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Abstract
The present paper is devoted to clustering geometric graphs. While the standard spec-
tral clustering is often not effective for geometric graphs, we present an effective
generalization, which we call higher-order spectral clustering. It resembles in con-
cept the classical spectral clustering method but uses for partitioning the eigenvector
associated with a higher-order eigenvalue. We establish the weak consistency of this
algorithm for a wide class of geometric graphs which we call Soft Geometric Block
Model. A small adjustment of the algorithm provides strong consistency.We also show
that our method is effective in numerical experiments even for graphs of modest size.

Keywords Spectral clustering · Random geometric graphs · Block models

1 Introduction

Graph clustering—the task of identifying groups of tightly connected nodes in a
graph—is a widely studied unsupervised learning problem, with applications in com-
puter science, statistics, biology, economy or social sciences [7].

In particular, spectral clustering is one of the key graph clustering methods [15]. In
itsmost basic form, this algorithmconsists in partitioning agraph into twocommunities
using the eigenvector associated with the second smallest eigenvalue of the graph’s
Laplacian matrix (the so-called Fiedler vector [6]). Spectral clustering is popular, as it
is an efficient relaxation of the NP-hard problem of cutting the graph into two balanced
clusters so that the weight between the two clusters is minimal [15].
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In particular, spectral clustering is consistent in the Stochastic Block Model (SBM)
for a large set of parameters [1,11]. The SBM is a natural basic model with community
structure. It is also the most studied one [1]. In this model each node is assigned to one
cluster, and edges between node pairs are drawn independently and with probability
depending only on the community assignment of the edge endpoints.

However, in many situations, nodes also have geometric attributes (a position in a
metric space). Thus, the interaction between a pair of nodes depends not only on the
community labelling, but also on the distance between the two nodes. We can model
this by assigning to each node a position, chosen in ametric space. Then, the probability
of an edge appearance between two nodeswill depend both on the community labelling
and on the positions of these nodes. Recent proposals of randomgeometric graphswith
community structure include the Geometric Block Model (GBM) [8] and Euclidean
random geometric graphs [2]. The nodes’ interactions in geometric models are no
longer independent: two interacting nodes are likely to havemany common neighbors.
While this is more realistic (‘friends of my friends are my friends’), this also renders
the theoretical study more challenging.

Albeit spectral clustering was shown to be consistent in some specific geometric
graphs [13], the geometric structure can also heavily handicap a cut-based approach.
Indeed, one could partition space into regions such that nodes between two different
regions interact very sparsely. Thus, the Fiedler vector of a geometric graph might
be associated only with a geometric configuration, and bear no information about the
latent community labelling. Moreover, the common technique of regularization [18],
which aims to penalize small size communities in order to bring back the vector
associated with the community structure in the second position, will not work in
geometric graphs as the regions of space can contain a balanced number of nodes.
Nonetheless, this observation does not automatically render spectral clustering useless.
Indeed, as we shall see, in some situations there is still one eigenvector associated with
the community labelling. Thus, it is now necessary to distinguish the eigenvectors
corresponding to a geometric cut—hence potentially useless for cluster recovery—
from the one corresponding to the community labelling. In other words, to achieve
a good performance with spectral clustering in such a setting, one needs to select
carefully the correct eigenvector, which may no longer be associated with the second
smallest eigenvalue.

Our working model of geometric graphs with clustering structure will be the Soft
Geometric Block Model (SGBM). It is a block generalization of soft random geomet-
ric graphs and includes as particular cases the SBM and the GBM. Another important
example is the Waxman Block Model (WBM) where the edge probabilities decrease
exponentially with the distance. The SGBM is similar to the model of [2], but impor-
tantly we do not assume the knowledge of nodes’ positions.

In this paper, we propose a generalization of standard spectral clustering based on
a higher-order eigenvector of the adjacency matrix. This eigenvector is selected using
the average intra- and inter-community degrees, and is not necessarily the Fiedler
vector. The goal of the present work is to show that this algorithm performs well both
theoretically and practically on SGBM graphs.

Our specific contributions are as follows. We establish weak consistency of higher-
order spectral clustering on the SGBM in the dense regime, where the average degrees
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are proportional to the number of nodes.With a simple additional step,we also establish
strong consistency. One important ingredient of the proof is the characterization of
the spectrum of the clustered geometric graphs, and can be of independent interest.
In particular, it shows that the limiting spectral measure can be expressed in terms
of the Fourier transform of the connectivity probability functions. Additionally, our
numerical simulations show that our method is effective and efficient even for graphs
of modest size. Besides, we also illustrate by a numerical example the unsuitability of
the Fiedler vector for community recovery in some situations.

Let us describe the structure of the paper. We introduce in Section 2 the Soft
Geometric Block Model and the main notations. The characterization of the limiting
spectrum is given in Section 3. This characterization will be used in Section 4 to
establish the consistency of higher-order spectral clustering in dense SGBM graphs.
Finally, Section 5 shows numerical results and Section 6 concludes the paper with a
number of interesting future research directions.

2 Model Definition and Notations

2.1 Notations

Let Td = R
d/Z

d be the flat unit torus in dimension d represented by
[− 1

2 ,
1
2

]d
.

The norm �∞ in R
d naturally induces a norm on Td such that for any vector x =

(x1, . . . , xd) ∈ Td we have ‖x‖ = max
1≤i≤d

|xi |.
For a measurable function F : Td → R and k ∈ Z

d , we denote F̂(k) =∫
Td F(x)e−2iπ〈k,x〉 dx the Fourier transform of F . The Fourier series of F is given by

∑

k∈Zd

F̂(k)e2iπ〈k,x〉.

For two integrable functions F, G : Td → R, we define the convolution operation
F ∗ G(y) = ∫

Td F(y − x)G(x) dx and F∗m = F ∗ F ∗ · · · ∗ F (m times). We recall

that F̂ ∗ G(k) = F̂(k)Ĝ(k).

2.2 Soft Geometric Block Model

A Soft Geometric Block Model (SGBM) is defined by a dimension d, a number of
nodes n, a set of blocks K and a connectivity probability function F : Td × K × K →
[0, 1]. The node set is taken as V = [n]. The model is parametrized by a node
labelling σ : V → K and nodes’ positions X = (X1, . . . , Xn) ∈ (Td

)n
. We suppose

that F(·, σ, σ ′) = F(·, σ ′, σ ) and for any X ∈ Td , F(X) depends only on the norm
‖X‖. The probability of appearance of an edge between nodes i and j is defined by
F
(
Xi − X j , σi , σ j

)
. Note that this probability depends only on the distance between

Xi and X j and the labels σi , σ j . Consequently, the model parameters specify the
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distribution

Pσ,X (A) =
∏

1≤i< j≤n

(
F
(
Xi − X j , σi , σ j

))Ai j
(
1 − F

(
Xi − X j , σi , σ j

))1−Ai j (1)

of the adjacency matrix A = (Ai j ) of a random graph.
Furthermore, for this work we assume that the model has only two equal size

blocks, i. e., K = {1, 2}, and∑n
i=1 1(σi = 1) =∑n

i=1 1(σi = 2) = n
2 . The labels are

assigned randomly, that is, the set {i ∈ [n] : σi = 1} is chosen randomly over all the
n
2 -subsets of [n]. We assume that the entries of X and σ are independent and ∀i ∈ V ,
Xi is uniformly distributed over Td . Finally, suppose that for any x ∈ Td

F(x, σ, σ ′) =
{

Fin(x), if σ = σ ′,
Fout(x), otherwise,

(2)

where Fin, Fout : Td → [0, 1] are two measurable functions. We call these functions
connectivity probability functions.

