Skip to main content
Log in

Fractional-Order RC and RL Circuits

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper is a step forward to generalize the fundamentals of the conventional RC and RL circuits in fractional-order sense. The effect of fractional orders is the key factor for extra freedom, more flexibility, and novelty. The conditions for RC and RL circuits to act as pure imaginary impedances are derived, which are unrealizable in the conventional case. In addition, the sensitivity analyses of the magnitude and phase response with respect to all parameters showing the locations of these critical values are discussed. A qualitative revision for the fractional RC and RL circuits in the frequency domain is provided. Numerical and PSpice simulations are included to validate this study

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A. Abbisso, R. Caponetto, L. Fortuna, D. Porto, Non-integer-order integration by using neural networks, in Proceedings of International Symposium on Circuits and Systems, vol. 38 (2001), pp. 688–691

    Google Scholar 

  2. K. Biswas, S. Sen, P. Dutta, Realization of a constant phase element and its performance study in a differentiator circuits. IEEE Trans. Circuits Syst. II 53, 802–806 (2006)

    Article  Google Scholar 

  3. G.W. Bohannan, S.K. Hurst, L. Springler, Electrical component with fractional order impedance. Utility Patent Application, US2006/0267595, 11/372,232, 10 March 2006

  4. G. Carlson, C. Halijak, Approximation of fractional capacitors (1/s)1/n by a regular Newton process. IEEE Trans. Circuits Syst. 11, 210–213 (1964)

    Google Scholar 

  5. T.C. Doehring, A.H. Freed, E.O. Carew, I. Vesely, Fractional order viscoelasticity of the aortic valve: an alternative to QLV. J. Biomech. Eng. 127(4), 700–708 (2005)

    Article  Google Scholar 

  6. A. Dzielinski, Stability of discrete fractional order state-space systems. J. Vib. Control 14, 1543–1556 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. M. Faryad, Q.A. Naqvi, Fractional rectangular waveguide. Prog. Electromagn. Res. 75, 384–396 (2007)

    Article  Google Scholar 

  8. T.C. Haba, G.L. Loum, G. Ablart, An analytical expression for the input impedance of a fractal tree obtained by a microelectronical process and experimental measurements of its non-integral dimension. Chaos Solitons Fractals 33, 364–373 (2007)

    Article  Google Scholar 

  9. S. Jesus, T.J.A. Machado, B.J. Cunha, Fractional electrical impedances in botanical elements. J. Vib. Control 14(9–10), 1389–1402 (2008)

    Article  MATH  Google Scholar 

  10. B.T. Krishna, Studies on fractional order differentiators and integrators: a survey. Signal Process. 91(3), 386–426 (2011)

    Article  MATH  Google Scholar 

  11. B.T. Krishna, K.V.V.S. Reddy, Active and passive realization of fractance device of order 1/2. J. Active Passive Electron. Compon. 1–5 (2008). doi:10.1155/2008/369421

  12. A. Lahiri, T.K. Rawat, Noise analysis of single stage fractional-order low-pass filter using stochastic and fractional calculus. ECTI Trans. Electr. Eng. Electron. Commun. 7(2), 136–143 (2009)

    Google Scholar 

  13. H. Li, Y. Luo, Y.Q. Chen, A fractional-order proportional and derivative (FOPD) motion controller: tuning rule and experiments. IEEE Trans. Control Syst. Technol. 18(2), 516–520 (2010)

    Article  Google Scholar 

  14. R.L. Magin, Fractional Calculus in Bioengineering (Begell House, New York, 2006)

    Google Scholar 

  15. R. Martin, J.J. Quintara, A. Ramos, L. De La Nuez, Modeling electrochemical double layer capacitor, from classical to fractional impedance. Journal of Computational and Nonlinear Dynamics 3(2), 6 (2008)

    Article  Google Scholar 

  16. P. Melchior, B. Orsoni, O. Lavialle, A. Oustaloup, The CRONE toolbox for Matlab: fractional path planning design in robotics. Int. J. Circuit Theory Appl. 36, 473–492 (2008). doi:10.1002/cta. Laboratoire d’Automatique et de Productique (LAP) 2001. Copyright 2007 Wiley, New York

