Skip to main content
Log in

Shearlet Smoothness Spaces

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

The shearlet representation has gained increasingly more prominence in recent years as a flexible and efficient mathematical framework for the analysis of anisotropic phenomena. This is achieved by combining traditional multiscale analysis with a superior ability to handle directional information. In this paper, we introduce a class of shearlet smoothness spaces which is derived from the theory of decomposition spaces recently developed by L. Borup and M. Nielsen. The introduction of these spaces is motivated by recent results in image processing showing the advantage of using smoothness spaces associated with directional multiscale representations for the design and performance analysis of improved image restoration algorithms. In particular, we examine the relationship of the shearlet smoothness spaces with respect to Besov spaces, curvelet-type decomposition spaces and shearlet coorbit spaces. With respect to the theory of shearlet coorbit space, the construction of shearlet smoothness spaces presented in this paper does not require the use of a group structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Here the \(\mathcal{Q}\)-moderate function w is the first axis projection, and the sequence of points x i Q i is given by x i =(2j,0).

References

  1. Borup, L., Nielsen, M.: Nonlinear approximation in α-modulation spaces. Math. Nachr. 279, 101–120 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Borup, L., Nielsen, M.: Frame decomposition of decomposition spaces. J. Fourier Anal. Appl. 13, 39–70 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Candès, E.J., Donoho, D.L.: New tight frames of curvelets and optimal representations of objects with C 2 singularities. Commun. Pure Appl. Math. 57, 219–266 (2004)

    Article  MATH  Google Scholar 

  4. Casazza, P.G.: The art of frame theory. Taiwan. J. Math. 4, 129–201 (2000)

    MathSciNet  MATH  Google Scholar 

  5. Chesneau, C., Fadili, M.J., Starck, J.-L.: Stein block thresholding for image denoising. Appl. Comput. Harmon. Anal. 28(1), 67–88 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Christensen, O.: An Introduction to Frames and Riesz Bases. Birkhäuser, Boston (2003)

    MATH  Google Scholar 

  7. Dahlke, S., Kutyniok, G., Maass, P., Sagiv, C., Stark, H.-G., Teschke, G.: The uncertainty principle associated with the continuous shearlet transform. Int. J. Wavelets Multiresolut. Inf. Process. 6, 157–181 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dahlke, S., Kutyniok, G., Steidl, G., Teschke, G.: Shearlet coorbit spaces and associated Banach frames. Appl. Comput. Harmon. Anal. 27(2), 195–214 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dahlke, S., Steidl, G., Teschke, G.: Shearlet coorbit spaces: compactly supported analyzing shearlets, traces and embeddings. J. Fourier Anal. Appl. 17(6), 1232–1255 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dahlke, S., Steidl, G., Teschke, G.: Multivariate shearlet transform, shearlet coorbit spaces and their structural properties. In: Kutyniok, G., Labate, D. (eds.) Shearlets: Multiscale Analysis for Multivariate Data. Birkhäuser, Boston (2012)

    Google Scholar 

  11. Easley, G.R., Labate, D., Lim, W.: Sparse directional image representations using the discrete shearlet transform. Appl. Comput. Harmon. Anal. 25(1), 25–46 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Feichtinger, H.G.: Banach spaces of distributions defined by decomposition methods. II. Math. Nachr. 132, 207–237 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  13. Feichtinger, H.G., Gröbner, P.: Banach spaces of distributions defined by decomposition methods. I. Math. Nachr. 123, 97–120 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  14. Feichtinger, H.G., Gröchenig, K.: Banach spaces related to integrable group representations and their atomic decomposition I. J. Funct. Anal. 86, 307–340 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  15. Feichtinger, H.G., Gröchenig, K.: Banach spaces related to integrable group representations and their atomic decomposition II. Monatshefte Math. 108, 129–148 (1989)

    Article  MATH  Google Scholar 

  16. Gröchenig, K., Samarah, S.: Nonlinear approximation with local Fourier bases. Constr. Approx. 16(3), 317–331 (2000)

    Article  MathSciNet  Google Scholar 

  17. Grohs, P., Kutyniok, G.: Parabolic molecules. Preprint (2012)

  18. Guo, K., Labate, D.: Optimally sparse multidimensional representation using shearlets. SIAM J. Math. Anal. 9, 298–318 (2007)

    Article  MathSciNet  Google Scholar 

  19. Guo, K., Labate, D.: Representation of Fourier integral operators using shearlets. J. Fourier Anal. Appl. 14, 327–371 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Guo, K., Labate, D.: Optimally sparse representations of 3D data with C 2 surface singularities using Parseval frames of shearlets. SIAM J. Math. Anal. 44, 851–886 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Guo, K., Labate, D.: The construction of smooth Parseval frames of shearlets. Math. Model. Nat. Phenom. 8(1), 82–105 (2013)

    Article  MATH  Google Scholar 

  22. Guo, K., Kutyniok, G., Labate, D.: Sparse multidimensional representations using anisotropic dilation and shear operators. In: Chen, G., Lai, M. (eds.) Wavelets and Splines. Nashboro Press, Nashville (2006)

    Google Scholar 

  23. Kutyniok, G., Labate, D.: Resolution of the wavefront set using continuous shearlets. Trans. Am. Math. Soc. 361, 2719–2754 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kutyniok, G., Labate, D.: Shearlets: Multiscale Analysis for Multivariate Data. Birkhäuser, Boston (2012)

    MATH  Google Scholar 

  25. Meyer, Y.: Wavelets and Operators. Cambridge Stud. Adv. Math., vol. 37. Cambridge Univ. Press, Cambridge (1992)

    MATH  Google Scholar 

  26. Patel, V.M., Easley, G., Healy, D.M.: Shearlet-based deconvolution. IEEE Trans. Image Process. 18, 2673–2685 (2009)

    Article  MathSciNet  Google Scholar 

  27. Rasmussen, K.N., Nielsen, M.: Compactly supported frames for decomposition spaces. J. Fourier Anal. Appl. 18, 87–117 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Triebel, H.: Theory of Function Spaces. Birkhäuser, Basel (1983)

    Book  Google Scholar 

  29. Vera, D.: Triebel–Lizorkin spaces and shearlets on the cone in \(\mathbb{R}^{2}\). Appl. Computat. Harmon. Anal. (2013). To appear

Download references

Acknowledgements

D.L. and P.N. were partially supported by NSF grants DMS 1008900 and DMS 1005799. This work was initiated while D.L. was visiting the NuHAG in Vienna. A part of this work was performed while L.M. was visiting the Department of Mathematics at the University of Houston.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Demetrio Labate.

Additional information

Communicated by Stephan Dahlke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Labate, D., Mantovani, L. & Negi, P. Shearlet Smoothness Spaces. J Fourier Anal Appl 19, 577–611 (2013). https://doi.org/10.1007/s00041-013-9261-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00041-013-9261-x

Keywords

Mathematics Subject Classification

Navigation