objective constraint to a direct application of classi-
cal wavelet techniques to modern data science is of geometric nature: real data are
typically high-dimensional and inherently structured, often featuring or hiding non-
Euclidean topologies. On the other hand, a representation built on empirical samples
poses an additional problem of stability, accounted for by how well it generalizes to
future data. In this paper, expanding upon the ideas outlined in [35], we introduce a
data-driven construction of wavelet frames on non-Euclidean domains, and provide
stability results in high probability.

Starting from Haar’s seminal work [31] and since the founding contributions of
Grossmann and Morlet [30], a general theory of wavelet transforms and a wealth of
specific families of wavelets have rapidly arisen [10,14,23,39,41], first and foremost
on R

d , but soon thereafter also on non-Euclidean structures such as manifolds and
graphs [12,13,18,20,26,28,33,44].Generalizedwavelets usually consist of frameswith
some kind of broad to tighter link to ideas from multi-resolution analysis. At the very
least, elements of a wavelet frame ought to be associated with locations and scales,
decomposing signals into a sum of local features in increasing resolution. On a basic
conceptual level, many of these generalized constructions stem from a reinterpretation
of the frequency domain as the spectrum of a differential operator. Indeed, wavelets
onR are commonly generated by dilating and translating a well-localized functionψ ,

ψa,b(x) = |a|−1/2ψ
( x−b

a

)
a �= 0, b ∈ R;

but taking the Fourier transform, they can be rewritten as

ψa,b(x) =
∫

|a|1/2ψ̂(aξ)e2π ı(x−b)ξdξ =
∫

Ga(ξ)vξ (b)vξ (x)dξ, (1)

with Ga(ξ) = |a|1/2ψ̂(aξ) and vξ (x) = e2π ı xξ . This allows to reinterpret the wavelet
ψa,b(x) as a superposition of Fourier harmonics vξ (x), modulated by a spectral filter
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Ga(ξ). Moreover, each vξ can be seen as an eigenfunction of the Laplacian � =
−d2/dx2. Hence, in principle, we may retrace an analogous construction whenever
some notion of Laplacian is at hand. In particular, Riemannianmanifolds andweighted
graphs are examples of spaces where this is possible, using the Laplace–Beltrami
operator or the graph Laplacian. A more detailed overview of related work based on
these or similar ideas is postponed to Sects. 2 and 6.

Thus far, the study of generalizedwavelets on non-Euclidean domains has primarily
focused on either the continuous or the discrete setting. It is nonetheless natural to
investigate the relationship between the two. For instance, regarding a graph as a
sample of a manifold, we may ask whether and in what sense the frame built on the
graph tends to the one on the manifold. In this paper we present a unified framework
for the construction and the comparison of continuous and discrete frames. Returning
for a moment to the real line, let us consider the semigroup e−t� generated by the
Laplacian. This defines an integral operator

e−t� f (x) =
∫

Kt (x, y) f (y)dy,

with Kt (x, y) being the heat kernel. Such a representation suggests that the generalized
Fourier analysis, already revisited as spectral analysis of the Laplacian, can now be
translated in terms of a corresponding integral operator (see e.g. [13,38]). With the
attention shifting from theLaplacian to an integral kernel, our idea is to recast the above
constructions inside a reproducing kernel Hilbert space. Exploiting the reproducing
kernel, we will extend a discrete frame out of the given samples, and thus compare it
to its natural continuous counterpart.

Our construction yields empirical frames �̂
N
on sets of N data. We will show that

�̂
N
converges in high probability to a continuous frame� associated to a reproducing

kernel Hilbert space H as N → ∞, thus providing a proof of its stability in an

asymptotic sense. The empirical frames �̂
N
can be seen as Monte Carlo estimates of

�. Repeated random sampling will in fact produce a sequence of frames �̂
N
on an

increasing chain of finite dimensional reproducing kernel Hilbert spaces ĤN

ĤN ⊂ ĤN+1 ⊂ · · · ⊂ H
�̂

N
�̂

N+1 −→ �
,

which approximates � onH up to a desired sampling resolution quantifiable by finite
sample bounds in high probability.

One may also look at our result as a form of stochastic discretization of continuous
frames. Going from the continuum to the discrete setting is an important problem in
frame theory and applications of coherent states. Given a continuous frame of a Hilbert
space, the discretization problem [2, Chapter 17] asks to extract a discrete frame out of
it. Originally motivated by the need of numerical implementations of coherent states
arising in quantum mechanics [15,51], the problem was then generalized to continu-
ous frames [1] and addressed in several theoretical efforts [21,24,29], until it found a
complete yet not constructive characterization in [22]. Sampling the continuous frame
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is tantamount to sampling the parameter space on which the frame is indexed. For a
wavelet frame, this means the selection of a discrete set of scales and locations. While
the discretization of the scales can be readily obtained by a dyadic parametrization,
the difficult part is usually sampling locations, that is, the domain where the frame
is defined. How to do this is known in many cases and consists in an attentive selec-
tion of nets of well covering but sufficiently separated points. Already sensitive in the
Euclidean setting, this procedure can be hard to generalize and implement in more
general geometries [13]. In this respect, our Monte Carlo frame estimation provides a
randomized approach to frame discretization as opposed to a deterministic sampling
design. Clearly, our Monte Carlo estimate is not solving the discretization problem
in its original form, since it defines frames only on finite dimensional subspaces.
It is rather providing an asymptotic approximate solution, computing frames on an
invading sequence of subspaces ĤN ⊂ H. We should also remark that, due to cover-
ing properties, standard frame discretization always entails a loosening of the frame
bounds; hence, in particular, only non-tight frames may be sampled, even when the
starting continuous frame is Parseval. As a result, signal reconstruction with respect to
the discretized frame will in general require the computation of a dual frame, which is
a problem on its own. On the contrary, in our randomized construction we preserve the
tightness, albeit at the expense of a (possibly large) loss of resolution powerH \ ĤN .

The remainder of the paper is organized as follows. The general notation used
throughout the paper is listed in Table 1. In Sect. 2 we relate our main contribution
to recent constructions of wavelets on graphs. This is both a special case and a main
motivation of the general theory developed in the subsequent sections. In Sect. 3 we
introduce the general framework and define the fundamental objects used in our analy-
sis. The focus is on kernels, reproducing kernel Hilbert spaces, and associated integral
operators. In Sect. 4 we present our frame construction based on spectral calculus of
the integral operator. Our theory encompasses continuous and discrete frames within a
unified formalism, paving theway for a principled comparison of the two. In particular,
in Sect. 5, interpreting discrete locations as samples from a probability distribution we
propose a Monte Carlo method for the estimation of continuous frames. In Sect. 6 we
compare and contrast our approach to the existing literature. In Sect. 7 we prove the
consistency of our Monte Carlo wavelets and obtain explicit convergence rates under
Sobolev regularity of the signals. This is done combining techniques borrowed from
the theory of spectral regularization with bounds of concentration of measure. In Sect.
8 we study the convergence rates in Besov spaces. In Sect. 9 we draw our conclusions
and point at some directions for future work.

2 Wavelets on Graphs and Their Stability

In this section we discuss how the framework introduced in the paper may be used to
study the stability of typical constructions of wavelets on graphs. We first recall a few
elementary concepts about graphs and set up some notation. After that, we outline a
natural construction of wavelets based on the graph Laplacian, and observe that such
a construction may be recast in terms of a reproducing kernel. Finally, we explain how
this allows to establish the stability ofwavelet frames in a suitable randomgraphmodel.
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Table 1 Notation

Symbol Definition Symbol Definition

〈·, ·〉H, ‖·‖H Inner product and norm in a
RKHS H

PS Orthogonal projection onto a
closed subspace S

σ(A) Spectrum of a linear operator A supp(ρ) Support of a measure ρ

‖ · ‖ Operator norm 〈·, ·〉ρ , ‖·‖ρ Inner product and norm in
L2(X , ρ)

‖ · ‖HS Hilbert–Schmidt norm δx Dirac measure at x

v ⊗ w The operator
u ∈ H �→ 〈u, v〉Hw ∈ H

v[i] i th component of a vector v

span S Linear span of a set S M[i, j] (i, j)th entry of a matrix M

S⊥ Orthogonal complement of a set
S

M+ Pseudoinverse of a matrix M

S Topological closure of a set S X � Y X ≤ CY for some constant
C > 0

S1 ⊕ S2 Direct sum of two subspaces S1
and S2

X � Y X � Y and Y � X

2.1 Wavelets on Graphs

We start with some basics of spectral graph theory. We only review what is strictly
necessary for our purposes, and refer to [11] for further details.

Definition 2.1 (Weighted graph) An undirected graph is a pair G = (V, E), where
V is a finite discrete set of vertices V := {x1, . . . , xN }, and E is a set of unordered
pairs E ⊂ {{xi , xk} : xi , xk ∈ V}, called edges. A weighted (undirected) graph is an
undirected graph with an associated weight function w : E → (0,+∞).

Arguably, one of the most remarkable facts about graphs is that it is possible to
define on such a minimal structure a consistent notion of Laplacian. Functions on the
graph, more precisely functions f : V → R, can be identified with vectors f ∈ R

N

by fi := f (xi ), and equipped with the standard inner product f�g for f, g ∈ R
N .

As an operator acting on functions, the graph Laplacian is thus defined by a matrix
L ∈ R

N×N .

Definition 2.2 (Graph Laplacian) Let G = (V, E, w) be a weighted graph. Theweight
matrix W := [wi,k]Ni,k=1 is defined by wi,k := w({xi , xk}) for {xi , xk} ∈ E , and
wi,k := 0 otherwise. The degree matrix D := diag(d1, . . . , dN ) is defined by di :=∑N

k=1 wi,k . The unnormalized graph Laplacian is the matrix

L := D − W.

Assuming that G is connected, hence di > 0 for all i = 1, . . . , N , the symmetric
normalized graph Laplacian is L′ := D−1/2LD−1/2 = I − D−1/2WD−1/2. Several
other variants are considered in the literature, including the random walk normalized
graph LaplacianD−1L = I−D−1W, which is not symmetric but conjugate toL′. The
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operators L, L′ and further normalizations result from different definitions of Hilbert
structures on the spaces of functions on V and E [34].While each operator gives rise to
a different analysis, the choice of one or the other does not have formal consequences
in our construction, hence, for simplicity, we will generically use L.