The average intra- and inter-community edge densities are denoted byμin andμout,
respectively. Their expressions are given by the first Fourier modes of Fin and Fout:

μin =
∫

Td
Fin(x)dx and μout =

∫

Td
Fout(x)dx .

These quantities will play an important role in the following, as they represent the
intensities of interactions between nodes in the same community and nodes in different
communities. In particular, the average inside community degree is

( n
2 − 1

)
μin, and

the average outside community degree is n
2μout.

Example 1 An SGBM where Fin(x) = pin and Fout(x) = pout with pin, pout being
constants is an instance of the Stochastic Block Model.

Example 2 An SGBM where Fin(x) = 1(‖x‖ ≤ rin), Fout(x) = 1(‖x‖ ≤ rout) with
rin, rout ∈ R+ is an instance of the Geometric Block Model introduced in [8].

Example 3 We call Waxman Block Model (WBM) an SGBM with Fin(x) =
min(1, qine−sin||x ||), Fout(x) = min(1, qoute−sout ||x ||). This is a clustered version of the
Waxman model [16], which is a particular case of soft geometric random graphs [12].

Formally, clustering or community recovery problem is the following problem:
given the observation of the adjacency matrix A and the knowledge of Fin, Fout, we
want to recover the latent community labelling σ . Given an estimator σ̂ of σ , we define
the loss � as the ratio of misclassified nodes, up to a global permutation π of the labels:
� (σ, σ̂ ) = 1

n minπ∈S2

∑
i 1 (σi �= π ◦ σ̂i ) . Then, σ̂ is said to be weakly consistent

(or equivalently, achieves almost exact recovery) if

∀ε > 0 : lim
n→∞ P (� (σ, σ̂ ) > ε) = 0,
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and strongly consistent (equivalently, achieves exact recovery) if

lim
n→∞ P (� (σ, σ̂ ) > 0) = 0.

3 The Analysis of Limiting Spectrum

3.1 Limit of the Spectral Measure

Theorem 1 Consider an SGBM defined by (1)-(2). Assume that Fin(0), Fout(0) are
equal to the Fourier series of Fin(·), Fout(·) evaluated at 0. Let λ1, . . . , λn be the
eigenvalues of A, and

μn =
n∑

i=1

δλi /n

be the spectral measure of the matrix 1
n A. Then, for all Borel sets B with μ (∂ B) = 0

and 0 /∈ B̄, a.s.,

lim
n→∞ μn(B) = μ(B),

where μ is the following measure:

μ =
∑

k∈Zd

δ F̂in(k)+F̂out(k)

2

+ δ F̂in(k)−F̂out (k)

2

.

Remark 1 The limiting measure μ is composed of two terms. The first term,∑
k∈Zd δ F̂in(k)+F̂out(k)

2

corresponds to the spectrum of a random graph with no com-

munity structure, and where edges between two nodes at distance x are drawn with
probability Fin(x)+Fout(x)

2 . In other words, it is the null-model of the considered SGBM.
Hence, the eigenvectors associated with those eigenvalues bear no community infor-
mation, but only geometric features.

On the contrary, the second term
∑

k∈Zd δ F̂in(k)−F̂out (k)

2

corresponds to the difference

between intra- and inter-community edges. In particular, as we shall see later, the
ideal eigenvector for clustering is associated with the eigenvalue λ̃ closest to λ∗ =
n F̂in(0)−F̂out(0)

2 . Other eigenvectors might mix some geometric and community features
and hence are harder to analyze.

Last, the eigenvalue λ̃ is not necessarily the second largest eigenvalue, as the order-
ing of eigenvalues here depends on the Fourier coefficients F̂in(k) and F̂out(k), and is
in general non trivial.

Remark 2 The assumptions on Fin(0) and Fout(0) are validated for a wide range of
reasonable connectivity functions. For instance, by Dini’s criterion, all the functions
that are differentiable at 0 satisfy these conditions. Another appropriate class consists
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of piecewise C1 functions that are continuous at 0 (this follows from the Dirichlet
conditions).

Proof The outline of the proof of Theorem 1 follows closely [4]. First, we show that
∀m ∈ N, lim

n→∞ E μn (Pm) = μ(Pm) where Pm(t) = tm . Second, we use Talagrand’s

concentration inequality to prove that μn(Pm) is not far from its mean, and conclude
with Borel–Cantelli lemma.

(i) By Lemma 1 in the Appendix, in order to establish the desired convergence it is
enough to show that lim

n→∞ Eμn (Pm) = μ(Pm) for any m ∈ N. First,

Eμn (Pm) = 1

nm

n∑

i=1

Eλm
i = 1

nm
ETr Am . (3)

By definition,

Tr Am =
∑

α∈[n]m

m∏

j=1

Ai j ,i j+1 ,

with α = (i1, . . . , im) ∈ [n]m and im+1 = i1.We denoteAm
n the set ofm-permutations

of [n], that is α ∈ Am
n iff α is an m-tuple without repetition. We have,

Tr Am =
∑

α∈Am
n

m∏

j=1

Ai j ,i j+1 + Rm, (4)

where Rm = ∑

α∈[n]m\Am
n

∏m
j=1 Ai j ,i j+1 .

We first bound the quantity Rm . Since |Ai j | ≤ 1, we have

|Rm | ≤
∣
∣∣[n]m\Am

n

∣
∣∣ = nm − n!

(n − m)! = m(m − 1)

2
nm−1 + o(nm−1),

where we used
n!

(n − m)! = nm − nm−1∑m−1
i=0 i + o(nm−1). Hence

lim
n→∞

1

nm
Rm = 0. (5)

Moreover,

E

∑

α∈Am
n

m∏

j=1

Ai j ,i j+1 =
∑

α∈Am
n

∫

(Td)
m

m∏

j=1

F
(
xi j − xi j+1 , σi j , σi j+1

)
dxi1 . . . dxim

=
∑

α∈Am
n

G(α)
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where G(α) = ∫
(Td )m

∏m
j=1 F(xi j − xi j+1 , σi j , σi j+1)dxi1 . . . dxim for α ∈ Am

n .

Let us first show that the value of G(α) depends only on the number of consecutive
indices corresponding to the nodes from the same community. More precisely, let us
define the set S(α) = { j ∈ [m] : σi j = σi j+1}. Using Lemma 2 in the Appendix and
the fact that the convolution is commutative, we have

G(α) = F∗|S(α)|
in ∗ F∗(m−|S(α)|)

out (0).

