Skip to main content
Log in

Jump and Variational Inequalities for Rough Operators

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

In this paper, we systematically study jump and variational inequalities for rough operators, whose research have been initiated by Jones et al. More precisely, we show some jump and variational inequalities for the families \(\mathcal T:=\{T_\varepsilon \}_{\varepsilon >0}\) of truncated singular integrals and \(\mathcal M:=\{M_t\}_{t>0}\) of averaging operators with rough kernels, which are defined respectively by

$$\begin{aligned} T_\varepsilon f(x)=\int _{|y|>\varepsilon }\frac{\Omega (y')}{|y|^n}f(x-y)dy \end{aligned}$$

and

$$\begin{aligned} M_t f(x)=\frac{1}{t^n}\int _{|y|<t}\Omega (y')f(x-y)dy, \end{aligned}$$

where the kernel \(\Omega \) belongs to \(L\log ^+\!\!L(\mathbf S^{n-1})\) or \(H^1(\mathbf S^{n-1})\) or \(\mathcal {G}_\alpha (\mathbf S^{n-1})\) (the condition introduced by Grafakos and Stefanov). Some of our results are sharp in the sense that the underlying assumptions are the best known conditions for the boundedness of corresponding maximal operators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Al-Salman, A., Al-Qassem, A., Cheng, L., Pan, Y.: \(L^p\) bounds for the function of Marcinkiewicz. Math. Res. Lett. 9, 697–700 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Al-Salman, A., Pan, Y.: Singular integrals with rough kernels in \(LlogL(\mathbf{S}^{n-1})\). J. Lond. Math. Soc. 66, 153–174 (2002)

    Article  MATH  Google Scholar 

  3. Bergh, J., Peetre, J.: On the spaces Vp, 0p infty. Boll. U.M.I 10, 632–648 (1974)

    MATH  Google Scholar 

  4. Bourgain, J.: Pointwise ergodic theorems for arithmetic sets, Inst. Hautes Études SCI. Publ. Math. 69, 5–41 (1989)

    Article  Google Scholar 

  5. Calderón, A.P., Zygmund, A.: On singular integrals. Am. J. Math. 78, 289–309 (1956)

    Article  MATH  Google Scholar 

  6. Campbell, J., Jones, R., Reinhold, K., Wierdl, M.: Oscillation and variation for the Hilbert transform. Duke Math. J. 105, 59–83 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Campbell, J., Jones, R., Reinhold, K., Wierdl, M.: Oscillation and variation for singular integrals in higher dimensions. Trans. Am. Math. Soc. 355, 2115–2137 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Colzani L.: Hardy spaces on sphere, Ph.D. Thesis, Washington University, St. Louis (1982)

  9. Christ, M., Rubio de Francia, J.-L.: Weak type \((1, 1)\) bounds for rough operators II. Invent. Math. 93, 225–237 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ding, Y., Fan, D., Pan, Y.: \(L^p\)-boundedness of Marcinkiewicz integrals with Hardy space function kernel. Acta Math. Sin. 16, 593–600 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Do, Y., Muscalu, C., Thiele, C.: Variational estimates for paraproducts. Rev. Mat. Iberoam. 28, 857–878 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Duoandikoetxea, J.: Weighted norm inequalities for homogeneous singular integrals. Trans. Am. Math. Soc. 336, 869–880 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  13. Duoandikoetxea, J., Rubio de Francia, J.: Maximal and singular integral operators via Fourier transform estimates. Invent. Math. 84, 541–561 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fan, D., Guo, K., Pan, Y.: A note of a rough singular integral operator. Math. Inequal. Appl. 2, 73–81 (1999)

    MathSciNet  MATH  Google Scholar 

  15. Gillespie, T., Torrea, J.: Dimension free estimates for the oscillation of Riesz transforms. Israel J. Math. 141, 125–144 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Grafakos, L., Stefanov, A.: \(L^p\) bounds for singular integrals and maximal singular integrals with rough kernels. Indiana Univ. Math. J. 47, 455–469 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. Grafakos, L., Stefanov, A.: Convolution Calderón-Zygmund singular integral operators with rough kernels, Analysis of Divergence: Control and Management of Divergent Processes, 119–143. Birkhauser, Boston (1999)

    MATH  Google Scholar 

  18. Hong, G.: The behaviour of square functions from ergodic theory in \(L^\infty \). Proc. Am. Math. Soc. 143, 4797–4802 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hong G.: Banach lattice-valued q-variation and convexity, arXiv:1410.1575

