Skip to main content
Log in

Existence and Multiplicity Results for Some Elliptic Systems in Unbounded Cylinders

  • Published:
Milan Journal of Mathematics Aims and scope Submit manuscript

Abstract

We study the following nonlinear elliptic system of Lane–Emden type

$$\left\{\begin{array}{ll} -\Delta u = {\rm sgn}(v) |v| ^{p-1} \qquad \qquad \qquad \; {\rm in} \; \Omega , \\ -\Delta v = - \lambda {\rm sgn} (u)|u| \frac{1}{p-1} + f(x, u)\; \; {\rm in}\; \Omega , \\ u = v = 0 \qquad \qquad \qquad \quad \quad \;\;\;\;\; {\rm on}\; \partial \Omega , \end{array}\right.$$

where \({\lambda \in \mathbb{R}}\). If \({\lambda \geq 0}\) and \({\Omega}\) is an unbounded cylinder, i.e., \({\Omega = \tilde \Omega \times \mathbb{R}^{N-m} \subset \mathbb{R}^{N}}\), \({N - m \geq 2, m \geq 1}\), existence and multiplicity results are proved by means of the Principle of Symmetric Criticality and some compact imbeddings in partially spherically symmetric spaces. We are able to state existence and multiplicity results also if \({\lambda \in \mathbb{R}}\) and \({\Omega}\) is a bounded domain in \({\mathbb{R}^{N}, N \geq 3}\). In particular, a good finite dimensional decomposition of the Banach space in which we work is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.A. Adams: Sobolev Spaces. Academic Press, New York (1975)

    Google Scholar 

  2. A. Ambrosetti and P.H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973), 349–381.

    Google Scholar 

  3. S. Barile and A. Salvatore, Some Multiplicity and Regularity Results for Perturbed Elliptic Systems, Dynamic Systems and Applications, Dynamic, Atlanta, GA, 6 (2012), 58–64.

  4. S. Barile and A. Salvatore, Weighted elliptic systems of Lane–Emden type in unbounded domains, Mediterr. J. Math. 9 (2012), 409–422.

    Google Scholar 

  5. P. Bartolo, V. Benci and D. Fortunato, Abstract critical point theorems and applications to some nonlinear problems with “strong" resonance at infinity, Nonlinear Anal. 7 (1983), 981–1012.

    Google Scholar 

  6. R. Bartolo, A.M. Candela and A. Salvatore, p–Laplacian problems with nonlinearities interacting with the spectrum, NoDEA, to appear, DOI 10.1007/s00030–013–0226–1.

  7. F. Bernis, J. Garc´?a Azorero and I. Peral, Existence and multiplicity of nontrivial solutions in semilinear critical problems of fourth order, Adv. Differential Equations 1 (1996), 219–240.

  8. H.J. Brascamp, E.H. Lieb and J.M. Luttinger, A general rearrangement inequality for multiple integrals, J. Funct. Anal. 17 (1974), 227–237.

    Google Scholar 

  9. H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, New York 2011.

  10. A.M. Candela and G. Palmieri, Infinitely many solutions of some nonlinear variational equations, Calc. Var. Partial Differential Equations 34 (2009), 495–530.

    Google Scholar 

  11. A.M. Candela and A. Salvatore, Elliptic systems in unbounded domains, Complex Var. Elliptic Equ. 56 (2011), 1143–1153.

  12. G. Cerami, Un criterio di esistenza per i punti critici su varietá illimitate, Istit. Lombardo Accad. Sci. Lett. Rend. A 112 (1978), 332–336.

  13. Ph. Cl´ement, D.G. de Figueiredo and E. Mitidieri, Positive solutions of semilinear elliptic systems, Comm. Partial Differential Equations 17 (1992), 923–949.

  14. D.G. de Figueiredo and Y.H. Ding, Strongly indefinite functionals and multiple solutions of elliptic systems, Trans. Amer. Math. Soc. 355 (2003), 2973–2989.

    Google Scholar 

  15. D.G. de Figueiredo, J.M. do O’ and B. Ruf, An Orlicz–space approach to superlinear elliptic systems, J. Funct. Anal. 224 (2005), 471–496.