    Article  Google Scholar 

  17. K. Moaddy, A.G. Radwan, K.N. Salama, S. Momani, I. Hashim, The fractional-order modeling and synchronization of electrically coupled neurons system. J. Comput. Math. Appl. (2012). doi:10.1016/j.camwa.2012.01.005

    MATH  Google Scholar 

  18. S. Mukhopadhyay, C. Coopmans, Y.Q. Chen, Purely analog fractional-order PI control using discrete fractional capacitors (fractals): synthesis and experiments, in International Design Engineering Technical Conferences & Computers and Information in Engineering Conference IDETC/CIE, USA (2009)

    Google Scholar 

  19. M. Nakagawa, K. Sorimachi, Basic characteristics of a fractance device. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E75(12), 1814–1819 (1992)

    Google Scholar 

  20. F.L. Oustaloup, B. Mathieu, Frequency-band complex noninteger differentiator: characterization and synthesis. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 47, 25–39 (2000)

    Article  Google Scholar 

  21. A.G. Radwan, Stability analysis of the fractional-order RLC circuit. J. Fract. Calc. Appl. 3 (2012)

  22. A.G. Radwan, K.N. Salama, Passive and active elements using fractional L β C α circuit. IEEE Trans. Circuits Syst. I, Regul. Pap. 58(10), 2388–2397 (2011)

    Article  MathSciNet  Google Scholar 

  23. A.G. Radwan, A.M. Soliman, A.S. Elwakil, Design equations for fractional-order sinusoidal oscillators: practical circuit examples, in International Conference on Microelectronics (ICM) (2007), pp. 91–94

    Google Scholar 

  24. A.G. Radwan, A.S. Elwakil, A.M. Soliman, Fractional-order sinusoidal oscillators: design procedure and practical examples. IEEE Trans. Circuits Syst. I, Regul. Pap. 55, 2051–2063 (2008)

    Article  MathSciNet  Google Scholar 

  25. A.G. Radwan, A.S. Elwakil, A.M. Soliman, On the generalization of second-order filters to fractional-order domain. J. Circuits Syst. Comput. 18(2), 361–386 (2009)

    Article  Google Scholar 

  26. A.G. Radwan, A.M. Soliman, A.S. Elwakil, A. Sedeek, On the stability of linear systems with fractional order elements. Chaos Solitons Fractals 40(5), 2317–2328 (2009)

    Article  MATH  Google Scholar 

  27. A.G. Radwan, K. Moddy, S. Momani, Stability and nonstandard finite difference method of the generalized Chua’s circuit. Comput. Math. Appl. 62, 961–970 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. A.G. Radwan, A. Shamim, K.N. Salama, Theory of fractional-order elements based impedance matching networks. IEEE Microw. Wirel. Compon. Lett. 21(3), 120–122 (2011)

    Article  Google Scholar 

  29. S. Roy, On the realization of a constant-argument immittance or fractional operator. IEEE Trans. Circuits Syst. 14, 264–274 (1967)

    Google Scholar 

  30. J. Sabatier, O.P. Agrawal, J.A. Tenreiro Machado, Advances in Fractional Calculus; Theoretical Developments and Applications in Physics and Engineering (Springer, Berlin, 2007)

    MATH  Google Scholar 

  31. K. Saito, M. Sugi, Simulation of power-law relaxations by analog circuits: fractal distribution of relaxation times and non-integer exponents. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E76(2), 205–209 (1993)

    Google Scholar 

  32. A. Shamim, A.G. Radwan, K.N. Salama, Fractional Smith chart theory and application. IEEE Microw. Wirel. Compon. Lett. 21(3), 117–119 (2011)

    Article  Google Scholar 

  33. M. Sugi, Y. Hirano, Y.F. Miura, K. Saito, Simulation of fractal immittance by analog circuits: an approach to the optimized circuits. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E82(8), 1627–1634 (1999)

    Google Scholar 

  34. H. Zhu, S. Zhou, Z. He, Chaos synchronization of the fractional order Chen’s system. Chaos Solitons Fractals 41, 2733–2740 (2009)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Radwan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Radwan, A.G., Salama, K.N. Fractional-Order RC and RL Circuits. Circuits Syst Signal Process 31, 1901–1915 (2012). https://doi.org/10.1007/s00034-012-9432-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-012-9432-z

Keywords

Navigation