We introduce the following equivalence relationship in Am
n : α ∼ α′ if |S(α)| =

|S(α′)|. We notice than G(·) is constant on each equivalence class, and equals to
F∗p
in ∗ F∗(m−p)

out (0) for any α ∈ Am
n such that |S(α)| = p.

Then, let us calculate the cardinal of each equivalence class with |S(α)| = p. First
of all, we choose the set S(α) which can be done in

(m
p

)
ways if m − p is even and

cannot be done if m − p is odd. The latter follows from the fact that p (the number
of ‘non-changes’ in the consecutive community labels) has the same parity as m (the
total number of indices) since im+1 = i1. The set S(α) defines the community labels
up to the flip of communities since σi j = σi j+1 for any j ∈ S(α) and σi j �= σi j+1 for
j ∈ [m]\S(α).
Let N1(α) be the number of indices i j with σi j = 1. Consider first the case σi1 = 1

and note that N1(α) is totally defined by the set S(α). There are n
2 possible choices for

i1. Nowwe have two possibilities. If σi1 = σi2 then we have
n
2 −1 possible choices for

the index i2 (since α ∈ Am
n ). Otherwise, if σi1 �= σi2 then the index i2 can be chosen

in n
2 ways. Resuming the above operation, we choose N1(α) indices from the first

community, and it can be done in n/2(n/2 − 1) . . . (n/2 − N1(α)) ways. The indices
from the second community can be chosen in n/2(n/2− 1) . . . (n/2− (m − N1(α)))

ways. Thus in total the number of possible choices of indices is

n

2

(n

2
− 1
)

. . .
(n

2
− N1(α)

)
· n

2

(n

2
− 1
)

. . .
(n

2
− (m − N1(α))

)

= nm

2m
+ O(nm−1), n → ∞.

The same reasoning applies if σi1 = 2. Hence, when n goes to infinity, the cardinal of
each equivalence class is

∣
∣{α ∈ Am

n : |S(α)| = p}∣∣ =
{
0 if m − p is odd,

2
(m

p

) nm

2m + O
(
nm−1

)
otherwise.

This can be rewritten as

∣∣{α ∈ Am
n : |S(α)| = p}∣∣ =

(
m

p

) (
1 + (−1)m−p) nm

2m
+ O

(
nm−1

)
, n → ∞.
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Hence,

E

∑

α∈Am
n

m∏

j=1

Ai j ,i j+1 =
n∑

p=0

∣∣{α ∈ Am
n : |S(α)| = p

}∣∣ F∗p
in ∗ F∗(m−p)

out (0)

= nm

2m

m∑

p=0

(
m

p

)
(
1 + (−1)m−p) F∗p

in ∗ F∗(m−p)
out (0) + O

(
nm−1

)

= nm
((

Fin + Fout

2

)∗m

(0) +
(

Fin − Fout

2

)∗m

(0)

)
+ O(nm−1).

Therefore, equations (3), (4) and (5) give us:

lim
n→∞ Eμn(Pm) =

(
Fin + Fout

2

)∗m

(0) +
(

Fin − Fout

2

)∗m

(0).

Finally, since Fin, Fout are equal to their Fourier series at 0, and using F̂ ∗ G(k) =
F̂(k)Ĝ(k), we have

lim
n→∞ Eμn(Pm) =

∑

k∈Zd

(
F̂in(k) + F̂out(k)

2

)m

+
(

F̂in(k) − F̂out(k)

2

)m

= μ (Pm) .

(6)
(ii) For each m ≥ 1, and n fixed, we define

Qm : SG B M(Fin, Fout) −→ R

A �−→ 1
nm−1 Tr Am

where SG B M(Fin, Fout) denotes the set of adjacency matrices of an SGBM random
graph with connectivity functions Fin, Fout. Note that Qm(A) = nμn(Pm).

Let A, Ã be two adjacency matrices. We denote the Hamming distance by
dHam

(
A, Ã

) = ∑n
i=1
∑n

j=1 1(Ai j �= Ãi j ). Using Lemma 5 in the Appendix, we
show that the function Qm is (m/n)–Lipschitz for the Hamming distance:

∣∣Qm(A) − Qm( Ã)
∣∣ ≤ m

n
dHam

(
A, Ã

)
. (7)

Let Mm be the median of Qm . Talagrand’s concentration inequality [14, Proposi-
tion 2.1] states that

P (|Qm − Mm | > t) ≤ 4 exp

(
−n2t2

4m2

)
, (8)

which after integrating over all t gives

|nEμn (Pm) − Mm | ≤ E |Qm(A) − Mm | ≤ Cm

n
,
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since EX = ∫∞
0 P(X > t)dt for any positive random variable X . The constant Cm is

equal to 8m
∫∞
0 e−u2du.

Moreover,

n |μn(Pm) − Eμn(Pm)| ≤ |nμn(Pm) − Mm | + |Mm − nEμn(Pm)|
≤ |Qm − Mm | + Cm

n
.

Let s > 0. Since Cm/n2 goes to 0 when n goes to infinity, we can pick n large enough
such that s > Cm

n2
. Thus, using again inequality (8), we have

P (|μn (Pm) − Eμn (Pm)| > s) ≤ P

(
1

n
|Qm − Mm | > s − Cm

n2

)

≤ 4 exp

(

− n4

4m2

(
s − Cm

n2

)2
)

.

However, by (6), lim
n→∞ Eμn(Pm) = μ(Pm). Hence μn(Pm) converges in probability

to μ(Pm). Let sn = 1
nκ with κ > 0, and

εn = 4 exp

(

− n4

4m2

(
sn − Cm

n2

)2
)

.

Since
∑

n∈N εn < ∞when κ < 2, an application of Borel–Cantelli lemma shows that
the convergence holds in fact almost surely. This concludes the proof. ��

3.2 Conditions for the Isolation of the Ideal Eigenvalue

As noticed in Remark 1, the ideal eigenvector for clustering is associated with the
eigenvalue of the adjacency matrix A closest to n μin−μout

2 (recall that μin = F̂in(0)
and μout = F̂out(0)). The following proposition shows that this ideal eigenvalue is
isolated from other eigenvalues under certain conditions.

Proposition 1 Consider the adjacency matrix A of an SGBM defined by (1)-(2), and
assume that:

F̂in(k) + F̂out(k) �= μin − μout, ∀k ∈ Z
d , (9)

F̂in(k) − F̂out(k) �= μin − μout, ∀k ∈ Z
d\{0}, (10)

with μin �= μout. Then, the eigenvalue of A closest to n μin−μout
2 is of multiplicity one.

Moreover, there exists ε > 0 such that for large enough n every other eigenvalue is at
distance at least εn.
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Proof Let λ1, . . . , λn be the eigenvalues of A. Let i∗ ∈ argmini∈[n]
∣∣
∣λi

n − μin−μout
2

∣∣
∣.

We shall show that there exists ε > 0 such that for large enough n, we have for all
i �= i∗:

∣∣∣∣
λi

n
− μin − μout

2

∣∣∣∣ > ε.

Due to condition (9), and the fact that

lim|k|→∞
(
F̂in(k) + F̂out(k)

) = 0,

there is some fixed ε1 > 0 such that

min
k∈Zd

(∣∣∣∣
F̂in(k) + F̂out(k)

2
− μin − μout

2

∣∣∣∣

)
> ε1.