The matrix L is positive semi-definite, hence it admits an orthonormal basis of
eigenvectors with non-negative eigenvalues, customarily sorted in increasing order:

Lui = ξiui , i = 0, . . . , N − 1, 0 = ξ0 ≤ ξ1 ≤ · · · ≤ ξN−1.

The spectrum of L reveals several important topological properties of the graph. In
particular, a graph has asmany connected components as zero eigenvalues, with eigen-
functions being piecewise constant on the components. We assume from now on that
the graph is connected, hence ξ1 > 0.

The graph Laplacian can be seen as a discrete analog of the continuous Laplace
operator. This analogy justifies the interpretation of the eigenvectors ui as Fourier
harmonics, and the corresponding eigenvalues ξi as frequencies. Accordingly, the
graph Fourier transform is defined by

F := [u1 · · ·uN ]�, [Ff]i := u�
i f .

Note that the indexing is hiding that Ff should be thought as a function on the frequen-
cies ξi . Carrying the analogy forward, a family of graphwavelets can be constructed by
spectral filtering of the Fourier basis as follows. Let {Hj } j≥0 be a family of functions
Hj : [0,+∞) → [0,+∞) satisfying

∑

j≥0

Hj (ξ)2 = 1 for all ξ ∈ [0,+∞),

#{Hj : Hj (ξi ) �= 0} < ∞ for i = 1, . . . , N .

Then, the family

ϕ j,k :=
N∑

i=1

Hj (ξi )ui [k]ui j ≥ 0, k = 1, . . . , N (2)

defines a Parseval frame on G [28, Theorem 2].
LetHG := span{u0}⊥ = span{u1, . . . ,uN−1} the space of all non-constant signals

on G. The graph Laplacian defines an inner product onHG by 〈f, g〉G := f�Lg, which
is invariant under graph isomorphisms. The Hilbert spaceHG has reproducing kernel

K := L+.

The matrix K on HG has same eigenvectors u1, . . . ,uN−1 as L, and eigenvalues

λ1 = ξ−1
1 ≥ λ2 = ξ−1

2 ≥ · · · ≥ λN−1 = ξ−1
N−1.
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Therefore, wavelets (2) can be as well defined starting from the spectral decompo-
sition of the reproducing kernel K, rather than the Laplacian L. Conversely, given
any reproducing kernel K, a frame may be constructed, without any reference to a
Laplacian matrix. Indeed, this is the point of view taken in this paper.

Besides the equivalence in defining the frame, starting from a kernel implies some
technical differences, but also opens to new theoretical potential. First, note that the
spectrumgets flipped, hence the eigenvalues of the kernel should be thought as inverses
of Fourier frequencies. This seemingly irrelevant remark is actually important to cor-
rectly interpret the definitions of Sobolev and Besov spaces given in Sect. 8.Moreover,
in light of this, the scale τ in (27) can be understood as a frequency threshold, and
the regularization τ−1 in the regression problem (29) as keeping the low frequencies.
Reasoning in reproducing kernel Hilbert spaces also suggests further definitions of fil-
tering beyond typical band-pass of Example 4.5, employing regularization techniques
from inverse problems, as exemplified in Table 2. Lastly, reproducing kernels naturally
extend the wavelet functions out of the graph vertices, making possible to analyze the
stability of the graph wavelet frame for different random realizations of the graph. We
elaborate on this in the next section.

2.2 Stability ofWavelets on RandomGraphs

By virtue of their generality, graphs can be used to model a variety of discrete objects
with pairwise relations, as well as to approximate complex geometries in continuous
domains. In both cases, complexity and uncertainty are often handled by assuming
an underlying random model and studying statistics and asymptotic behavior of rele-
vant variables. In particular, neighborhood graphs are often used to approximate the
Riemannian structure of a manifold. In a neighborhood graph, vertices are sampled at
random from the manifold, and edges are drawn connecting vertices in suitable neigh-
borhoods, such as k-nearest neighborhoods or ε-radius balls in the ambient Euclidean
distance, or even putting weights using a global (possibly truncated) kernel function.

The convergence of the graph Laplacian to the Laplace–Beltrami operator has been
studied and quantified in several settings, both as a pointwise [4,27,34,53,55] and as
a spectral limit [3,25,37,46,54]. On the other hand, wavelets have been generalized
to continuous non-Euclidean domains, notably Riemannian manifolds and spaces of
homogenous type [13,20,26], and while the conceptual ingredients remain similar, the
convergence of graph to manifold wavelets is hardly studied. We next describe how
our theory provides a way to fill this gap.

Suppose we have a graph G with vertices {x1, . . . , xN } and a positive definite kernel
matrix K̂. For instance, the matrix NK̂ may be the kernel associated with the graph
Laplacian. Computing the eigenvalues λ̂i and eigenvectors ûi of K̂, we can define, in
analogy with (2), the family

ϕ̂ j,k :=
N∑

i=1

Fj (̂λi )̂ui [k ]̂ui j ≥ 0, k = 1, . . . , N , (3)
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for a suitable spectral filter Fj (λ). By Proposition 4.7, (3) defines a Parseval frame
on G. Now, suppose that the vertices of our graph are sampled from a space X with
probability distribution ρ and reproducing kernel K satisfying the assumptions of
Sects. 3 and 4. Furthermore, suppose that the kernel matrix K̂ is given by

K̂[i, k] = N−1K (xi , xk).

For example, the space X may be a compact Riemannian manifold, in which case
we could consider the heat kernel associated with the Laplace–Beltrami operator,
and regard the kernel matrix as a discretization of the integral operator. As a discrete
example, one may also think of X as a supergraph of G. Thanks to Proposition 4.7,
the family of Monte Carlo wavelets

ψ̂ j,k(x) :=
∑

i

G j (̂λi )̂vi (xk )̂vi (x) j ≥ 0, k = 1, . . . , N

is a Parseval frame isomorphic to (3). Crucially, in this new representation, the frame
functions are well-defined both on and off the graph G, and thus the convergence of
the frame can be studied on a test signal f : X → R, as discussed in Sect. 7. The
stability of the graph wavelets (3) can therefore be established by an application of
Theorem 7.5 or 8.8.

Starting from the next section, we develop our theory in greater generality, but
always bearing in mind the motivating setting just discussed.

3 Preliminaries

In this section we prepare the technical ground on which our results will built (see also
[46]). Let X be a locally compact, second countable topological space endowed with
a Borel probability measure ρ. Given a continuous, positive semi-definite kernel

K : X × X → C,

we denote the associated reproducing kernel Hilbert space (RKHS) by

H := span{Kx : x ∈ X },

where Kx := K (·, x) ∈ H, and the closure is taken with respect to the inner prod-
uct 〈Kx , Ky〉H := K (y, x). Elements of H are continuous functions satisfying the
following reproducing property:

f (x) = 〈 f , Kx 〉H for all f ∈ H. (4)
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The space H is separable, since X is separable. We further assume K is bounded on
X and denote

κ := sup
x∈X

√
K (x, x) = sup

x∈X
‖Kx‖H < ∞,

which implies thatH is continuously embedded into the space of bounded continuous
functions on X .

We define the (non-centered) covariance operator T : H → H by

T :=
∫

X
Kx ⊗ Kx dρ(x), (5)

where the integral converges strongly. The operator T is positive and trace-class (there-
fore compact) with σ(T) ⊂ [0, κ2]. Hence, the spectral theorem ensures the existence
of a countable orthonormal set {vi }i∈Iρ∪I0 ⊂ H and a sequence (λi )i∈Iρ

⊂ (0, κ2]
such that

Tvi =
{

λivi i ∈ Iρ

0 i ∈ I0
.

Let L2(X , ρ) be the space of square-integrable functions on X with respect to
the measure ρ, and denote Xρ := supp(ρ). We define the integral operator LK :
L2(X , ρ) → L2(X , ρ) by

LK F(x) :=
∫

X
K (x, y)F(y) dρ(y).

The spaces H and L2(X , ρ) and the operators T and LK are related through the
inclusion operator S : H → L2(X , ρ) defined by

S f (x) := 〈 f , Kx 〉H .

The adjoint operator S∗ : L2(X , ρ) → H acts as the strongly converging integral

S∗F =
∫

X
F(x)Kx dρ(x).

We have T = S∗S and LK = SS∗. Hence, σ(T)\{0} = σ(LK )\{0}, and the eigen-
functions {ui }i∈Iρ∪I0 ⊂ L2(X , ρ) of LK satisfy

Svi =
{√

λi ui i ∈ Iρ

0 i ∈ I0
. (6)
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Mercer’s theorem gives

K (x, y) =
∑

i∈Iρ∪I0
vi (x)vi (y) for x, y ∈ X ,

K (x, y) =
∑

i∈Iρ

λi ui (x)ui (y) for x, y ∈ Xρ,
(7)

where the series converge absolutely and uniformly on compact subsets.
Defining

Hρ := span{Kx : x ∈ Xρ} = span{vi : i ∈ Iρ},

where the closure is taken in H, we can identify Hρ as a (non-closed) subspace of
L2(X , ρ). The closure of Hρ in L2(X , ρ) is

Hρ := span{ui : i ∈ Iρ},

and the following decompositions hold true:

H = Hρ ⊕ ker S, L2(X , ρ) = Hρ ⊕ ker S∗.

For f ∈ Hρ , we can relate the norms inH and L2(X , ρ) as

‖ f ‖ρ = ‖√T f ‖H. (8)

In other words,
√
T induces an isometric isomorphism betweenHρ andHρ . We define

the partial isometry U : H → L2(X , ρ), such that UHρ = Hρ , by

U f =
∑

i∈Iρ

〈 f , vi 〉H ui .

As examples of this setting, we may think of X as Rd , or a non-Euclidean domain
such as a compact connectedRiemannianmanifold or aweighted graph. In these cases,
we can take K as the heat kernel associated with the proper notion of Laplacian, be it
the Laplace–Beltrami operator or the graph Laplacian.

