Skip to main content
Log in

Single-Mixture Source Separation Using Dimensionality Reduction of Ensemble Empirical Mode Decomposition and Independent Component Analysis

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Blind source separation of single-channel mixed recording is a challenging task that has applications in the fields of speech, audio and bio-signal processing. Numerous blind source separation methods are commonly used for blind separation of single input multiple output. However, the priori knowledge of the signal is assumed to be known or the main channels selected from multi-channel output are not self-adaptive and automatic. Presented in this paper is a new method based on dimensionality reduction of ensemble empirical mode decomposition (EEMD), and ICA does not rely on such assumptions. The EEMD represents any time-domain signal as the sum of a finite set of oscillatory components called intrinsic mode functions (IMFs). ICA finds the independent components by maximizing the statistical independence of the dimensionality reduction IMFs. Principal component analysis (PCA) is applied to reduce dimensions of IMFs. The separated performance of EEMD-PCA-ICA algorithm is compared with EEMD-ICA through simulations, and experimental results show EEMD-PCA-ICA algorithm outperforms EEMD-ICA with higher cross-correlation and lower relative root mean squared error (RRMSE).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. F.R. Bach, M.I. Jordan, Blind one-microphone speech separation: a spectral learning approach. Adv. Neural Inf. Process. Syst. 65–72 (2005)

  2. B.L. Barnhart, W.E. Eichinger, Analysis of sunspot variability using the Hilbert–Huang transform. Sol. Phys. 269(2), 439–449 (2011)

    Article  Google Scholar 

  3. A. Dapena, D. Iglesia, C.J. Escudero, An MSE-based method to avoid permutation/gain indeterminacy in frequency-domain blind source separation. Circuits Syst. Signal Process. 29(3), 403–417 (2010)

    Article  MATH  Google Scholar 

  4. M.E. Davies, C.J. James, Source separation using single channel ICA. Signal Process. 87, 1819–1832 (2007)

    Article  MATH  Google Scholar 

  5. N.Q.K. Duong, E. Vincent, R. Gribonval, Under-determined convolutive blind source separation using spatial covariance models, in Acoustics Speech and Signal Processing (ICASSP), 2010 IEEE International Conference, 14–19 March 2010 (2010), pp. 9–12

    Google Scholar 

  6. B. Gao, W.L. Woo, S.S. Dlay, Single-channel source separation using EMD-subband variable regularized sparse features. IEEE Trans. Audio Speech Lang. Process. 19(4), 961–976 (2011)

    Article  Google Scholar 

  7. Y. Guo, Y. Li, Single channel electromyography blind recognition system of 3D hand. Comput. Appl. Softw. 27(9), 234–236 (2010)

    Google Scholar 

  8. Y. Guo, D. Zhou, Single channel surface electromyography blind recognition model based on watermarking. J. Vib. Control 18(1), 42–47 (2011)

    MathSciNet  Google Scholar 

  9. M.E. Hamid, K. Ogawa, T. Fukabayashi, Improved single-channel noise reduction method of speech by blind source separation. Acoust. Sci. Technol. 28(3), 153–164 (2007)

    Article  Google Scholar 

  10. N.E. Huang, M.L. Wu, S.R. Long, S.S. Shen, W.D. Qu, P. Gloersen, K.L. Fan, The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. A 454(1971), 903–993 (1998)

    Article  MATH  Google Scholar 

  11. X. Huang, H. Zeng, Efficient variant of FastICA algorithm for speech features extraction. Lect. Notes Electr. Eng. 113, 929–935 (2012)

    Article  Google Scholar 

  12. A. Hyvärinen, E. Oja, Independent component analysis: algorithms and application. Neural Netw. 13(4–5), 411–430 (2000)

    Article  Google Scholar 

  13. A. Hyvärinen, J. Karhunen, E. Oja, Independent Component Analysis (Wiley, New York, 2001). ISBN 978-0-471-40540-5

    Book  Google Scholar 

  14. I.T. Jolliffe, Principal Component Analysis. Springer Series in Statistics, 2nd edn. (Springer, New York, 2002). ISBN 978-0-387-95442-4

    Google Scholar 

  15. T. Kristjansson, J. Hershey, P. Olsen, S. Rennie, R. Gopinath, Super-human multi-talker speech recognition: the IBM2006 speech separation challenge system, in Proceedings of the International Conference on Spoken Language Processing (INTERSPEECH), Pittsburgh, Pennsylvania (2006), pp. 97–100

    Google Scholar 

  16. J. Lin, A. Zhang, Fault feature separation using wavelet-ICA filter. NDT E Int. 38(6), 421–427 (2005)

    Article  Google Scholar 

  17. X. Liu, D. Feng, T. Zhang, Multi-user detection of DS-CDMA based on improved-FastICA. ICMTMA 2012, Sanya, 6 January. Appl. Mech. Mater. 128–129, 633–636 (2012)

    Article  Google Scholar 

  18. H.-G. Ma, Q.-B. Jiang, Z.-Q. Liu, G. Liu, Z.-Y. Ma, A novel blind source separation method for single-channel signal. Signal Process. 90(12), 3232–3241 (2010)