Similarly, condition (10) ensures the existence of ε2 > 0 such that

min
k∈Zd\{0}

(∣∣∣∣
F̂in(k) − F̂out(k)

2
− μin − μout

2

∣∣∣∣

)
> ε2.

Denote ε3 = |μin−μout |
4 . Let ε = min (ε1, ε2, ε3), and consider the interval B =[

μin−μout
2 − ε,

μin−μout
2 + ε

]
. By Theorem 1, a.s.,

lim
n→∞ μn(B) = μ(B) = 1.

Therefore, for n large enough the only eigenvalue of A in the interval B is λi∗ . ��
The following proposition shows that conditions (9) and (10) of Proposition 1 are

almost always verified for a GBM.

Proposition 2 Consider the d-dimensional GBM model, where Fin, Fout are 1-
periodic, and defined on the flat torus Td by Fin(x) = 1(‖x‖ ≤ rin) and Fout(x) =
1(‖x‖ ≤ rout), with rin > rout > 0. Denote by B+ and B− the sets of parameters rin
and rout defined by negation of conditions (9) and (10):

B+ =
{
(rin, rout) ∈ R

2+ : F̂in(k) + F̂out(k) = μin − μout for some k ∈ Z
d
}

B− =
{
(rin, rout) ∈ R

2+ : F̂in(k) − F̂out(k) = μin − μout for some k ∈ Z
d\{0}

}
.

Then these sets of ‘bad’ parameters are of zero Lebesgue measure:

Leb
(B+) = 0; and Leb

(B−) = 0.
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Hence for B = B+ ∪ B−

Leb(B) = 0.

Proof It is clear that

Leb(B) ≤ Leb
(B+)+ Leb

(B−) .

Thus, it is enough to show that Leb(B+) = 0 and Leb(B−) = 0. We shall establish
the first equality, and the second equality can be proved similarly.

By Lemma 3 in the Appendix, the condition (9) for given functions Fin and Fout is
as follows:

rd
in

d∏

j=1

sinc
(
2πrink j

)+ rd
out

d∏

j=1

sinc
(
2πroutk j

) =

= rd
in − rd

out for some k = (k1, . . . , kd) ∈ Z
d .

Notice that limk j →∞ sinc(2πrink j ) = 0 and limk j →∞ sinc(2πroutk j ) = 0 while the
right-hand side of the above equation is fixed. Therefore, this equation can hold only
for k from a finite set K. Let us fix some k = (k1, . . . , kd) ∈ K and denote

B+
k =

⎧
⎨

⎩
(rin, rout) ∈ R

2+ : rd
in

d∏

j=1

sinc
(
2πrink j

)+ rd
out

d∏

j=1

sinc
(
2πroutk j

) = rd
in − rd

out

⎫
⎬

⎭
.

Let us now fix rin, and consider the condition defining B+
k as an equation on rout.

Define the functions

fk(x) = xd

⎛

⎝1 +
d∏

j=1

sinc
(
2πxk j

)
⎞

⎠ ;

gk(x) = xd

⎛

⎝1 −
d∏

j=1

sinc
(
2πxk j

)
⎞

⎠ .

Then the mentioned equation takes the form

fk(rout) = gk(rin). (11)

Consider the function hk : C → R:

hk(z) = zd

⎛

⎝1 +
d∏

j=1

sinc
(
2π zk j

)
⎞

⎠ .



22 Page 12 of 29 Journal of Fourier Analysis and Applications (2021) 27 :22

Clearly, this function coincides with fk on R. Moreover, it is holomorphic in C, as
sinc(z) is holomorphic (it can be represented by the series

∑∞
n=0

(−1)n

(2n+1)! z
2n), and

the product of holomorphic functions is again holomorphic. But then the derivative
h′

k(z) is also holomorphic, therefore, it has a countable number of zeros in C. Clearly,
h′

k ≡ f ′
k on R, which yields that f ′

k has a countable number of zeros in R.
Hence, R+ is divided into a countable number of intervals on which the func-

tion fk(x) is strictly monotone. That is, R+ = �∞
i=0[ai (k), bi (k)] where fk,i =

fk
∣
∣[ai (k),bi (k)] is strictly monotone. Then the function f −1

k,i (x) is correctly defined and,

since fk,i is measurable and injective, f −1
k,i is measurable as well. Consequently, there

is a unique solution rout = f −1
k,i (gk(rin)) of equation (11) for rin ∈ [min fk,i ;max fk,i ].

If rin /∈ [min fk,i ;max fk,i ], there is no solution at all.

Therefore, B+
k,i =

{(
rin, f −1

k,i (gk(rin))
)

: rin ∈ [min fk,i ;max fk,i ]
}
is the graph

of some measurable function in R
2+. Since such a graph has a zero Lebesgue measure

(see e.g., [17, Lemma 5.3]), we have:

Leb(B+
k ) = Leb

(
∪∞

i=1B+
k,i

)
= 0.

Hence, we can conclude that

Leb(B+) = Leb

(
⋃

k∈K
B+

k

)

≤
∑

k∈K
Leb(B+

k ) = 0.

Carrying out similar argumentation for B− completes the proof. ��

4 Consistency of Higher-Order Spectral Clustering

In this section we show that spectral clustering based on the ideal eigenvector (see
Algorithm 1) is weakly consistent for SGBM (Theorem 2).We then show that a simple
extra step can in fact achieve strong consistency.

Algorithm 1: Higher-Order Spectral Clustering (HOSC).
Input: Adjacency matrix A, average intra- and inter-cluster edge densities μin, μout .
Output: Node labelling σ̃ ∈ {1, 2}n .

Global step:
Let λ̃ be the eigenvalue of A closest to λ∗ = (μin−μout)

2 n, and ṽ be the associated eigenvector.
for i = 1, . . . , n do

If ṽi > 0, let σ̃i = 1; otherwise, let σ̃i = 2.



Journal of Fourier Analysis and Applications (2021) 27 :22 Page 13 of 29 22

Remark 3 The worst case complexity of the eigenvalue factorization is O
(
n3
)
[5].

However, when the matrix is sufficiently sparse and the eigenvalues are well sep-
arated, the empirical complexity can be close to O(kn), where k is the number of
required eigenvalues [5]. Moreover, since Algorithm 1 uses only the sign of eigenvec-
tor elements, a quite rough accuracy can be sufficient for classification purposes.

4.1 Weak Consistency of Higher-Order Spectral Clustering

Theorem 2 Let us consider the d-dimensional SGBM with connectivity probability
functions Fin and Fout satisfying conditions (9)-(10). Then Algorithm 1 is weakly
consistent. More precisely, Algorithm 1 misclassifies at most O(log n) nodes.

Proof Let us introduce some notations. Recall that μin = F̂in(0) and μout = F̂out(0).
In the limiting spectrum, the ideal eigenvalue for clustering is

λ∗ = μin − μout

2
n.

We consider the closest eigenvalue of A to λ∗:

λ̃ = argmin
λ

(|λ − λ∗|) .