4 Wavelet Frames by Reproducing Kernels

We now build Parseval frames in the RKHS H and in L2(X , ρ). Our construction is
centered around eigenfunctions of the integral operator (5) and filters on the cor-
responding eigenvalues. Continuous frames emerged in the mathematical physics
community from the study of coherent states, as a generalization of the more common
notion of a discrete frame [2,23].
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Definition 4.1 (Frame) Let H be a Hilbert space, A a locally compact space and μ a
Radon measure on A with suppμ = A. A family � = {ψa : a ∈ A} ⊂ H is called a
frame forH if there exist constants 0 < A ≤ B < ∞ such that, for every f ∈ H, we
have

A ‖ f ‖2H ≤
∫

A

∣
∣〈 f , ψa〉H

∣
∣2 dμ(a) ≤ B ‖ f ‖2H .

We say that � is tight if A = B, and Parseval if A = B = 1.

In the above definition it is implicitly assumed that the map a �→ 〈�a, f 〉H is measur-
able for all f ∈ H. It is important to note that this definition depends on the choice of
the measure μ. In the case of a counting measure, we recover the standard definition
of discrete frame.

4.1 Filters

To construct our wavelet frames, we first need to define filters, i.e. functions acting on
the spectrum of T that satisfy a partition of unity condition.

Definition 4.2 (Filters) A family {G j } j≥0 of measurable functions G j :
[0,+∞) → [0,+∞) such that

λ
∑

j≥0

G j (λ)2 = 1 for all λ ∈ (0, κ2] (9)

is called a family of filters.

By the spectral theorem,G j (T) is a (possibly unbounded) positive operator onH such
that σ(G j (T)) = G j (σ (T)), with domain of definition

D j :=
{
f ∈ H :

∑

i∈Iρ∪I0
G j (λi )

2
∣∣〈 f , vi 〉H

∣∣2 < ∞
}
.

It follows that

D := span{vi : i ∈ Iρ ∪ I0} ⊂ D j for all j ≥ 0,

and

G j (T)vi =
{
G j (λi )vi , i ∈ Iρ

G j (0)vi , i ∈ I0
.

An easy way to define filters is by differences of suitable spectral functions.
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Definition 4.3 (Spectral functions) A family {g j } j≥0 of measurable functions g j :
[0,∞) → [0,∞) satisfying

0 ≤ g j ≤ g j+1, lim
j→∞ λg j (λ) = 1 for all λ ∈ (0, κ2] (10)

is called a family of spectral functions.

Given a family of spectral functions {g j } j≥0, filters {G j } j≥0 can be obtained setting

G0(λ) := √
g0(λ), G j+1(λ) :=

√
g j+1(λ) − g j (λ) for j ≥ 0. (11)

The filters thus defined give rise to a telescopic sum:

∑

j≤τ

G j (λ)2 = gτ (λ). (12)

Taking the limit for τ → ∞, condition (9) is satisfied thanks to (10). Conversely,
starting from a family of filters {G j } j≥0, we can define spectral functions {g j } j≥0 by

g j (λ) :=
∑

�≤ j

G�(λ)2 for j ≥ 0,

which enjoys (10) due to (9). Therefore, the notion of filter and that of spectral function
are equivalent, and we will refer to them interchangeably.

The definition in (11) allows to find a wealth of filters by tapping into regular-
ization theory [19]. In the forthcoming analysis, we will use the following notion of
qualification.

Definition 4.4 (Qualification) The qualification of a spectral function g j : [0,∞) →
[0,∞) is the maximum constant ν ∈ (0,∞] such that

sup
λ∈(0,κ2]

λν
∣∣1 − λg j (λ)

∣∣ ≤ Cν j
−ν for all j ≥ 0,

where the constant Cν does not depend on j .

In the theory of regularization of ill-posed inverse problems [19], the qualification
represents the limit within which a regularizer may exploit the regularity of the true
solution. In particular, methods with finite qualification suffer from the so-called sat-
uration effect.

Some standard examples of spectral functions, together with their qualifications,
are listed in Table 2.

Additional examples of admissible filters widely used in the construction of wavelet
frames (see e.g. [13,20]) are given by the following:



Journal of Fourier Analysis and Applications (2021) 27 :37 Page 13 of 39 37

Table 2 Spectral regularizers and their qualifications. Landweber iteration andNesterov acceleration require
γ < 1/κ2 and β ≥ 1. In heavy ball, α j , β j are suitably selected sequences depending on ν, where ν is any
positive real (see [43])

Method g j (λ) Qualification

Tikhonov regularization
1

λ + 1/ j
1

Iterated Tikhonov (m iterations)
(λ + 1/ j)m − (1/ j)m

λ(λ + 1/ j)m
m

Landweber iteration 1
λ
(1 − (1 − γ λ) j ) ∞

Asymptotic regularization 1
λ (1 − exp(− jλ)) ∞

Heavy ball (ν-method) (1 − α jλ + β j )g j−1(λ) − β j g j−2(λ) + α j ν

Nesterov acceleration (1 − γ λ)
(
g j−1(λ) + j−2

j−1+β
(g j−1(λ) − g j−2(λ)

) + γ ν ≥ 1/2

Example 4.5 (Localized filters) Let g ∈ C∞([0,∞)) such that supp(g) ⊂ (2−1,∞),
0 ≤ g ≤ 1, and g(λ) = 1 for all λ ≥ 1. Define

λg j (λ) := g(2 jλ).

Then the family {g j } j≥0 satisfies the properties (10). Furthermore, the corresponding
filters (11) are localized, meaning that, defining Fj (λ) := √

λG j (λ), we have

supp(F0) ⊂ (2−1,∞), supp(Fj ) ⊂ (2− j−1, 2− j+1) for j ≥ 1.

4.2 Frames

We are now ready to define our wavelet frames. We first form frame elements in H,
and then use the partial isometry U : H → L2(X , ρ) to obtain frames in L2(X , ρ).

Definition 4.6 (Wavelets)) Let {G j } j≥0 be a family of filters as in Definition 4.2, and
assume

Kx ∈ D j for all j ≥ 0 and almost every x ∈ Xρ. (13)

We define the families of wavelets

� := {ψ j,x : j ≥ 0, x ∈ Xρ} ⊂ H, � := {ϕ j,x : j ≥ 0, x ∈ Xρ} ⊂ L2(X , ρ),

where

ψ j,x := G j (T)Kx , ϕ j,x := UG j (T)Kx for j ≥ 0 and x ∈ Xρ. (14)

Observe that, sinceψ j,x and ϕ j,x are defined for x ∈ Xρ , we actually have� ⊂ Hρ ⊂
H, and � ⊂ Hρ ⊂ L2(X , ρ). In particular, the orthogonality ofHρ and ker S entails
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〈
Kx ,G j (T )vi

〉
H = 0 for all i ∈ I0. By the reproducing property (4), condition (13)

is thus equivalent to

∑

i∈Iρ

G j (λi )
2 |vi (x)|2 < ∞ for all j ≥ 0 and almost every x ∈ Xρ.

If G j is a bounded function, then G j (T) is a bounded operator, henceD j = H. In this
case, which includes the spectral functions listed in Table 2, condition (13) is trivially
satisfied.

Using the spectral decomposition ofG j (T) and the reproducing property, we obtain

ψ j,x (y) =
∑

i∈Iρ

G j (λi )vi (x)vi (y), ϕ j,x (y) =
∑

i∈Iρ

√
λi G j (λi )ui (x) ui (y). (15)

These expressions allow to interpret � and � as families of wavelets, in the sense
of (1). We interpret x as the location and j as the scale parameter; the functions Kx

localize the signal in space, whereas the filters G j regularize or localize in frequency.
Note also the analogy with (7), in the light of which (15) may be seen as a filtered
Mercer representation.

With the following proposition we show that (14) defines Parseval frames.

Proposition 4.7 Assume the setting in Sect. 3, and let �,� be defined as in Definition
4.6. Then, for every f ∈ H we have

∑

j≥0

∫

X

∣∣〈 f , ψ j,x
〉
H

∣∣2 dρ(x) = ∥∥PHρ
f
∥∥2H, (16)

and for any F ∈ L2(X , ρ) we have

∑

j≥0

∫

X

∣∣〈F, ϕ j,x
〉
ρ

∣∣2 dρ(x) = ∥∥PHρ
F

∥∥2
ρ
. (17)

Proof The equality (17) follows from (16) and the fact that U is unitary from Hρ to
Hρ . To establish (16), in view of Lemma A.1 it suffices to consider functions in the
dense subspace D ⊂ H. Thus, let f ∈ D. Since G j (T) is self-adjoint on D j , and
D ⊂ D j for all j , we have

〈
f , ψ j,x

〉
H = 〈

f ,G j (T)Kx
〉
H = 〈

G j (T) f , Kx
〉
H ,

which integrated over x ∈ X gives

∫

X

∣
∣〈 f , ψ j,x

〉
H

∣
∣2 dρ(x) = 〈

TG j (T) f ,G j (T) f
〉
H =

〈
TG j (T)2 f , f

〉

H . (18)
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Summing over j ≥ 0 and using (9), we therefore obtain

∑

j≥0

〈
TG j (T)2 f , f

〉

H =
∑

i∈Iρ

( ∣∣〈 f , vi 〉H
∣∣2

∑

j≥0

λi G j (λi )
2
)

=
∑

i∈Iρ

∣∣〈 f , vi 〉H
∣∣2 = ∥∥PHρ

f
∥∥2
H .

��
The frame property can also be expressed as a resolution of the identity. Such a

formulation will be particularly useful in Sect. 7.