  20. Hong, G., Ma T.: Vector-valued q-variation for differential operators and semigroups I, to appear in Math. Z

  21. Hong, G., Ma, T.: Vector-valued \(q\)-variation for ergodic averages and analytic semigroups. J. Math. Anal. Appl. 437(2), 1084–1100 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hytönen, T., Lacey, M., Parissis, I.: A variation norm Carleson theorem for vector-valued Walsh-Fourier series. Rev. Mat. Iberoam. 30, 979–1014 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Jones, R., Kaufman, R., Rosenblatt, J., Wierdl, M.: Oscillation in ergodic theory. Ergod. Theory Dyn. Syst. 18, 889–935 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  24. Jones, R., Rosenblatt, J., Wierdl, M.: Oscillation inequalities for rectangles. Proc. Am. Math. Soc. 129, 1349–1358 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. Jones, R., Rosenblatt, J., Wierdl, M.: Oscillation in ergodic theory: higher dimensional results. Israel J. Math. 135, 1–27 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  26. Jones, R., Seeger, A., Wright, J.: Strong variational and jump inequalities in harmonic analysis. Trans. Am. Math. Soc. 360, 6711–6742 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Krause B.: Polynomial ergodic averages converge rapidly: variations on a theorem of Bourgain. arXiv:1402.1803

  28. Krause B., Zorin-Kranich P.: Weighted and vector-valued variational estimates for ergodic averages. arXiv:1409.7120

  29. Le Merdy, C., Xu, Q.: Strong q-variation inequalities for analytic semigroups. Ann. Inst. Fourier. 62, 2069–2097 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Lépingle, D.: La variation d’ordre \(p\) des semi-martingales. Z. Wahrscheinlichkeitstheorie verwandte Gebiete 36, 295–316 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lu, S., Ding, Y., Yan, D.: Singular Integral and Related Topics. World Scientific, Singapore (2007)

    Book  MATH  Google Scholar 

  32. Ma, T., Torrea, J., Xu, Q.: Weighted variation inequalities for differential operators and Singular integrals. J. Funct. Anal. 268(2), 376–416 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  33. Mas A., Tolsa X.: Variation for the Riesz transform and uniform rectifiability, J. Eur. Math. Soc., To appear

  34. Mirek M., Trojan B.: Discrete maximal functions in higher dimensions and applications to ergodic theory. arXiv:1405.5566

  35. Mirek M., Stein E. M., Trojan B.: \(\ell _p(Z^d)\)-estimates for discrete operators of radon type: variational estimates. arXiv:1512.07523

  36. Mirek M., Trojan B., Zorin-Kranich P.: Variational estimates for averages and truncated singular integrals along the prime numbers. arXiv:1410.3255

  37. Oberlin, R., Seeger, A., Tao, T., Thiele, C., Wright, J.: A variation norm Carleson theorem. J. Eur. Math. Soc. 14, 421–464 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  38. Pisier, G., Xu, Q.: The strong \(p\)-variation of martingales and orthogonal series. Probab. Theory Relat. Fields. 77, 497–514 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  39. Ricci F., Weiss G.: A characterization of \(H^1(\Sigma _{n-1})\). In S. Wainger and G. Weiss (eds.) Proceedings of Symposia in Pure Mathematics, 35 (1979), 289–294

  40. Stein, E.M.: Harmonic Analysis: Real Variable Methods, Orthogonality, and Oscillation Integrals. Princeton University Press, Princeton (1993)

    MATH  Google Scholar 

  41. Stein, E.M., Weiss, G.: Introduction to Fourier Analysis on Euclidean spaces. Princeton University Press, Princeton (1971)

    MATH  Google Scholar 

  42. Walsh, T.: On the function of Marcinkiewicz. Stud. Math. 44, 203–217 (1972)

    MathSciNet  MATH  Google Scholar 

  43. Zorin-Kranich P.: Variation estimates for averages along primes and polynomials. arXiv: 1403.4085

Download references

Acknowledgments

Authors would like to thank the anonymous referees for their valuable suggestions and corrections. The first author is supported by NSFC (11371057, 11471033, 11571160), SRFDP (20130003110003) and the Fundamental Research Funds for the Central Universities (2014KJJCA10). The second author is supported by MINECO: ICMAT Severo Ochoa project SEV-2011-0087. The third author is supported by NSFC (11371057, 11501169).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Honghai Liu.

Additional information

Communicated by Loukas Grafakos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, Y., Hong, G. & Liu, H. Jump and Variational Inequalities for Rough Operators. J Fourier Anal Appl 23, 679–711 (2017). https://doi.org/10.1007/s00041-016-9484-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00041-016-9484-8

Keywords

Mathematics Subject Classification

Navigation