Also, let ṽ be the normalized eigenvector corresponding to λ̃. In this proof, the
Euclidean norm ‖ · ‖2 is used.

The plan of the proof is as follows. We consider the vector

v∗ =
⎛

⎜
⎝1/

√
n, . . . , 1/

√
n

︸ ︷︷ ︸
n/2

,−1/
√

n, . . . ,−1/
√

n
︸ ︷︷ ︸

n/2

⎞

⎟
⎠

T

,

where we supposed without loss of generality that the n/2 first nodes are in Cluster 1,
and the n/2 last nodes are in Cluster 2. The vector v∗ gives the perfect recovery by
the sign of its coordinates. We shall show that with high probability for some constant
C > 0

‖̃v − v∗‖2 ≤ C

√
log n

n
. (12)

We say that an event occurs with high probability (w.h.p.) if its probability goes to 1
as n → ∞. With the bounding (12), we shall then show that at most o(n) of entries of
ṽ have a sign that differs from the sign of the respective entry in v∗; hence ṽ retrieves
almost exact recovery.

In order to establish inequality (12) we shall use the following theorem from [10].

Theorem 3 Let A be a real symmetric matrix. If λ̃ is the eigenvalue of A closest to

ρ(v) = vT Av
vT v

, δ is the separation of ρ from the next closest eigenvalue and ṽ is the
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eigenvector corresponding to λ̃, then

| sin∠(v, ṽ)| ≤ ‖Av − ρv‖2
‖v‖2δ .

First we deal with ρ(v∗). Since v∗ is normalized and real-valued (by the symmetry
of A), we have

ρ (v∗) = vT∗ Av∗.

Denote u = Av∗. Then, obviously,

ui =
n∑

j=1

Ai j (v∗)i = 1√
n

n/2∑

j=1

Ai j − 1√
n

n∑

j=n/2+1

Ai j . (13)

It is clear that each entry Ai j with i �= j is a Bernoulli random variable with the
probability of success either μin or μout. This can be illustrated by the element-wise
expectation of the adjacency matrix:

EA =

⎛

⎜⎜
⎜⎜⎜⎜⎜
⎜
⎝

μin . . . μin
...

. . .
...

μin . . . μin

μout . . . μout
...

. . .
...

μout . . . μout

μout . . . μout
...

. . .
...

μout . . . μout

μin . . . μin
...

. . .
...

μin . . . μin

⎞

⎟⎟
⎟⎟⎟⎟⎟
⎟
⎠

.

Let us consider the first term in the right-hand side of (13) for i ≤ n/2. Since Ai j

are independent for fixed i , it is easy to see that Yi :=∑n/2
j=1 Ai j ∼ Bin(n/2− 1, μin)

with the expectation EYi = (n/2 − 1)μin. Then we can use the Chernoff bound to
estimate a possible deviation from the mean. For any 0 < t < 1

P (|Yi − EYi | > tEYi ) ≤ e−EYi t2/2. (14)

Let us take t = 2
√
log n√

(n/2−1)μin
. Then for large enough n,

P

⎛

⎝

∣∣∣
∣∣∣

n/2∑

j=1

Ai j − μin
n

2

∣∣∣
∣∣∣
>
√
2μinn log n

⎞

⎠ = P

(
|Yi − EYi | >

√
2μinn log n

)
≤ 1

n2 .

Similarly,

P

⎛

⎝

∣
∣∣∣∣∣

n∑

j=n/2+1

Ai j − μout
n

2

∣
∣∣∣∣∣
>
√
2μoutn log n

⎞

⎠ ≤ 1

n2
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and

P

(∣∣∣∣ui − (μin − μout)

√
n

2

∣∣∣∣ >
√
2(μin + μout) log n

)
≤ 2

n2 . (15)

Denote γn = √
2(μin + μout) log n and notice that γn = Θ(

√
log n). By the union

bound, we have for large enough n

P

(
∃i ≤ n

2
:
∣∣∣∣ui − (μin − μout)

√
n

2

∣∣∣∣ > γn

)
≤ n

2
· 2

n2 = 1

n
. (16)

By the same argumentation,

P

(
∃i >

n

2
:
∣∣
∣∣ui − (μout − μin)

√
n

2

∣∣
∣∣ > γn

)
≤ 1

n
. (17)

Now let us calculate ρ(v∗):

ρ (v∗) =
n∑

i=1

(v∗)i ui = 1√
n

n/2∑

i=1

ui − 1√
n

n∑

i=n/2+1

ui .

We already established that ui ∼ (μin − μout)
√

n
2 for i ≤ n

2 (which means that

lim 2ui
(μin−μout )

√
n

= 1 w.h.p.) and, therefore, that 1√
n

∑n/2
i=1 ui ∼ (μin − μout)

n
4 . More

precisely, by (16),

P

⎛

⎝

∣
∣∣∣∣∣

1√
n

n/2∑

i=1

ui − (μin − μout)n

4

∣
∣∣∣∣∣
>

γn
√

n

2

⎞

⎠ ≤ 1

n
.

In the same way, by (17),

P

⎛

⎝

∣
∣∣∣∣∣

1√
n

n∑

i= n
2+1

ui − (μout − μin)n

4

∣
∣∣∣∣∣
>

γn
√

n

2

⎞

⎠ ≤ 1

n
.

Finally,

P

(∣∣
∣∣ρ(v∗) − (μin − μout)n

2

∣∣
∣∣ > γn

√
n

)
≤ 2

n
. (18)

Now let us denote w = Av∗ − ρ(v∗)v∗ = u − ρ(v∗)v∗. As we already know,

ui ∼ (μin −μout)
√

n
2 and (ρ(v∗)v∗)i ∼ (μin −μout)

√
n
2 for i ≤ n

2 . Clearly, for i ≤ n
2

|wi | ≤
∣∣∣∣ui − (μin − μout)

√
n

2

∣∣∣∣+
∣∣∣∣
(μin − μout)

√
n

2
− 1√

n
ρ(v∗)

∣∣∣∣ .
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Then

P (|wi | > γn) ≤ P

(∣∣∣∣ui − (μin − μout)
√

n

2

∣∣∣∣ > γn

)
+

+ P

(∣∣∣∣
(μin − μout)

√
n

2
− 1√

n
ρ(v∗)

∣∣∣∣ > γn

)
.

A similar bound can be derived for the case i > n/2. Taking into account that ρ(v∗)
does not depend on i , using the union bound and equations (15) and (18), we get that

P

(
max

i
|wi | > 2γn

)
≤ n · 2

n2 + 2

n
= 4

n
.

One can readily see that ‖w‖2 ≤
√

n · maxi w2
i = √

n maxi |wi |. Thus, we finally can
bound the Euclidean norm of the vector w:

P
(‖w‖2 > 2γn

√
n
) ≤ 4

n
→ 0, n → ∞.