Proposition 4.8 Under the assumptions of Proposition 4.7, there exists a positive
bounded operator T j : H → H such that

T j =
∫

X
ψ j,x ⊗ ψ j,x dρ(x), (19)

where the integral converges weakly. Furthermore,

T j = TG j (T)2, (20)
∑

j≤τ

T j = Tgτ (T), (21)

and the following resolution of the identity holds true:

PHρ
=

∑

j≥0

T j . (22)

Proof From (18) we have, for all f ∈ D,

∫

X

∣∣〈 f , ψ j,x
〉
H

∣∣2 dρ(x) ≤ ‖TG j (T)2‖‖ f ‖2H,

where TG j (T)2 is bounded since λG j (λ)2 ≤ 1 by (9). Hence, thanks to Lemma A.1,
there exists a positive bounded operator T j as in (19). Moreover, (18) implies (20)
by the density of D. The equality (21) follows from (20) and (12). Lastly, (22) is a
reformulation of (16). ��

Depending on the choice of the measure ρ, Proposition 4.7 gives the frame prop-
erty for either a continuous or a discrete setting. Namely, consider a discrete set
{x1, . . . , xN }, and let

ρ̂N := 1

N

N∑

k=1

δxk .
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With the choice of the discrete measure ρ̂N , (5) defines the discrete (non-centered)
covariance operator T̂ : H → H by

T̂ := 1

N

N∑

k=1

Kxk ⊗ Kxk .

Furthermore, Definition 4.6 produces the family of wavelets

ψ̂ j,k := G j (̂T)Kxk for j ≥ 0 and k = 1, . . . , N ,

which, by Proposition 4.7, constitutes a discrete Parseval frame on

ĤN := Hρ̂N = span{Kxk : k = 1, . . . , N } � C
N .

In Sect. 5 we will make reference to this construction to define Monte Carlo wavelets,
where the points x1, . . . , xN are drawn at random from Xρ .

4.3 Two Generalizations

We discuss here two generalizations of the framework presented in Sect. 4.2. First, one
may readily consider more general scale parameterizations. Namely, let� be a locally
compact, second countable topological space, endowed with a measure μ defined
on the Borel σ -algebra of �, finite on compact subsets, and such that suppμ =
�. Adjusting the definitions accordingly, such as replacing the sums over all non-
negative integers j in (9) and (16) with integrals over � with respect to μ, the proof
of Proposition 4.7 follows along the same steps. In this context, Definition 4.2 can be
seen as a special case where � is countable and μ is the counting measure. Second,
the assumption that the kernel K is bounded, implying that LK admits an orthonormal
basis of eigenvectors, is not necessary for our construction of Parseval frames. Indeed,
it is enough to assume that

∫

X
| f (x)|2 dρ(x) < +∞ for all f ∈ H.

This implies thatH is a subspace of L2(X ; ρ) and the inclusion operator S is bounded.
The integral (5) converges now in the weak operator topology, and the covariance
operator T is positive and bounded. Thus, the Riesz–Markov theorem entails that, for
all f ∈ H, there is a unique finite measure ν f on [0,+∞) such that ν f ([0,+∞)) =
‖ f ‖2H and

〈T f , f 〉H =
∫

[0,+∞)

λdν f (λ).
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By spectral calculus, there exists a unique positive operator G j (T) : D j → H such
that

〈
G j (T) f , f

〉
H =

∫

[0,+∞)

G j (λ)dν f (λ),

where now

D j :=
{
f ∈ H :

∫

[0,+∞)

G j (λ)2dν f (λ) < ∞
}
.

Assume further that

D∞ := { f ∈ H : f ∈ domG j (T)2 for all j ≥ 0}
is a dense subset of H. Assumption (13) and Definition 4.6 are still valid. Moreover,
the proof of Proposition 4.7 remains essentially unchanged. The only difference is in
the following lines of equalities: for a given f ∈ D∞, we have

∑

j≥0

〈
G j (T)2T f , f

〉

H =
∑

j≥0

( ∫

[0,+∞)

λG j (λ)2dν f (λ)
)

=
∫

(0,+∞)

(∑

j≥0

λG j (λ)2
)
dμ f (λ)

=
∫

(0,+∞)

1 dμ f (λ) = ∥
∥PHρ

f
∥
∥2
H ,

where the second equality is due to Tonelli’s theorem.

5 Monte CarloWavelets

We are finally ready to define our Monte Carlo wavelets. In the following, we adopt
notations, definitions and assumptions of Sects. 3 and 4. For the sake of simplicity,
we further assume supp(ρ) = X , so that Hρ = H. By Proposition 4.7, the family �

defined in (14) describes a Parseval frame on the entire Hilbert space H.

Definition 5.1 (Monte Carlo wavelets) Suppose we have N independent and identi-
cally distributed samples x1, . . . , xN ∼ ρ. Consider the empirical covariance operator
T̂ : H → H defined by

T̂ := 1

N

N∑

k=1

Kxk ⊗ Kxk .

Let {G j } j≥0 be a family of filters as in Definition 4.2. We call

�̂
N := {

ψ̂ j,k := G j (̂T)Kxk : j ≥ 0 and k = 1, . . . , N
}
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a family of Monte Carlo wavelets.

The family �̂
N
of Definition 5.1 corresponds to the family � of Definition 4.6 with

respect to the empirical measure ρ̂N := 1
N

∑N
k=1 δxk . Hence, thanks to Proposition

4.7, �̂
N
defines a discrete Parseval frame on the finite dimensional space

ĤN := span{Kxk : k = 1, . . . , N }.

Now, let � be the family of wavelets in the sense of Definition 4.6 with respect to the
(continuous) measure ρ. Again by Proposition 4.7,� is a (continuous) Parseval frame
on the (infinite dimensional) space H. Taking more and more samples, we obtain a

sequence of frames �̂
N
on a chain of nested subspaces of increasing dimension:

ĤN ⊂ ĤN+1 ⊂ · · · ⊂ H.

We thus interpret �̂
N

as a Monte Carlo estimate of �. In this view, we are inter-

ested in studying the asymptotic behavior of �̂
N
as N → ∞, and, in particular, the

convergence of �̂
N
to �.

Notice that, despite being finite-dimensional, the frame �̂
N
consists of functions

that are well-defined on the entire space X . In particular, for any signal f in the
reproducing kernel Hilbert space H, we can study the wavelet expansion

f ≈
∑

j≤τ

N∑

k=1

〈 f , ψ̂ j,k〉Hψ̂ j,k . (23)

This series approximates f up to a resolution τ and a sampling rate N . Our main
result (Theorem 7.5) states that, cutting off the frequencies at a threshold τ = τ(N )

and letting N go to infinity, the error of (23) goes to zero,

∥∥
∥ f −

∑

j≤τ(N )

N∑

k=1

〈 f , ψ̂ j,k〉Hψ̂ j,k

∥∥
∥H

N→∞−−−−→ 0,

at a rate that depends on the regularity of the signal f . In other words, the frame
constructed on the sample space {x1, . . . , xN } is asymptotically resolving the signal
defined on the space X . This result will be derived as a finite-sample bound in high
probability.

Deterministic discretization vs random sampling Discretization is a classical prob-
lem in frame theory, harmonic analysis and applied mathematics tout court. While
the construction of reproducing representations may usefully exploit rich topologi-
cal, algebraic and measure theoretical properties of a continuous parameter space,
discretization is eventually requiredwhen it comes to numerical implementation. Start-
ing from a continuous frame {ψa : a ∈ A} in a Hilbert space H, frame discretization
selects a countable subset of parameters A′ ⊂ A so that the corresponding subfamily
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{ψa : a ∈ A′} preserves the frame property. This typically involves a deterioration of
the frame bounds, which grows with the sparsity of A′.

A possible interpretation of our Monte Carlo wavelets is as a randomized approxi-
mate frame discretization. Random sampling may be useful when the topology of the
parameter space is complex or unknown. On the other hand, our discrete frame is not
a frame on the original spaceH, but only on a finite dimensional approximation Ĥ of
H. Notice though that our frame preserves the tightness, and the signal lossH \ Ĥ is
asymptotically zero.Moreover, the numerical implementation of any discretized frame
onH would still require truncation at finitely many terms, resulting in fact in a loss of
the global frame property. Lastly, when the space is unknown and we can only access
signals trough finite samples, going beyond the given sampling resolution might per
se not be significant, while our results characterize how the frame parameters may be
chosen adaptively to the given sampling rate.

Numerical implementation The representation of ψ̂ j,k in Definition 5.1 is remarkably
compact, but hardly suitable for computation. We next provide an implementable
formula of our Monte Carlo wavelets, using theMercer representation (15) along with
the singular value decomposition (6). Let T̂v̂i = λ̂i v̂i be the eigendecomposition of
T̂. Then (15) reads as

ψ̂ j,k(x) =
N∑

i=1

G j (̂λi )̂vi (xk )̂vi (x) j ≥ 0, k = 1, . . . , N ,

where the eigenpairs (̂λi , v̂i ) can be computed from the kernel matrix

K[i, k] := K (xi , xk) i, k = 1, . . . , N . (24)

Indeed, we have T̂ = Ŝ∗Ŝ and N−1K = Ŝ̂S∗, where Ŝ is the sampling operator

Ŝ : H → C
N , (̂S f )[i] = f (xi ) i = 1, . . . , N , (25)

and Ŝ∗ is the out-of-sample extension

Ŝ∗ : CN → H, (̂S∗u)(x) = 1

N

N∑

�=1

K (x, x�)u[�] x ∈ X . (26)

Thus, the eigenvalues λ̂i of T̂ are exactly the eigenvalues of N−1K. Moreover, in view
of (6), the eigenfunctions v̂i can be obtained from the eigenvectors ûi of N−1K by

v̂i = λ̂
−1/2
i Ŝ∗ûi = λ̂

−1/2
i

1

N

N∑

�=1

ûi [�]Kx�
,
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which evaluated at xk gives

v̂i (xk) = λ̂
−1/2
i

1

N

N∑

�=1

K (xk, x�)̂ui [�] = λ̂
−1/2
i N−1(Kûi )[k] = λ̂

1/2
i ûi [k].

We therefore obtain the computable formula

ψ̂ j,k(x) = 1

N

N∑

i,�=1

G j (̂λi )̂ui [k ]̂ui [�]K (x, x�) j ≥ 0, k = 1, . . . , N .

For what concerns the Monte Carlo wavelet transform of a signal f ∈ H, it is easy to
see that

〈 f , ψ̂ j,k〉H = UG j (�)U∗ f (xk),

where N−1K = U�U∗ expresses the eigendecomposition of N−1K in matrix form.

