Skip to main content
Log in

The Hölder exponent of some Fourier series

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

In this paper we study the local regularity of fractional integrals of Fourier series using several definitions of the Hölder exponent. We especially consider series coming from fractional integrals of modular forms. Our results show that in general, cusp forms give rise to pure fractals (as opposed to multifractals). We include explicit examples and computer plots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chamizo, F.: Automorphic forms and differentiability properties. Trans. Am. Math. Soc. 356(5), 1909–1935 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Duistermaat, J.J.: Self-similarity of “Riemann’s nondifferentiable function”. Nieuw Arch. Wisk. (4) 9(3), 303–337 (1991)

    MathSciNet  MATH  Google Scholar 

  3. Gerver, J.: The differentiability of the Riemann function at certain rational multiples of \(\pi \). Am. J. Math. 92, 33–55 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  4. Hardy, G.H.: Weierstrass’s non-differentiable function. Trans. Am. Math. Soc. 17(3), 301–325 (1916)

    MathSciNet  MATH  Google Scholar 

  5. Hardy, G.H., Littlewood, J.E.: Some properties of fractional integrals. I. Math. Z. 27(1), 565–606 (1928)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hardy, G.H., Littlewood, J.E.: Some properties of fractional integrals. II. Math. Z. 34(1), 403–439 (1932)

    Article  MathSciNet  MATH  Google Scholar 

  7. Holschneider, M., Tchamitchian, Ph: Pointwise analysis of Riemann’s “nondifferentiable” function. Invent. Math. 105(1), 157–175 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  8. Iwaniec, H.: Topics in Classical Automorphic Forms. Graduate Studies in Mathematics. American Mathematical Society, Providence (1997)

    MATH  Google Scholar 

  9. Jaffard, S.: Local behavior of Riemann’s function. Harmonic Analysis and Operator Theory (Caracas, 1994). Contemp. Math., vol. 189, pp. 287–307. American Mathematical Society, Providence (1995)

    Chapter  Google Scholar 

  10. Jaffard, S.: The spectrum of singularities of Riemann’s function. Rev. Mat. Iberoamericana 12(2), 441–460 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  11. Knapp, A.W.: Elliptic Curves. Mathematical Notes, vol. 40. Princeton University Press, Princeton (1992)

    Google Scholar 

  12. Miller, S.D., Schmid, W.: The highly oscillatory behavior of automorphic distributions for SL(2). Lett. Math. Phys. 69, 265–286 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Otal, J.-P.: Le module de continuité des valeurs au bord des fonctions propres et des formes automorphes. Forum Math. 22(5), 1009–1032 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Petrykiewicz, I.: Hölder regularity of arithmetic Fourier series arising from modular forms. arXiv:1311.0655v2 (2013)

  15. Ruiz-Cabello, S.: Prime generators, approximate identities and multifractal functions (Spanish). PhD Thesis UAM (2014)

  16. Rivoal, T., Seuret, S.: Hardy-Littlewood series and even continued fractions. J. Anal. Math. 125, 175–225 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Rudin, W.: Real and Complex Analysis, 3rd edn. McGraw-Hill Book Co., New York (1987)

    MATH  Google Scholar 

  18. Sarnak, P.: Some Applications of Modular Forms. Cambridge Tracts in Mathematics, vol. 99. Cambridge University Press, Cambridge (1990)

    Book  Google Scholar 

  19. Serre, J.P., Stark, H.M.: Modular forms of weight \(1/2\). Modular Functions of One Variable, VI (Proc. Second Internat. Conf., Univ. Bonn, Bonn, 1976). Lecture Notes in Mathematics, pp. 27–67. Springer, Berlin (1977)

    Chapter  Google Scholar 

  20. Seuret, S., Véhel, J.L.: The local Hölder function of a continuous function. Appl. Comput. Harmon. Anal. 13(3), 263–276 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Zygmund, A.: Trigonometric Series. Cambridge Mathematical Library, vol. I, II, 3rd edn. Cambridge University Press, Cambridge (2002). With a foreword by Robert A. Fefferman

    Google Scholar 

Download references

Acknowledgments

We are deeply indebted to Carlos Pastor for his interesting comments on a previous version of this work. In particular, he pointed us the problems with [9, Proposition 1] in the integral case and is currently working in some generalizations that would extend the ranges in the present paper. We also want to thank the anonymous referees for their careful proofreading and suggestions. Fernando Chamizo and Serafín Ruiz-Cabello were partially supported by the Grant MTM2011-22851 of the Ministerio de Ciencia e Innovación (Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Chamizo.

Additional information

Communicated by Stéphane Jaffard.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chamizo, F., Petrykiewicz, I. & Ruiz-Cabello, S. The Hölder exponent of some Fourier series. J Fourier Anal Appl 23, 758–777 (2017). https://doi.org/10.1007/s00041-016-9488-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00041-016-9488-4

Keywords

Mathematics Subject Classification

Navigation