Now we can use Theorem 3. According to this result,

| sin∠ (v∗, ṽ) | ≤ ‖Av∗ − v∗ρ (v∗) ‖2
‖v∗‖2δ = ‖w‖2

δ
≤ 2γn

√
n

δ
w. h. p.,

where δ = mini |λi (A) − ρ(v∗)| over all λi �= λ̃. Since we have assumed that (9) and
(10) hold, by Proposition 1, δ > εn. Then, since v∗ is normalized, a simple geometric
consideration guarantees that

‖v∗ − ṽ‖2 ≤ √
2 | sin∠ (v∗, ṽ) | ≤ 2

√
2γn

√
n

εn
= 2

√
2γn

ε
√

n
w. h. p. (19)

Let us denote the number of errors by

r = ∣∣{i ∈ [n] : sign ((v∗)i
) �= sign (̃vi )

}∣∣ .

If we now remember that the vector v∗ consists of ± 1√
n
, it is clear that for any i with

sign((v∗)i ) �= sign(̃vi )

∣∣(v∗)i − v̂i
∣∣ >

1√
n
.

The number of such coordinates is r . Therefore,

‖v∗ − ṽ‖22 ≥ r

(
1√
n

)2

= r

n
.
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Then, by (19), the following chain of inequalities holds:

r

n
≤ ‖v∗ − ṽ‖22 ≤ 8γ 2

n

ε2n
= 16(μin + μout) log n

ε2n
w. h. p.

Hence, with high probability

r ≤ 16(μin + μout) log n

ε2
= O(log n), n → ∞.

Thus, the vector ṽ provides almost exact recovery. This completes the proof. ��

4.2 Strong Consistency of Higher-Order Spectral Clustering with Local
Improvement

In order to derive a strong consistency result, we shall add an extra step to Algorithm 1.
Given σ̃ , the prediction of Algorithm 1, we classify each node to be in the community
where it has the most neighbors, according to the labeling σ̃ . We summarize this
procedure in Algorithm 2, and Theorem 4 states the exact recovery result.

Algorithm2:Higher-Order Spectral Clusteringwith Local Improvement (HOSC-
LI).
Input: Adjacency matrix A, average intra- and inter-cluster edge densities μin, μout .
Output: Node labelling σ̂ ∈ {1, 2}n .

Global step:
Let σ̃ be the output of Algorithm 1.
Local improvement:
for i = 1, . . . , n do

Set σ̂i := argmax
k∈{1,2}

∑

j �=i
1
(
σ̃ j = k

)
ai j .

Remark 4 The local improvement step runs in O(ndmax) operations, where dmax is the
maximum degree of the graph. Albeit the local improvement step being convenient for
the theoretical proof, we will see in Section 5 (Figure 3) that in practice Algorithm 1
already works well, often giving 100% accuracy even without local improvement.

Theorem 4 Let us consider the d-dimensional SGBM defined by (1)-(2), and connec-
tivity probability functions Fin and Fout satisfying conditions (9)-(10). Then Algorithm
2 provides exact recovery for the given SGBM.

Proof We need to prove that the almost exact recovery of Algorithm 1 (established in
Theorem 2) can be transformed into exact recovery by the local improvement step.
This step consists in counting neighbours in the obtained communities. For each node
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i we count the number of neighbours in both supposed communities determined by
the sign of the vector ṽ coordinate:

Z̃1(i) =
∑

sign(̃v j)=1

Ai j ;

Z̃2(i) =
∑

sign(̃v j)=−1

Ai j .

According to Algorithm 2, if Z̃1(i) > Z̃2(i), we assign the label σ̂i = 1 to node i ,
otherwise we label it as σ̂i = 2. Suppose that some node i is still misclassified after
this procedure and our prediction does not coincide with the true label: σ̂i �= σi . Let
us assume without loss of generality that σi = 1 and, therefore, σ̂i = 2. Then, clearly,
Z̃2(i) > Z̃1(i).

Let us denote by Z1(i) and Z2(i) degrees of node i in the communities defined by
the true labels σ :

Z j (i) =
∑

σi = j

Ai j , j = 1, 2.

Since sign(̃v j ) coincides with the true community partition for all but C log n nodes
(see the end of the proof of Theorem 2),

∣∣Z̃ j (i) − Z j (i)
∣∣ ≤ C log n, j = 1, 2,

which implies that

Z̃1(i) ≥ Z1(i) − C log n;
Z̃2(i) ≤ Z2(i) + C log n.

Hence, taking into account that Z̃2(i) > Z̃1(i),

Z2(i) + 2C log n > Z1(i),

which means that the inter-cluster degree of node i is asymptotically not less than its
intra-cluster degree (since Z j (i) = Θ(n) w.h.p.). Intuitively, this should happen
very seldom, and Lemma 4 in the Appendix gives an upper bound on the probability
of this event. Thus, by Lemma 4, for large n,

P (Z2(i) + 2C log n > Z1(i)) = P (Z1(i) − Z2(i) < 2C log n) ≤
≤ P

(
Z1(i) − Z2(i) <

√
2 (μin + μout) n log n

)
≤ 1

n
→ 0, n → ∞.

Then each node is classified correctly with high probability and Theorem 4 is proved.
��
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Fig. 1 Accuracy obtained on a
1-dimensional GBM (n = 2000,
rin = 0.08, rout = 0.02) using
the different eigenvectors of the
adjacency matrix. The
eigenvector of index k
corresponds to the eigenvector
associated with the k-th largest
eigenvalue of A

5 Numerical Results

5.1 Higher-Order Spectral Clustering on 1-Dimensional GBM

Let us consider a 1-dimensional GBM, defined in Example 2. We first emphasize
two important points of the theoretical study: the ideal eigenvector for clustering is
not necesarily the Fiedler vector, and some eigenvectors, including the Fiedler vector,
could correspond to geometric configurations.

Figure 1 shows the accuracy (i.e., the ratio of correctly labeled nodes, up to a
global permutation of the labels if needed, divided by the total number of nodes) of
each eigenvector for a realization of a 1-dimensional GBM. We see that, although the
Fiedler vector is not suitable for clustering, there is nonetheless one eigevector that
stands out of the crowd.

Then, in Figure 2 we draw the nodes of a GBM according to their respective
position. We then show the clusters predicted by some eigenvectors. We see some
geometric configurations (Figures 2a and 2c), while the eigenvector leading to the
perfect accuracy corresponds to index 4 (Figure 2b).

Figure 3 shows the evolution of the accuracy of Algorithms 1 and 2 when the
number of nodes n increases. As expected, the accuracy increases with n. Moreover,
we see no significant effect of using the local improvement of Algorithm 2. Thus, we
conduct all the rest of numerical experiments with the basic Algorithm 1.

In Figure 4, we illustrate the statement of Proposition 2: for some specific values
of the pair (rin, rout), the Conditions (9) and (10) do not hold, and Algorithm 1 is
not guaranteed to work. We observe in Figure 4 that these pairs of bad values exactly
correspond to the moments when the index of the ideal eigenvector jumps from one
value to another.