Computational considerations The bottleneck in the implementation of our Monte
Carlo wavelets is the eigendecomposition of the kernel matrix, which requires in
generalO(N 3) operations and is therefore impractical in typical large scale scenarios.
This is in fact a common problem for virtually all spectral based constructions of
frames (see e.g. [28,33,38]). A possible solution is approximating the filters by low
order polynomials, thus simplifying the functional calculus to repeated matrix-vector
multiplication, which scales well in the case of sparse graphs [33]. While kernel
matrices are typically dense, such an approach may still be useful for compactly
supported kernels [58], although their real applicability is mostly limited to the low-
dimensional regime. Besides sparsity, a more reasonable property to leverage is fast
eigenvalue decay, which opens onto a variety of methods for truncated approximate
SVD. Deterministic methods allow to compute an r -rank approximation in O(r N 2)

[52], whereas randomized methods can further reduce the complexity toO(log r N 2+
r2N ) [32,40].

We also remark that the actual Monte Carlo approximation of a given signal is in
principle a different problem than the computation of the frame itself, and as such may
in some cases bemore tractable. For example, for some specific filters as in Table 2, the
computation of (23) boils down to the implementation of some regularized inversion
or minimization procedure, for which several approaches based on sketching, random
projections, hierarchical decompositions and early stopping may be profitably used
[7,9,17,47–50,59]. An efficient implementation of Monte Carlo wavelets is out of the
scope of this paper and will be subject of future work.

6 Comparison with Other Frame Constructions

The approach we adopt in Sect. 4 differs from the existing literature in several crucial
aspects. We now give an overview of similarities and differences. As argued in Sect.
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1, many techniques for the analysis of signals on non-Euclidean domains, such as
manifolds and graphs, are based on spectral filtering of some suitable operator. There
are, generally speaking, two distinct yet related perspectives.

A first type of methods builds frames for function spaces on compact differentiable
manifolds associated with certain positive operators (predominantly the Laplace–
Beltrami operator). In [13,26], filter functions g j are applied to the given operator
L, giving g j (

√
L) for j ≥ 0. One then needs to ensure that this defines an integral

operator with a corresponding kernel ψ j (
√
L)(x, y), which often poses a technical

challenge, and relies on the relationship between the operator L and local metric prop-
erties of the manifold. We avoid this by using a positive definite kernel from the start.
The next step is to sample points {x j

k }m j
k=1 from the manifold for each scale j , in such

a way that they form a δ j -net and satisfy a cubature rule for functions in the desired

space. Frame elements are then defined by C j,k ψ j (
√
L)(x j

k , ·), for some suitable
weights C j,k . The resulting family of functions constitutes a non-tight frame on the
entire function space. On the contrary, our sampled frames are Parseval frames on
finite-dimensional subspaces. As we are going to show in the next section, in order
to establish convergence we do not require a stringent selection of points; instead, we
sample at random, which allows for a straightforward algorithmic approach, indepen-
dent of the specific geometry of the underlying space.

In a different line of research [38,42,57], frames are built on an arbitrary orthonormal
basis {wi }i≥0 of a separable Hilbert space of functions defined on a quasi-metric
measure space, together with a suitable sequence of positive reals (li )i≥0. Based on
these data, a kernel-like function KH (x, ·) := ∑

i≥0 H(li )wi (x)wi is constructed.
This mirrors the basis expansion of frame elements (15), but in our case a specific
orthonormal basis is taken, that is, the eigenbasis of the integral operator, and (li )i≥0
are the corresponding eigenvalues. Due to the use of an arbitrary basis and sequence,
an additional effort (or a set of assumptions) needs to be made in order to ensure
the desired properties, such as the decay of the approximation error as the number of
eigenvalues resolved by the function H increases. Some of the results are similar to
those in our paper, albeit estimation errors or sample bounds have not been established
in this context.

On the other hand, starting from a discrete setting, graph signal processing considers
a weight (or adjacency) matrix to define a certain graph operator L, such as the graph
Laplacian [28,33] or a diffusion operator [12]. The frame elements are then defined
in the spectral domain as ψ j,x := g j (L)δx , where g is an admissible wavelet kernel,
j a scale parameter, and δx the indicator function of a vertex x . This is conceptually
similar to (14), though there are also several distinctions. First, following [28], our
construction results in Parseval frames. This simplifies the computational effort, since
Parseval frames are canonically self-dual, and thus signal reconstruction does not
require the computation of a dual frame. Moreover, to localize the frame in space we
use the continuous kernel function Kx , instead of the impulse δx . Since in our setting
the kernel K is used both to define the underlying integral operator and to localize the
frame elements, we can use the theory of RKHS to establish a connection between
continuous and discrete frames, as we will show in Sect. 7. In typical constructions of
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frames on graphs, a more judicious effort is usually required to elaborate analogous
convergence results.

7 Stability of Monte CarloWavelets

In this section we study the relationship between continuous and discrete frames,
regarding the latter as Monte Carlo estimates of the former. We begin by restricting
our attention to H, and we will then extend the analysis to L2(X , ρ). Let

T j :=
∫

X
ψ j,x ⊗ ψ j,xdρ(x), T̂ j := 1

N

N∑

k=1

ψ̂ j,k ⊗ ψ̂ j,k

be the frame operators associated with the scale j , and its empirical counterpart. By
Proposition 4.8, we have

IdH =
∑

j≥0

T j , IdĤN
=

∑

j≥0

T̂ j .

For f ∈ H, given a threshold scale τ ∈ N and a sample size N , we let

f̂τ,N :=
τ∑

j=0

T̂ j f (27)

be the empirical approximation of f using the first τ scales of the frame �̂
N
. The

reconstruction error of f̂τ,N can be decomposed into

∥∥ f − f̂τ,N
∥∥H ≤

∥
∥∥
∑

j>τ

T j f
∥
∥∥H +

∥
∥∥

τ∑

j=0

(
T j − T̂ j

)
f
∥
∥∥H. (28)

The first term is the approximation error, arising from the truncation of the resolution
of the identity. The second term is the estimation error, which stems from estimating
the measure by means of empirical samples. Next, we derive quantitative error bounds
for both terms, and then balance the resolution τ in terms of sample size N to obtain
our convergence result.

Approximation error Note that Proposition 4.7 already implies

‖
∑

j>τ

T j f ‖H τ→∞−−−→ 0,

being the tail of a convergent series. To quantify the speed of convergence with respect
to τ , approximation theory suggests that f has to obey some notion of regularity. In
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the following we assume a smoothness of Sobolev kind (see [20] and Sect. 8), also
known in statistical learning theory as the source condition (see [8]):

f = Tαh for some h ∈ H and α > 0.

Proposition 7.1 Assume that g j has qualification ν ∈ (0,∞] and f ∈ range(Tα) for
some α > 0. Let β := min{ν, α}. Then

∥
∥∥∥
∑

j>τ

T j f

∥
∥∥∥
H

�
∥∥T−α f

∥∥H κ2(α−β)τ−β.

Proof By (21) we have
∑

j>τ T j = IdH − Tgτ (T). Hence,

∥
∥∥
∑

j>τ

T j f
∥
∥∥
2

H =
∑

i∈Iρ

|1 − λi gτ (λi )|2
∣
∣〈 f , vi 〉H

∣
∣2

=
∑

i∈Iρ

(
λ

β
i |1 − λi gτ (λi )|

)2 ∣∣〈T−β f , vi
〉
H

∣∣2

≤
(
sup
i∈Iρ

λ
β
i |1 − λi gτ (λi )|

)2 ∑

i∈Iρ

∣
∣〈T−β f , vi

〉
H

∣
∣2

� τ−2βκ4(α−β)
∥∥T−α f

∥∥2H .

��
Estimation error To bound the second term in (28), we rely on concentration results
for covariance operators [46].

Proposition 7.2 Assume that λ �→ λgτ (λ) is Lipschitz continuous on [0, κ2] with
Lipschitz constant L(τ ). Then, for every f ∈ H and t > 0, with probability at least
1 − 2e−t we have

∥∥∥
τ∑

j=0

(
T j − T̂ j

)
f
∥∥∥H � ‖ f ‖H κ2√t L(τ )N−1/2.

Proof Using (21) and Lemma A.2 we have

∥∥∥
τ∑

j=0

(
T j − T̂ j

)
f
∥∥∥H =

∥∥∥
(
Tgτ (T) − T̂gτ (̂T)

)
f
∥∥∥H

≤
∥∥
∥Tgτ (T) − T̂gτ (̂T)

∥∥
∥
HS

‖ f ‖H
≤ L(τ )

∥∥T − T̂
∥∥
HS ‖ f ‖H .
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Bounding ‖T − T̂‖HS with the concentration estimate [46, Theorem 7] we obtain

∥∥T − T̂
∥∥
HS � κ2√t N−1/2

with probability no lower than 1 − 2e−t . ��
All examples of filters given in Sect. 4.1 satisfy the Lipschitz condition required in
Proposition 7.2.

Lemma 7.3 Let g j be a spectral function from Table 2. Then the function λ �→ λgτ (λ)

is Lipschitz continuous on [0, κ2], with Lipschitz constant L(τ ) � τ for the first four
spectral functions, and L(τ ) � τ 2 for the last two. Moreover, let g j be defined as in
Example 4.5, with |g′| ≤ B. Then the function λ �→ λgτ (λ) is Lipschitz continuous
on [0, κ2], with Lipschitz constant L(τ ) ≤ B2τ .

Proof For the first four spectral functions of Table 2, the claim follows by bounding
the explicit derivative of λ �→ λgτ (λ); for the last two, from an application of Markov
brothers’ inequality (see [43, Supplemental, Lemma 1]). For filters of Example 4.5,
we differentiate λ �→ g(2τ λ) and use |g′| ≤ B. ��
Remark 7.4 In this paper we are not interested in the constants. We rely on the Hilbert
norm since it provides both a simple bound on

∥∥T − T̂
∥∥
HS and, by the Lipschitz

assumption, the stability bound
∥∥Tgτ (T) − T̂gτ (̂T)

∥∥
HS ‖ f ‖H ≤ L(τ )

∥∥T − T̂
∥∥
HS.