    Article  MATH  Google Scholar 

  19. H. Mehrabian, L. Lindvere, B. Stefanovic, A.L. Martel, A constrained independent component analysis technique for artery-vein separation of two-photon laser scanning microscopy images of the cerebral microvasculature. Med. Image Anal. 16(1), 239–251 (2012)

    Article  Google Scholar 

  20. B. Mijovic, M.D. Vos, I. Gligorijevic, J. Taelman, S.V. Huffel, Source separation from single-channel recordings by combining empirical-mode decomposition and independent component analysis. IEEE Trans. Biomed. Eng. 57(9), 2188–2196 (2010)

    Article  Google Scholar 

  21. W.B.A.B. Mikhael, R.A. Ranganathan, T.B. Yang, Complex adaptive ICA employing the conjugate gradient technique for signal separation in time-varying flat fading channels. Circuits Syst. Signal Process. 29(3), 469–480 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. G.R. Naik, D.K. Kumar, M. Palaniswami, Multi run ICA and surface EMG based signal processing system for recognising hand gestures, in IEEE CIT 2008 (2008), pp. 700–705

    Google Scholar 

  23. E. Norden, S. Huang, The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time-series analysis. Proc. R. Soc., Math. Phys. Eng. Sci. 454(197), 903–995 (1998)

    Article  MATH  Google Scholar 

  24. I.M.S. Panahi, K. Venkat, Blind identification of multi-channel systems with single input and unknown orders. Signal Process. 89, 1288–1310 (2009)

    Article  MATH  Google Scholar 

  25. L. Parra, C. Spence, Convolutive blind separation of non-stationary sources. IEEE Trans. Audio Speech Lang. Process. 8(3), 320–327 (2000)

    Article  Google Scholar 

  26. K. Pearson, On lines and planes of closest fit to systems of points in space. Philos. Mag. 2(6), 559–572 (1901)

    Google Scholar 

  27. S.T. Roweis, One microphone source separation. Adv. Neural Inf. Process. Syst. 793–799 (2000)

  28. X.J. Shang, Y.T. Tian, Y. Li, Feature extraction and classification of sEMG based on ICA and EMD decomposition of AR model, in Electronics, Communications and Control (ICECC), 2011 International Conference (2011), pp. 1464–1467

    Google Scholar 

  29. Y.J. Shen, S.P. Yang, D.S. Kong, New method of blind source separation in under-determined mixtures based on singular value decomposition and application. J. Mech. Eng. 45(8), 64–70 (2009)

    Article  Google Scholar 

  30. G. Tzagkarakis, M. Papadopouli, P. Tsakalides, Singular spectrum analysis of traffic workload in a large-scale wireless LAN, in Proceedings MSWIM’07, Chania, Crete Island, Greece, 22–26 October (2007) (CDROM)

    Google Scholar 

  31. D.N. Vizireanu, Generalizations of binary morphological shape decomposition. J. Electron. Imaging 16(1), 1–6 (2007)

    Article  Google Scholar 

  32. D.N. Vizireanu, Morphological shape decomposition interframe interpolation method. J. Electron. Imaging 013007, 1–5 (2008)

    Google Scholar 

  33. D.N. Vizireanu, S. Halunga, G. Marghescu, Morphological skeleton decomposition interframe interpolation method. J. Electron. Imaging 19(2), 1–3 (2010)

    Article  Google Scholar 

  34. F.A. Wang, H.A. Li, R.B. Li, Harmonic signals retrieval approach based on blind source separation. Circuits Syst. Signal Process. 29(4), 669–685 (2010)

    Article  MATH  Google Scholar 

  35. Z. Wu, N.E. Huang, Ensemble empirical mode decomposition: a noise-assisted data analysis method. Adv. Adapt. Data Anal. 1(1), 1–41 (2009)

    Article  Google Scholar 

  36. W.F. Wu, X.H. Chen, X.J. Su, Blind source separation of single-channel mechanical signal based on empirical mode decomposition. J. Mech. Eng. 47(4), 213–216 (2011)

    MATH  Google Scholar 

  37. Y. Yuan, C.M. Li, T.Y. Wang, X. Zhao, Fault diagnosis and classification for bearing based on EMD-ICA, in Electronic and Mechanical Engineering and Information Technology (EMEIT), 2011 International Conference (2011), pp. 2715–2718

    Google Scholar 

  38. X.A. Zhang, Z.B. Liu, Y.A. Guo, L.A. Zhao, Selective facial expression recognition using fastICA. MSIT2011, Singapore, 16 September. Adv. Mater. Res. 433–440, 2755–2761 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

Funding for this work was supported by 2010 research project of Shanxi Scholarship Council of China [No. 92] [No. 20101069], 2011 research project of Department of Human Resources and Social Security of Shanxi Province [No. 20121030] and 2010 Youth Foundation of Taiyuan University of Science and Technology of China [No. 20103004].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yina Guo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, Y., Huang, S. & Li, Y. Single-Mixture Source Separation Using Dimensionality Reduction of Ensemble Empirical Mode Decomposition and Independent Component Analysis. Circuits Syst Signal Process 31, 2047–2060 (2012). https://doi.org/10.1007/s00034-012-9414-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-012-9414-1

Keywords

Navigation