Finally, we compare in Figure 5 the accuracy ofAlgorithm1with themotif counting
algorithms presented in references [8] and [9]. Those algorithms consist in counting
the number of common neighbors, and clustering accordingly.We call Motif Counting
1 (resp. Motif Counting 2) the algorithm of reference [8] (resp. of reference [9]). We
thank the authors for providing us the code used in their papers. We observed that with
present realizations the motif counting algorithms take much more time than HOSC
takes. For example on a GBM with n = 3000, rin = 0.08 and rout = 0.04, HOSC
takes 8 seconds, while Motif Counting 1 takes 130 seconds and Motif Counting 2
takes 60 seconds on a laptop with 1.90GHz CPU and 15.5 GB memory.
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Fig. 3 Accuracy obtained on
1-dimensional GBM as a
function of n, when rin = 0.08
and rout = 0.05, for Algorithm 1
and Algorithm 2. Results are
averaged over 100 realisations,
and error bars show the standard
error

Fig. 4 Evolution of accuracy
(blue curve) with respect to rin,
for a GBM with n = 3000 and
rout = 0.06. Results are
averaged over 5 realisations. By
the red curve we show the index
of the ideal eigenvector, again
with respect to rin (Color figure
online)

Fig. 5 Accuracy obtained on
1-dimensional GBM for
different clustering methods.
Motif Counting 1 corresponds to
the algorithm described in [8]
and Motif Counting 2 to the
algorithm described in [9].
Results are averaged over 50
realisations, and error bars show
the standard error (Color figure
online)

5.2 Waxman BlockModel

Let us now consider the Waxman Block Model introduced in Example 3. Recall that
Fin(x) = min(1, qine−sinx ) and Fout(x) = min(1, qoute−soutx ),whereqin, qout, sin, sout
are four positive real numbers. We have the following particular situations:

– if sout = 0, then Fout(x) = qout and the inter-cluster interactions are independent
of the nodes’ positions. If sin = 0 as well, we recover the SBM;

– if qin = erinsin and qout = eroutsout , then in the limit sin, sout � 1 we recover the
1-dimensional GBM.

We show in Figure 6 the accuracy of Algorithm 1 on a WBM. In particular, we
see that we do not need μin > μout, and we can recover disassociative communities.
However, there are obvious dips when qin is close to qout or sin is close to sout. It is
clear that if qin = qout on the left-hand side picture or sin = sout on the right-hand side
picture, one cannot distinguish two communities in the graph. Thus, for small n, we
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Fig. 6 Accuracy obtained on a 1-dimensional Waxman Block Model. Results are averaged over 10 realiza-
tions. Same colors in the two plots correspond to the same graph size

observe some ranges around these ‘bad’ values where Algorithm 1 fails. As expected,
the dips become narrower when n increases.

6 Conclusions and Future Research

In the present paper we devised an effective algorithm for clustering geometric graphs.
This algorithm is close in concept to the classical spectral clustering method but it
makes use of the eigenvector associated with a higher-order eigenvalue. It provides
weak consistency for a wide class of graph models which we call the Soft Geometric
Block Model, under some mild conditions on the Fourier transform of Fin and Fout. A
small adjustment of the algorithm leads to strong consistency. Moreover, our method
was shown to be effective in numerical simulations even for graphs of modest size.

The problem stated in the current paper might be investigated further in several
directions. One of them is a possible study on the SGBM with more than two clus-
ters. The situation here is quite different from the SBM where the spectral clustering
algorithm with few eigenvectors associated with the smallest non-zero eigenvalues
provides good performance. In the SGBM even the choice of such eigenvectors is not
trivial, since the ‘optimal’ eigenvalue for distinguishing two clusters is often not the
smallest one.

Another natural direction of research is the investigation of the sparse regime, since
all our theoretical results concern the case of degrees linear in n (this assumption is
used for the analysis of the adjacency matrix spectrum and for finding the spectral gap
around the ‘ideal’ eigenvalue λ̃). In sparser regimes, there are effective algorithms for
some particular cases of the SGBM (e.g., for the GBM), but there is no established
threshold when exact recovery is theoretically possible. Unfortunately, the method
of the current paper without revision is not appropriate for this situation, and the
technique will very likely be much more complicated.

Finally, considering weighted geometric graphs could be an interesting task for
applications where clustering of weighted graphs is pertinent. For instance, the func-
tions Fin and Fout can be considered as weights on the edges in a graph. We believe
that most of the results of the paper may be easily transferred to this case.
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A Auxiliary Results

A.1 Hamburger Moment Problem for the LimitingMeasure

Lemma 1 Assume that F : Td → R is such that F(0) is equal to the Fourier series
of F(x) evaluated at 0 and 0 ≤ F(x) ≤ 1. Consider the measure μ defined by the
function F:

μ =
∑

k∈Zd

δF̂(k).

Then μ is defined uniquely by the sequence of its moments {Mn}∞n=1.

Proof It is enough to show that Carleman’s condition holds true for μ (see [3]):

∞∑

n=1

M
− 1

2n
2n = +∞. (20)

As one can easily see,
M2n =

∑

k∈Zd

F̂2n(k). (21)

From the bounds 0 ≤ F(x) ≤ 1 it follows that F̂(k) ≤ 1. Then it is clear that
F̂n(k) ≤ F̂(k) for any n ∈ N. We can write

M2n =
∑

k∈Zd

F̂2n(k) ≤
∑

k∈Zd

F̂(k) = F(0) ≤ 1.

Here we used the assumption that F(0) equals its Fourrier series evaluated at 0. Then

M
− 1

2n
2n ≥ 1,

Thus, the series in the right-hand side of (20) is divergent and Carleman’s condition
is verified. ��

http://creativecommons.org/licenses/by/4.0/
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A.2m-times Convolution

Lemma 2 Let m ∈ N and F1, . . . , Fm be integrable functions over Td . Then,

F1 ∗ · · · ∗ Fm(0) =
∫

(Td)
m

m∏

j=1

Fj
(
z j − z j+1

)
dz1 . . . dzm

with the notation zm+1 = z1.

Proof With the change of variable ui = zi − zi+1 for i = 1, . . . , m − 1, we have

∫

(Td)
m

m∏

j=1

Fj
(
z j − z j+1

)
dz1 . . . dzm

=
∫

Td
dz1

∫

(Td)
m−1

m−1∏

i=1

Fi (ui ) Fm (−u1 − · · · − um−1) du1 . . . dum−1

We notice that

∫

Td
dum−1Fm−1 (um−1) Fm (−u1 − · · · − um−1)

= Fm−1 ∗ Fm (−u1 − · · · − um−2) .

Hence,

∫

(Td)
m−1

m−1∏

i=1

Fi (ui ) Fm (−u1 − · · · − um−1) du1 . . . dum−1

= F1 ∗ · · · ∗ Fm(0).

Therefore,

∫

(Td)
m

m∏

j=1

Fj
(
z j − z j+1

)
dz1 . . . dzm =

∫

Td
dz1F1 ∗ · · · ∗ Fm(0)

= F1 ∗ · · · ∗ Fm(0),

which ends the proof. ��
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A.3 Fourier Transform of the SquareWave

Lemma 3 Let 0 < r < 1
2 . Let F : R

d → R be 1-periodic such that F(x) =
1 (‖x‖ ≤ r) for x ∈ Td . Then,

F̂(k) = 2rd
d∏

j=1

sinc
(
2πk jr

)
,

where k = (k1, . . . , kd) ∈ Z
d and

sinc(x) =
{
1, if x = 0,
sin x

x , otherwise.