Our result can be improved by using the sharper bound

∥∥T − T̂
∥∥ ≤ C

∥∥T‖max
{√

r(T)

N
,
r(T)

N
,

√
t

N
,
r(T)

N

}
,

where r(T) = trace(T)
‖T‖ (see Theorem 9 in [36] and the techniques in the proof of

Theorem 3.4 in [6] to bound
∥∥Tgτ (T) − T̂gτ (̂T)

∥∥).

Reconstruction error and convergence Combining Propositions 7.1 and 7.2, we can
finally prove the convergence of ourMonte Carlo wavelets. In order to balance approx-
imation and estimation error, we need to tune the resolution τ with the number of
samples N and the smoothness α of the signal, in so far as the qualification ν of the
filter allows.

Theorem 7.5 Assume that gτ has qualification ν ∈ (0,∞], f ∈ range(Tα) for some
α > 0, and λ �→ λgτ (λ) is Lipschitz continuous on [0, κ2] with Lipschitz constant
L(τ ) � τ p, p ≥ 1. Let β := min{α, ν} and set

τ := �N 1
2(β+p) �.

Then, for every t > 0, with probability at least 1 − 2e−t we have

∥∥ f − f̂τ,N
∥∥H �

∥∥T−α f
∥∥H

(
κ2(α−β) + κ2α+2√t

)
N− β

2(β+p) .
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Table 3 Error rates for signals f ∈ range(Tα) and several spectral regularizers

Method Error rate in ‖·‖H Error rate in ‖·‖ρ

Tikhonov regularization N
− min{α,1}

2min{α,1}+2 N
− min{α+1/2,1}

2min{α+1/2,1}+2

iterated Tikhonov (m) N
− min{α,m}

2min{α,m}+2 N
− min{α+1/2,m}

2min{α+1/2,m}+2

Landweber iteration N− α
2α+2 N− α+1/2

2α+3

asymptotic regularization N− α
2α+2 N− α+1/2

2α+3

heavy ball (ν) N
− min{α,ν}

2min{α,ν}+4 N
− min{α+1/2,ν}

2min{α+1/2,ν}+4

Nesterov acceleration N
− min{α,ν≥1/2}

2min{α,ν≥1/2}+4 N
− min{α+1/2,ν≥1/2}

2min{α+1/2,ν≥1/2}+4

Proof Starting from the decomposition (28), we bound the two terms by Proposi-
tions 7.1 and 7.2. The approximation error is O(τ−β), while the estimation error is
O(τ pN−1/2). We thus choose τ to balance them out, and collect the constants. ��

If supp ρ �= X , we have instead a frame on Hρ , and the corresponding resolution
of the identity IdHρ

= ∑
j≥0 T j . The reconstruction error would thus include an

additional bias term:

∥∥ f − f̂τ,N
∥∥H ≤ ‖Pker S f ‖H + ∥∥

∑

j>τ

T j f
∥∥H +

∥∥∥
τ∑

j=0

(
T j − T̂ j

)
f
∥∥∥H.

Classical spectral functions from Table 2 satisfy the assumptions of Theorem 7.5.
We report the explicit rates in Table 3. A convergence result for filters of Example 4.5
will be provided at the end of Sect. 8.

Convergence in L2(X , ρ) Error rates in L2(X , ρ) can be extracted using the isometry
between Hρ and Hρ . Suppose again for simplicity that supp ρ = X . In view of (8),
for f ∈ Hρ = H we have

∥
∥ f − f̂τ,N

∥
∥

ρ
= ∥

∥
√
T( f − f̂τ,N )

∥
∥H.

Decomposing the error into its approximation and estimation components, we can
repeat the same analysis as in the proof of Theorem 7.5. The estimation bound simply
gets an additional κ factor. Assuming f ∈ TαH with α > 0, for the approximation
term we have

∥∥
√
T

∑

j>τ

T j f
∥∥H ≤ sup

i∈Iρ

(
λ

β
i (1 − λi gτ (λi ))

) ∑

i∈Iρ

∣∣〈T1/2−β f , vi
〉
H

∣∣

�
∥
∥T−α f

∥
∥Hκ2(α−β)+1τ−β,

with β := min(α + 1/2, ν). Therefore, the approximation rate increases by 1/2
(qualification permitting). Combining all together, we obtain the following bound in
L2(X , ρ).
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Corollary 7.6 Assume that gτ has qualification ν ∈ (0,∞], f ∈ range(Tα) for some
α > 0, and λ �→ λgτ (λ) is Lipschitz continuous on [0, κ2] with Lipschitz constant
L(τ ) � τ p, p ≥ 1. Let β := min{α + 1/2, ν} and set

τ := �N 1
2(β+p) �.

Then, for every t > 0, with probability at least 1 − 2e−t we have

∥∥ f − f̂τ,N
∥∥

ρ
�

∥∥T−α f
∥∥H

(
κ2(α−β)+1 + κ2α+3√t

)
N− β

2(β+p) .

See Table 3 for specific rates regarding spectral functions from Table 2.

Monte Carlo wavelet approximation as noiseless kernel ridge regressionWe conclude
this section with an observation that draws a link between Monte Carlo wavelets and
regression analysis. Let nb f̂τ,N be the Monte Carlo wavelet approximation (27) of
f ∈ H at resolution τ given samples x1, . . . , xN . Then

f̂τ,N =
τ∑

j=0

G j (̂T)2T̂ f = gτ (̂T)̂T f .

With the choice of the Tikhonov filter g j (λ) = (λ + τ−1)−1 (Table 2), recalling (24),
(25) and (26), and defining

y = [ f (x1), . . . , f (xN )]�, α =
(
K + N

τ
I
)−1

y,

we have

f̂τ,N = (
T̂ + 1

τ
IdH

)−1T̂ f =
(
Ŝ∗Ŝ + 1

τ
IdH

)−1
Ŝ∗Ŝ f =

(
Ŝ∗Ŝ + 1

τ
IdH

)−1
Ŝ∗y

= Ŝ∗(Ŝ Ŝ∗ + 1
τ
I
)−1

y = 1

N

N∑

i=1

K (·, xi )
[(

1
NK + 1

τ
I
)−1

y
]
[i]

=
N∑

i=1

K (·, xi )
[(

K + N
τ
I
)−1

y
]
[i] =

N∑

i=1

α[i]K (·, xi ).

This is the (unique) solution to the kernel regularized least squares problem

min
f̂ ∈H

1

N

N∑

i=1

|yi − f̂ (xi )|2 + λ‖ f̂ ‖2H, (29)

where yi = y[i] and λ = τ−1. Therefore, f̂τ,N is the kernel ridge estimator for the
noiseless regression problem

yi = f (xi ) i = 1, . . . , N ,
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and the squared reconstruction error ‖ f − f̂τ,N‖2ρ is the generalization error of f̂τ,N .
Contrasting this with the optimal rate (in theminimax sense) for kernel ridge regres-

sion [8] entails that the rate in Table 3 is suboptimal for Tikhonov regularization, and
presumably for all other regularizers. This is well expected from the crude Lipschitz
bound used in Proposition 7.2. The scope of the present work was to establish a first
result of convergence of randomly sampled frames, rather than identifying the opti-
mality of the convergence rates. Refinement of our bounds will be object of future
investigation (see also Remark 7.4).

8 Sobolev and Besov Spaces in RKHS

The convergence rates of the frame reconstruction error in Theorem 7.5 depend on the
approximation rates in Proposition 7.1, hence on the regularity of the original signal
f , as quantified by the condition f ∈ range(Tα). Thinking of T as the inverse square
root of the Laplacian allows to interpret range(Tα) as a Sobolev space. The theory of
smoothness function spaces [56] plays a critical role in harmonic analysis, and serves
also as a base for the definition of statistical priors in learning theory [5]. In this section
we examine general notions of regularity and their effect on the reconstruction error.
Many of the reported results on Besov spaces are well known [20], but we nonetheless
include them here to be self contained and to adapt them to our setting and notation. In
particular, as already observed in Sect. 2, it should be borne in mind that the spectrum
of the integral operator T has inverse trend compared to that of a Laplace operator,
and therefore all the spectral definitions of the generalized Besov spaces must take
this into account in order to preserve the consistency with their classical counterparts.
As in the previous section, we assume supp(ρ) = X .

Sobolev spaces as domains of powers of a positive operator By virtue of the spectral
theorem, for every α > 0, Tα is a positive, bounded, injective operator on H, with
σ(Tα) ⊂ (0, κ2α]. Thus, T−α is a positive, closed, densely-defined, injective operator
with σ(T−α) ⊂ [κ−2α,∞). We put the following

Definition 8.1 (Sobolev spaces) For α > 0, we define the Sobolev space Hα by

Hα := dom(T−α) = range(Tα),

equipped with the norm

‖v‖Hα := ∥∥T−αv
∥∥H .

Hα is a Hilbert space. Moreover, we have

Hα =
{
f ∈ H :

∑

i∈Iρ

λ−2α
i

∣∣〈 f , vi 〉H
∣∣2 < ∞

}
,
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which expresses Hα in terms of the speed of decay of the Fourier coefficients, thus
generalizing the standard Sobolev spaces Hα = Wα,2. Theorem 7.5 establishes the
convergence of Monte Carlo wavelets for signals in the class Hα .

Besov spaces as approximation spaces Besov spaces on Euclidean domains are tradi-
tionally defined by the decay of the modulus of continuity. A characterization that is
best suited to generalize to arbitrary domains, and to which we also adhere, is through
approximation and interpolation spaces [20,45,56]. We begin with the approximation
perspective by defining a scale of Paley–Wiener spaces.

Definition 8.2 (Paley–Wiener spaces) For ω > 0, the Paley–Wiener space PW(ω) is
defined by

PW(ω) :=
{
f ∈ H : 〈 f , vi 〉H = 0 for λi < ω−1

}
= span

{
vi : λi ≥ ω−1

}
.