    Google Scholar 

  16. D.G. de Figueiredo, E. dos Santos and O. H. Miyagaki, Sobolev spaces of symmetric functions and applications, J. Funct. Anal. 261 (2011), 3735–3770.

    Google Scholar 

  17. D.G. de Figueiredo and P. Felmer, On superquadratic elliptic systems, Trans. Amer. Math. Soc. 343 (1994), 99–116.

    Google Scholar 

  18. D.G. de Figueiredo and B. Ruf, Elliptic systems with nonlinearities of arbitrary growth, Mediterr. J. Math. 1 (2004), 417–431.

    Google Scholar 

  19. E.M. dos Santos, Multiplicity of solutions for a fourth–order quasilinear nonhomogeneous equation, J. Math. Anal. Appl. 342 (2008), 277–297.

    Google Scholar 

  20. F. Faraci, A. Iannizzotto and A. Krist´aly, Low–dimensional compact embeddings of symmetric Sobolev spaces with applications, Proc. Roy. Soc. Edinburgh Sect. A 141(2011), 383–395.

  21. P. Felmer and S. Mart´?nez, Existence and uniqueness of positive solutions to certain differential systems, Adv. Differential Equations 4 (1998), 575–593.

  22. F. Gazzola, H.C. Grunau and G. Sweers, Polyharmonic boundary value problems. Positivity preserving and nonlinear higher order elliptic equations in bounded domains, Lecture Notes in Mathematics, 1991, Springer, Berlin 2010.

  23. D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd Ed., Springer-Verlag, Heidelberg 1983.

  24. G.H. Hardy, J.E. Littlewood and G. Polya,Inequalities, Cambridge Univ. Press, London 1952.

  25. J. Hulshof and R. van der Vorst, Differential systems with strongly indefinite variational structure, J. Funct. Anal. 114(1993), 32–58.

  26. E.H. Lieb, Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation, Stud. Appl. Math. 57 (1977), 93–105.

    Google Scholar 

  27. P.L. Lions, Quelque remarques sur la sym´etrisation de Schwarz, Nonlinear Partial Differential Equations and Their Applications, Coll´ege de France seminar, Vol. I, Pitman, London 1981.

  28. P.L. Lions, Sym´etrie et compacit´e dans les espaces de Sobolev, J. Funct. Anal. 49 (1982), 315-334.

    Google Scholar 

  29. E. Mitidieri, A Rellich type identity and applications, Comm. Partial Differential Equations 18 (1993), 125–151.

  30. R.S. Palais, The principle of symmetric criticality, Comm. Math. Phys. 69 (1979), 19–30.

  31. A. Salvatore, Multiple solutions for elliptic systems with nonlinearities of arbitrary growth, J. Differential Equations 244 (2008), 2529–2544.

    Google Scholar 

  32. A. Salvatore, Some multiplicity results for a class of elliptic systems, Dynamic Systems and Applications, Dynamic, Atlanta, GA, 5 (2008), 435–441.

  33. A. Salvatore, Infinitely many solutions for symmetric and non–symmetric elliptic systems, J. Math. Anal. Appl. 366 (2010), 506–515.

    Google Scholar 

  34. M. Schechter and W. Zou, Critical point theory and its applications, Springer, New York 2006.

  35. R. van der Vorst, Variational identities and applications to differential systems, Arch. Ration. Mech. Anal. 116 (1991), 375–398.

  36. M. Willem, Minimax theorems, Birkhauser, Boston 1996.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Addolorata Salvatore.

Additional information

Partially supported by M.I.U.R. Research Project PRIN 2009 “Metodi variazionali e topologici nello studio dei fenomeni non lineari".

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barile, S., Salvatore, A. Existence and Multiplicity Results for Some Elliptic Systems in Unbounded Cylinders. Milan J. Math. 81, 99–120 (2013). https://doi.org/10.1007/s00032-013-0201-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00032-013-0201-7

Mathematics Subject Classification (2010)

Keywords

Navigation