Proof We shall use the set [−1/2, 1/2]d as a representation of Td . Let us first notice
that for x ∈ [−1/2, 1/2]d

F(x) = 1 (‖x‖ ≤ r) = 1

(
max
1≤ j≤d

|x j | ≤ r

)
=

d∏

j=1

1
(|x j | ≤ r

)
.

Then

F̂(k) =
∫
[
− 1

2 , 12

]d F(x)e−2π i〈k,x〉dx

=
∫
[
− 1

2 , 12

]d

d∏

j=1

1(|x j | ≤ r)e−2π ik j x j dx1 . . . dxd

=
d∏

j=1

∫ 1/2

−1/2
1(|x j | ≤ r)e−2π ik j x j dx j .

Let us consider some 1 ≤ j ≤ d. If k j = 0, we have
∫ 1/2
−1/2 1(|x j | ≤ r)dx j =

∫ r
−r dx = 2r . Moreover, for k j �= 0,

F̂(k) =
∫ 1/2

−1/2
1
(|x j | ≤ r

)
e−2π ik j x j dx j =

∫ r

−r
e−2π ik j x j dx j = e−2π ik j r − e2π ik j r

−2π ik j
=

= sin(2πk jr)

πk j
= 2r

sin
(
2πk jr

)

2πk jr
= 2rsinc

(
2πk jr

)
.

Hence,

F̂(k) = 2rd
d∏

j=1

sinc(2πk jr),

as was needed. ��
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A.4 Number of Neighbours in Different Clusters

Lemma 4 Let us consider the SGBM with connectivity probability functions Fin and
Fout for which μin = F̂in(0) > F̂out(0) = μout. Denote by Z in(i) (resp., Zout(i)) the
‘intra-cluster’ (resp., ‘inter-cluster’) degree of i:

Z in(i) =
∑

j : σ j =σi

Ai j ;

Zout(i) =
∑

j : σ j �=σi

Ai j .

Denote Bi :=
{

Z in(i) − Zout(i) <
√
2(μin + μout)n log n

}
. Then

P
(∪n

i=1Bi
) ≤ 1

n
.

Proof Let us fix i ∈ [n]. Clearly, Z in(i) ∼ Bin( n
2−1, μin) and Zout(i) ∼ Bin( n

2 , μout).

We again use Chernoff inequality (14). By this bound, for t = 2
√
log n√

(n/2−1)μin
and large

enough n

P

(∣∣
∣Z in(i) − μin

n

2

∣∣
∣ >

√
2μinn log n

)
≤ 1

n2 .

By the same reason, Zout is well concentrated around its mean μout
n
2 :

P

(∣∣∣Zout(i) − μout
n

2

∣∣∣ >
√
2μoutn log n

)
≤ 1

n2 .

Therefore, since μin > μout,

P (Bi ) = P

(
Z in(i) − Zout(i) <

√
2(μin + μout)n log n

)
≤ 1

n2 .

By the union bound,

P(B) ≤ nP (B1) ≤ 1

n
,

which proves the lemma. ��
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A.5 Trace Operator is Lipschitz

Lemma 5 Let A, Ã ∈ {0, 1}n×n be two adjacency matrices, and m ≥ 1. Then,

∣∣Tr Am − Tr Ãm
∣∣ ≤ m nm−2dHam

(
A, Ã

)
.

Proof Since A and Ã are adjacency matrices of graphs without self-loops, we have
Tr A = 0 = Tr Ã. Hence

∣∣Tr A − Tr Ã
∣∣ = 0 ≤ 1

n dHam
(

A, Ã
)
, and the statement

holds for m = 1.
Let us now consider m ≥ 2. We have

∣∣∣Tr
(

Am−1
)

− Tr
(

Ãm−1
)∣∣∣ =

∣∣∣∣∣
∣

∑

i1,...,im

⎛

⎝
m∏

j=1

Ai j i j+1 −
m∏

j=1

Ãi j ,i j+1

⎞

⎠

∣∣∣∣∣
∣

≤
∑

i1,...,im

∣
∣∣∣∣∣

m∏

j=1

Ai j i j+1 −
m∏

j=1

Ãi j ,i j+1

∣
∣∣∣∣∣
,

with the notation im+1 = i1. The quantity
∏m

j=1 Ai j i j+1 is equal to one if
Ai j i j+1 = 1 for all j = 1, . . . , m, and equals zero otherwise. Hence, the difference∣∣∣
∏m

j=1 Ai j i j+1 −∏m
j=1 Ãi j ,i j+1

∣∣∣ is non-zero and is equal to one in two scenarii:

• Ai j i j+1 = 1 for all j = 1, . . . , m, while there is a j ′ such that Ãi j ′ i j ′+1
= 0,

• there is a j ′ such that Ai j ′ i j ′+1
= 0 and Ãi j i j+1 = 1 for all j = 1, . . . , m.

Thus,

∣∣∣∣
∣∣

m∏

j=1

Ai j i j+1 −
m∏

j=1

Ãi j ,i j+1

∣∣∣∣
∣∣

= 1
(∀ j Ai j i j+1 = 1

)
1
(
∃ j ′ : Ãi j ′ i j ′+1

= 0
)

+

+1
(
∃ j ′ : Ai j ′ i j ′+1

= 0
)
1
(∀ j Ãi j i j+1 = 1

)
.

But,

1
(∀ j Ai j i j+1 = 1

)
1
(
∃ j ′ : Ãi j ′ i j ′+1

= 0
)

≤
m∏

j=1

1
(

Ai j i j+1 = 1
) m∑

j=1

1
(

Ãi j i j+1 = 0
)

≤
m∑

j=1

1
(

Ai j i j+1 = 1
)
1
(

Ãi j i j+1 = 0
)
.

Similarly,

1
(
∃ j ′ : Ai j ′ i j ′+1

= 0
)
1
(∀ j Ãi j i j+1 = 1

) ≤
m∑

j=1

1(Ai j i j+1 = 0)1( Ãi j i j+1 = 1).



22 Page 28 of 29 Journal of Fourier Analysis and Applications (2021) 27 :22

Therefore,

∣∣∣∣∣∣

m∏

j=1

Ai j i j+1 −
m∏

j=1

Ãi j ,i j+1

∣∣∣∣∣∣
≤

m∑

j=1

1
(

Ai j i j+1 �= Ãi j i j+1

)
.

This leads to

∑

i1,...,im

∣∣∣
∣∣∣

m∏

j=1

Ai j i j+1 −
m∏

j=1

Ãi j ,i j+1

∣∣∣
∣∣∣

≤
∑

i1,...,im

m∑

j=1

1
(

Ai j i j+1 �= Ãi j i j+1

)

≤ m nm−2 dHam(A, Ã),

where the last line holds since for all j = 1, . . . , m and m ≥ 2

∑

i1,...,im

1
(

Ai j i j+1 �= Ãi j i j+1

) = nm−2
∑

i j ,i j+1

1
(

Ai j i j+1 �= Ãi j i j+1

)

= nm−2dHam
(

A, Ã
)
.

��
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