The associated approximation error for f ∈ H is

E( f , ω) := inf
g∈PW(ω)

‖ f − g‖H = ∥∥PPW(ω)⊥ f
∥∥H =

( ∑

λi<ω−1

∣∣〈 f , vi 〉H
∣∣2

)1/2
.

The space PW(ω) is a closed subspace of H, and
⋃

w>0 PW(ω) is dense in H.

Note that E( f , ω)
ω→0−−−→ ‖ f ‖H and E( f , ω)

ω→∞−−−→ 0. Approximation spaces classify
functions inH according to the rate of decay of their approximation error.

Definition 8.3 (Besov spaces) For s > 0 and q ∈ [1,∞), we define the Besov space
Bs
q as the approximation space

Bs
q :=

{

f ∈ H :
(∫ ∞

0
(ωsE( f , ω))q

dω

ω

)1/q

< ∞
}

,

equipped with the norm

‖ f ‖Bs
q

:= ‖ f ‖H +
(∫ ∞

0
(ωsE( f , ω))q

dω

ω

)1/q

. (30)

The space Bs∞ is defined with the usual adjustment.

Discretizing the integral in (30), we obtain the equivalent norm

‖ f ‖H +
( ∑

j≥0

(
2 jsE( f , 2 j )

)q )1/q � ‖ f ‖Bs
q
. (31)

In particular, a function f ∈ Bs
q if and only if the sequence

(
2 jsE( f , 2 j )

)
j≥0 ∈ �q .

It is easy to see that the scale of spaces Bs
q obeys the following lexicographical order



Journal of Fourier Analysis and Applications (2021) 27 :37 Page 29 of 39 37

[45, Proposition 3]:

Bs
q ⊃ Bt

p for s < t,

Bs
q ⊂ Bs

p for q < p. (32)

Besov spaces as interpolation spacesTheSobolev spaceHα is continuously embedded
into Bs

q for every α > s. Indeed, for f ∈ Hα we have the Jackson-type inequality
E( f , ω) ≤ ω−α‖ f ‖Hα , hence

∑

j≥0

(2 jsE( f , 2 j ))q ≤ ‖ f ‖qHα

∑

j≥0

2− jq(α−s) < ∞.

Furthermore, Bs
q interpolates between Hα and H.

Definition 8.4 (Interpolation spaces) For quasi-normed spaces E and F, θ ∈ (0, 1)
and q ∈ (0,∞), the quasi-normed interpolation space (E,F)θ,q is defined by

(E,F)θ,q :=
{
f ∈ E + F :

∫ ∞

0

(
t−θK( f , t)

)q dt

t
< ∞

}
,

where K( f , t) is Peetre’s K -functional

K( f , t) := inf
f0+ f1= f
f0∈E, f1∈F

‖ f0‖E + t ‖ f1‖F .

The space (E,F)θ,∞ is defined with the usual adjustment.

Standard interpolation theory [20,56] gives

Bs
q = (H,Hα) s

α
, q for s ∈ (0, α) and q ∈ [1,∞], (33)

with

‖ f ‖Bs
q

� ‖ f ‖H +
(∫ ∞

0

(
t−θK( f , t)

)q dt

t

)1/q

. (34)

In the next proposition we show that, as in the Euclidean setting, the Besov space Bs
2

coincides with the Sobolev space Hs of the same order. As in the classical setting,
this is particular to the case q = 2. This is probably a known fact, but we could find
neither a proof nor a statement.

Proposition 8.5 For every s > 0, Bs
2 = Hs with equivalent norms.

Proof Let α = 2s. Then (33) and (34) give Bs
2 = (H,Hα) s

α
, 2 = (H,H2s) 1

2 , 2 and

‖ f ‖2Bs
2

� ‖ f ‖2H +
∫ ∞

0
t−1K( f , t)2

dt

t
. (35)
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Let A : Hα → H denote the canonical embedding Ag = g. Then, for f ∈ H and
t > 0 we have

K( f , t)2 = inf
f0+Ag= f

f0∈H,g∈Hα

(‖ f0‖H + t ‖g‖Hα )2

= inf
g∈Hα

(‖ f − Ag‖H + t ‖g‖Hα )2 � G( f , t2), (36)

with

G( f , λ) := inf
g∈Hα

‖ f − Ag‖2H + λ ‖g‖2Hα .

This infimum is attained by g = (A∗A + λIdHα )−1A∗ f . Since

(A∗A + λIdHα )−1A∗ = A∗(AA∗ + λIdH)−1,

defining B := AA∗ : H → H we obtain

A(A∗A + λIdHα )−1A∗ = B(B + λIdH)−1.

LetA∗ = U(AA∗)1/2 = UB1/2 be the polar decomposition ofA∗,whereU : H → Hα

is unitary. We have

G( f , λ) =
∥∥∥(IdHα − B(B + λIdHα )−1) f

∥∥∥
2

H + λ‖UB1/2(B + λIdHα )−1 f ‖2Hα .

Since (IdH − B(B + λIdH)−1)(B + λIdH) = λIdH, it follows that

G( f , λ) = λ2‖(B + λIdH)−1 f ‖2H + λ‖B1/2(B + λIdH)−1 f ‖2H
= λ

[
λ〈(B + λIdH)−2 f , f 〉H + 〈B(B + λIdH)−2 f , f 〉H

]

= λ〈(B + λIdH)−2(λIdH + B), f 〉H
= λ〈(B + λIdH)−1 f , f 〉H. (37)

Plugging (36) and (37) into (35) we get

∫ ∞

0
t−1K( f , t)2

dt

t
�

∫ ∞

0
t−1G( f , t2)

dt

t

=
∫ ∞

0

〈
(B + t2IdHα )−1 f , f

〉

H dt =
∫ ∞

0

∫ ∞

0

1

σ + t2
〈dπB(σ ) f , f 〉 dt,
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where πB is the spectral measure of B. By Fubini we have

∫ ∞

0

∫ ∞

0

1

σ + t2
dt 〈dπB(σ ) f , f 〉 =

∫ ∞

0

1√
σ
arctan

( t√
σ

)∣∣
∣∣

∞

0
〈dπB(σ ) f , f 〉

�
∫ ∞

0
σ−1/2 〈dπB(σ ) f , f 〉 = 〈B−1/2 f , f 〉H = ∥∥B−1/4 f

∥∥2H.

Therefore, f ∈ Bs
2 if and only if f ∈ dom(B−1/4). It now suffices to show B−1/4 =

T−s , whence ‖B−1/4 f ‖2H = ‖ f ‖2Hs . For any f ∈ H and g ∈ Hα we have

〈 f ,Ag〉H = 〈
A∗ f , g

〉
Hα = 〈

T−αAA∗ f ,T−αAg
〉
H =

〈
T−2αB f , g

〉

H .

Since Hα is dense in H, this implies T−2αB = IdH. Hence, B = T2α = T4s , which
completes the proof. ��
Besov spaces by wavelets coefficients The Besov norm can also be expressed bymeans
of wavelet coefficients. Let

Fj (λ) := √
λG j (λ),

where G j is a filter as in Definition 4.2. The partition of unity (9) becomes

∑

j≥0

Fj (λ)2 = 1 for all λ ∈ (0, κ2]. (38)

Moreover, in view of (18), for a frame � as in Definition 4.6 we have

∥∥〈
f , ψ j,·

〉∥∥
L2(X ,ρ)

= ∥∥Fj (T) f
∥∥H ,

and the frame property (16) can be rewritten as

‖ f ‖2H =
∑

j≥0

∥∥Fj (T) f
∥∥2H . (39)

If we further assume the localization property (cf. Example 4.5)

supp(F0) ⊂ (2−1,∞), supp(Fj ) ⊂ (2− j−1, 2− j+1) for j ≥ 1, (40)

a weighted �q -norm of the sequence (
∥
∥Fj (T) f

∥
∥H) j≥0 gives an equivalent character-

ization of the space Bs
q .

Proposition 8.6 ([20, Theorem 3.18]) Let {Fj } j≥0 be a family of measurable functions
Fj : [0,∞) → [0,∞) satisfying (38) and (40). Then, for every f ∈ Bs

q we have

‖ f ‖Bs
q

� ‖ f ‖H +
( ∑

j≥0

(
2 js

∥∥Fj (T) f
∥∥H

)q )1/q
.
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Proof We upper and lower bound the discretized norm in (31). Using (39) (which
holds thanks to (38)) and (40), we have

E( f , 2�)2 = ∥
∥PPW(2�)⊥ f

∥
∥2H =

∑

j≥0

∥
∥Fj (T)PPW(2�)⊥ f

∥
∥2H

=
∑

j≥0

∑

i∈Iρ

∣
∣
∣
〈
Fj (T)PPW(2�)⊥ f , vi

〉
H

∣
∣
∣
2 =

∑

j≥0

∑

i∈Iρ

∣
∣
∣
〈
PPW(2�)⊥ f , Fj (T)vi

〉
H

∣
∣
∣
2

=
∑

j≥0

∑

λi<2−�

λi∈(2− j−1,2− j+1)

Fj (λi )
2
∣
∣〈 f , vi 〉H

∣
∣2 =

∑

j≥�

∑

λi∈(2− j−1,2− j+1)

Fj (λi )
2
∣
∣〈 f , vi 〉H

∣
∣2

=
∑

j≥�

∑

i∈Iρ

Fj (λi )
2
∣
∣〈 f , vi 〉H

∣
∣2 =

∑

j≥�

∥
∥Fj (T) f

∥
∥2H .

Thus, by the discrete Hardy inequality (Lemma A.3), we get

( ∑

�≥0

(2�sE( f , 2�))q
)1/q ≤

( ∑

�≥0

(
2�s

∑

j≥�

∥
∥Fj (T) f

∥
∥H

)q)1/q

≤ Csq

( ∑

j≥0

(
2 js

∥
∥Fj (T) f

∥
∥H

)q )1/q
,

with Csq = 2sq
2sq−1 . Conversely, Fj (T)g = 0 for every g ∈ PW(2 j ), and therefore

∥∥Fj (T) f
∥∥H = ∥∥Fj (T)( f − g)

∥∥H ≤ ∥∥Fj (T)
∥∥H ‖ f − g‖H ≤ ‖ f − g‖H ,

whence

∥∥Fj (T) f
∥∥H ≤ inf

g∈PW(2 j )
‖ f − g‖H = E( f , 2 j ).

��
Convergence of spectrally-localizedMonte Carlo wavelets Proposition 8.6 can be used
to obtain approximation bounds for frames built with filters satisfying the localization
property (40).

Proposition 8.7 Under the conditions of Proposition 8.6, for every f ∈ Bs
q and ε ∈

(0, s), we have

∥∥∥
∑

j>τ

T j f
∥∥∥H �

{‖ f ‖Bs
q
2−τ s for q ∈ [1, 2]

‖ f ‖Bs−ε
2

2−τ(s−ε) for q ∈ (2,∞] .

Proof By Proposition 8.6, we have

∑

j>τ

∥∥Fj (T) f
∥∥qH =

∑

j>τ

2− jsq
(
2 js

∥∥Fj (T) f
∥∥H

)q
� 2−(τ+1)sq ‖ f ‖qBs

q
.
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Also, (38) implies
∣
∣∣
∑

j Fj (λi )
2
∣
∣∣
2 ≤ ∑

j Fj (λi )
2. Hence, for q ≤ 2 we obtain

∥∥∥
∑

j>τ

T j f
∥∥∥
2

H =
∑

i∈Iρ

∣∣∣
∑

j>τ

Fj (λi )
2
∣∣∣
2 ∣∣〈 f , vi 〉H

∣∣2 ≤
∑

j>τ

∑

i∈Iρ

Fj (λi )
2
∣∣〈 f , vi 〉H

∣∣2

=
∑

j>τ

∥∥Fj (T) f
∥∥2H = ∥∥(∥∥Fτ+ j (T) f

∥∥)
j≥1

∥∥2
�2

≤ ∥∥(∥∥Fτ+ j (T) f
∥∥)

j≥1

∥∥2
�q

≤ (
2−(τ+1)s ‖ f ‖Bs

q

)2
.

If q > 2, then Bs
q ⊂ Bs−ε

2 for every ε ∈ (0, s), thanks to (32), and the claim follows.
��

Putting together Propositions 8.7 and 7.2 yields a convergence result for Monte
Carlo wavelets with localized filters.

Theorem 8.8 Assume that Fj satisfies (40), f ∈ Bs
q with q ∈ [1, 2], and λ �→ λgτ (λ)

is Lipschitz continuous on [0, κ2] with Lipschitz constant L(τ ) � 2τ . Set

τ = � 1
2s+2 log2(N )�.

Then, for every t > 0, with probability at least 1 − 2e−t we have

∥∥ f − f̂τ,N
∥∥H � ‖ f ‖Bs

q

(
1 + κ2√t

)
N− s

2s+2 .

Compared to Theorem 7.5, Theorem 8.8 requires the resolution τ to grow only
logarithmically with respect to the sample size N . Note that the conditions of Theorem
8.8 exclude the spectral functions of Table 2, since they do not satisfy (40). Examples
of admissible filters are given instead by Example 4.5, which have local support (40)
but exponential Lipschitz constant.

9 Concluding Remarks and Future Directions

We presented a construction of tight frames which extends wavelets on general
domains based on spectral filtering of a reproducing kernel. Depending on themeasure
considered, our construction leads to continuous or discrete frames, covering non-
Euclidean structures such as Riemannian manifolds and weighted graphs. Besides
standard frequency-localized filters commonly used in wavelet frames, we defined
admissible spectral filters resorting to methods from regularization theory, such as
Tikhonov regularization and Landweber iteration. Regarding discrete measures as
empirical measures arising from independent realizations of a continuous density, we
interpreted discrete frames asMonte Carlo estimates of continuous frames.We proved
that the Monte Carlo frame converges to the corresponding deterministic continuous
frame, and provided finite-sample bounds in high probability, with rates that depend
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on the Sobolev or Besov class of the reproduced signal. This demonstrates the stability
of empirical frames built on sampled data.

In future work we intend to study the numerical implementation of our Monte
Carlo wavelets, alongwith possible applications in graph signal processing, regression
analysis and denoising. Further theoretical investigationmay include L p Banach frame
extensions, sparse representations, nonlinear approximation rates, Lipschitz bound
refinements, and explicit localization properties for specific families of kernels.
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Appendix A

We recall the following result, whose proof can be collected from [23].

Lemma A.1 Let (�;μ) be a measure space and H a Hilbert space. Given a weakly
measurable mapping ω �→ �ω from � to H, assume there exists a dense subset
D ⊂ H, and a constant C > 0, such that, for every f ∈ D,

∫

�

∣
∣〈 f , �ω〉H

∣
∣2 dμ(ω) ≤ C‖ f ‖2. (41)

Then (41) holds for every f ∈ H. Furthermore, there exists a positive bounded
operator A : H → H such that, for every f , g ∈ H,

〈A f , g〉H =
∫

�

〈 f , �ω〉H 〈�ω, g〉H dμ(ω).

Proof For f ∈ H, define the measurable mapping

V f : � → C V f (ω) := 〈 f , �ω〉H .

http://creativecommons.org/licenses/by/4.0/
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Let S := { f ∈ H : V f ∈ L2(�;μ)}. The subspace S is dense inH since S ⊃ D, and
the operatorV : S → L2(�;μ) is closed. Indeed, fix a sequence ( fn) ⊂ S converging
to f ∈ H and such that (V fn) converges to F ∈ L2(�;μ). Then, possibly passing to
a subsequence, there is a subset E ⊂ � of measure zero such that, for all ω /∈ E ,

F(ω) = lim
n→∞V fn(ω) = lim

n→∞ 〈 fn, �ω〉H = 〈 f , �ω〉H .

Then f ∈ S and F = V f . Moreover,

‖V f ‖2L2(�;μ)
= lim

n→∞ ‖V fn‖2L2(�;μ)
≤ C lim

n→∞ ‖ fn‖2H = C ‖ f ‖2H .

Thus, V is a bounded operator, and the closed graph theorem implies S = H, i.e. (41)
holds for all f ∈ H. The second statement follows by defining A := V∗V. ��

The simple proof of the following bound is due to A. Maurer.

Lemma A.2 Let A,B be self-adjoint operators on a separable Hilbert space H, and
let F : R → C be a Lipschitz continuous function with Lipschitz constant L. Then

‖F(A) − F(B)‖HS ≤ L‖A − B‖HS.

Proof Let {ei }i∈I and { f j } j∈J be orthonormal bases of H such that Aei = λi ei and
B f j = μ j f j . Then

‖F(A) − F(B)‖2HS =
∑

i∈I, j∈J
|〈(F(A) − F(B))ei , f j 〉H|2

=
∑

i∈I, j∈J
|F(λi ) − F(μ j )|2|〈ei , f j 〉H|2

≤ L2
∑

i∈I, j∈J
|λi − μ j |2|〈ei , f j 〉H|2 = L2‖A − B‖HS.

��
We include a proof of the discreteHardy inequality [16, Eq. 5.2]wherewe explicitly

compute the Hardy constant.

Lemma A.3 (Hardy inequality) Let
(
b j

)
j≥0 and

(
a j

)
j≥0 be two sequences such that

∣∣b j
∣∣ ≤

(∑

k≥ j

|ak |p
)1/p

for 0 < p ≤ q.

Then, for every s > 0, we have

∑

j≥0

(
2 js

∣
∣b j

∣
∣
)q ≤ 2sq

2sq − 1

∑

j≥0

(
2 js

∣
∣a j

∣
∣
)q

,
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provided all the sums are finite.

Proof Let α = q
p , and let β be such that sp > β > 0. Since p ≤ q, we have

‖·‖�q ≤ ‖·‖�p , hence

∑

j≥0

(
2 js

∣∣b j
∣∣
)q ≤

∑

j≥0

2 jsq
∥∥∥
(
a j+k

)
k≥0

∥∥∥
q

�q

≤
∑

j≥0

2 jsq
∥∥∥
(
a j+k

)
k≥0

∥∥∥
q

�p
=

∑

j≥0

2 jsq
(∑

k≥ j

2−kβ2kβ |ak |p
)α

.

Assume now α ∈ (1,∞). Applying the Hölder inequality with 1/α + 1/α′ = 1 we
have

∑

k≥ j

(
2−kβ

) (
2kβ |ak |p

)
≤

(∑

k≥ j

2−kβα′)1/α′(∑

k≥ j

2kβα |ak |α p
)1/α

= 2β

(
2βα′ − 1

)1/α′ 2
− jβ

(∑

k≥ j

2kβα |ak |α p
)1/α

.

Plugging this in and using α p = q we get

∑

j≥0

(
2 js

∣∣b j
∣∣
)q ≤ C1

∑

j≥0

2 jsq2− jβα
(∑

k≥ j

2kβα |ak |α p
)

= C1

∑

j≥0

2 j(sq−βα)
(∑

k≥ j

2kβα |ak |q
)
,

with

C1 := 2αβ

(
2βα′ − 1

)α/α′ .

Changing the order of summation we get

∑

j≥0

(
2 js

∣∣b j
∣∣
)q ≤ C1

∑

j≥0

2 jβα
∣∣a j

∣∣q
∑

k≤ j

2k(sq−βα)

≤ C1C2

∑

j≥0

2 jsq
∣∣a j

∣∣q = C1C2

∑

j≥0

(
2 js

∣∣a j
∣∣
)q

,

with

C2 := 2sq−βα

2sq−βα − 1
,
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since

∑

k≤ j

2k(sq−βα) = 1

2sq−βα − 1

(
2( j+1)(sq−βα) − 1

)
≤ 2sq−βα

2sq−βα − 1
2 j(sq−βα).

We have

C1C2 = 2sq
(
2βα′ − 1

)α/α′ (
2sq−βα − 1

) .

If α = 1 (p = q), then α′ = ∞, in which case C1 = 1 and therefore

C1C2 = 2sq−β

2sq−β − 1

for all β ∈ (0, sq). Thus, we may set C := 2sq
2sq−1 . ��
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