Skip to main content
Log in

The Temporal Morphology of Infrasound Propagation

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Expert knowledge suggests that the performance of automated infrasound event association and source location algorithms could be greatly improved by the ability to continually update station travel-time curves to properly account for the hourly, daily, and seasonal changes of the atmospheric state. With the goal of reducing false alarm rates and improving network detection capability we endeavor to develop, validate, and integrate this capability into infrasound processing operations at the International Data Centre of the Comprehensive Nuclear Test-Ban Treaty Organization. Numerous studies have demonstrated that incorporation of hybrid ground-to-space (G2S) enviromental specifications in numerical calculations of infrasound signal travel time and azimuth deviation yields significantly improved results over that of climatological atmospheric specifications, specifically for tropospheric and stratospheric modes. A robust infrastructure currently exists to generate hybrid G2S vector spherical harmonic coefficients, based on existing operational and emperical models on a real-time basis (every 3- to 6-hours) (Drob et al., 2003). Thus the next requirement in this endeavor is to refine numerical procedures to calculate infrasound propagation characteristics for robust automatic infrasound arrival identification and network detection, location, and characterization algorithms. We present results from a new code that integrates the local (range-independent) τp ray equations to provide travel time, range, turning point, and azimuth deviation for any location on the globe given a G2S vector spherical harmonic coefficient set. The code employs an accurate numerical technique capable of handling square-root singularities. We investigate the seasonal variability of propagation characteristics over a five-year time series for two different stations within the International Monitoring System with the aim of understanding the capabilities of current working knowledge of the atmosphere and infrasound propagation models. The statistical behaviors or occurrence frequency of various propagation configurations are discussed. Representative examples of some of these propagation configuration states are also shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Arrowsmith, S.J., Drob, D.P., Hedlin, M.A.H., and Edwards, W. (2007), A joint seismic and acoustic study of the Washington State bolide: observations and modeling, J. Geophys. Res.-Atmos 112.

  • Arrowsmith, S.J., Whitaker, R., Taylor, S.R., Burlacu, R., Stump, B.W., Hedlin, M.A.H., Randall, G., Hayward, C., and Revelle, D.O. (2008), Regional monitoring of infrasound events using multiple arrays: application to Utah and Washington State, Geophys. J. Int. 175, 291–300.

  • Bechtold, P., Kohler, M., Jung, T., Doblas-Reyes, F., Leutbecher, M., Rodwell, M.J., Vitart, F., and Balsamo, G. (2008), Advances in simulating atmospheric variability with the ECMWF model: from synoptic to decadal time-scales, Quart. J. Roy. Meteorol. Soc. 134, 1337–1351.

  • Brown, D.J., Katz, C.N., Le Bras, R., Flanagan, M.P., Wang, J., and Gault, A.K. (2002a), Infrasonic signal detection and source location at the Prototype International Data Centre, Pure Appl. Geophys. 159, 1081–1125.

  • Brown, P., Spalding, R.E., ReVelle, D.O., Tagliaferri, E., and Worden, S.P. (2002b), The flux of small near-Earth objects colliding with the Earth, Nature 420, 294–296.

  • Cansi, Y. (1995), An Automatic Seismic Event Processing for Detection and Location––the PMCC Method, Geophys. Res. Lett 22, 1021–1024.

  • Christie, D.R., Veloso, J.A.V., Campus, P., Bell, M., Hoffmann, T., Langlois, A., Martysevich, P., Demirovic, E., and Carvalho, J. (2001), Detection of atmospheric nuclear explosions: the infrasound component of the International Monitoring System, Kerntechnik 66, 96–101.

  • Chunchuzov, I.P. (2004), Influence of internal gravity waves on sound propagation in the lower atmosphere, Meteorol. Atmos. Phys. 85, 61–76.

  • Courtier, P., Andersson, E., Heckley, W., Pailleux, J., Vasiljevic, D., Hamrud, M., Hollingsworth, A., Rabier, E., and Fisher, M. (1998), The ECMWF implementation of three-dimensional variational assimilation (3D-Var). I: Formulation, Quart. J. Roy. Meteorol. Soc. 124, 1783–1807.

  • Drob, D., Emmert, J.T., Crowley, G., Picone, J.M., Shepherd, G.G., Skinner, W., Hays, P., Niciejewski, R.J., Larsen, M., She, C.Y., Meriwether, J.W., Hernandez, G., Jarvis, M.J., D. P. Sipler, Tepley, C.A., O’Brien, M.S., Bowman, J.R., Wu, Q., Murayama, Y., Kawamura, S., Reid, I.M., and Vincent, R.A. (2008), An Empirical Model of the Earth’s Horizontal Wind Fields: HWM07, J. Geophys. Res.-Space Phys., in press.

  • Drob, D.P., Picone, J.M., and Garces, M. (2003), Global morphology of infrasound propagation, J. Geophys. Res.-Atmos. 108.

  • Edwards, W.N. and Hildebrand, A.R. (2004), SUPRACENTER: Locating fireball terminal bursts in the atmosphere using seismic arrivals, Meteor. & Planet. Sci. 39, 1449–1460.

  • Evers, L.G. and Haak, H.W. (2007), Infrasonic forerunners: Exceptionally fast acoustic phases, Geophys. Res. Lett. 34.

  • Forbes, J.M., Zhang, X.L., Talaat, E.R., and Ward, W. (2003), Nonmigrating diurnal tides in the thermosphere, J. Geophys. Res.-Space Phys. 108.

  • Fritts, D.C. and Isler, J.R. (1994), Mean motions and tidal and 2-day structure and variability in the mesosphere and lower thermosphere over Hawaii, J. Atmos. Sci. 51, 2145–2164.

  • Garces, M.A., Hansen, R.A., and Lindquist, K.G. (1998), Traveltimes for infrasonic waves propagating in a stratified atmosphere, Geophys. J. Internat. 135, 255–263.

  • Georges, T.M. and Beasley, W.H. (1977), Refraction of infrasound by upper-atmospheric winds, J. Acoust. Soc. Am. 61, 28-34.

  • Gossard, E.E. and Hooke, W.H. Waves in the Atmosphere: Atmospheric Infrasound and Gravity Waves: Their Generation and Propagation (Elsevier Scientific Pub. Co., Amsterdam; New York 1975).

  • Hedin, A.E., Fleming, E.L., Manson, A.H., Schmidlin, F.J., Avery, S.K., Clark, R.R., Franke, S.J., Fraser, G.J., Tsuda, T., Vial, F., and Vincent, R.A. (1996), Empirical wind model for the upper, middle and lower atmosphere, J. Atmos. Terre. Phys. 58, 1421–1447.

  • Hedlin, M.A.H., Garces, M., Bass, H.E., Hayward, Herrin, G., Olson, G., and Wilson, C. (2002), Listening to the secret sounds of the earth’s atmosphere, Eos Trans. AGU 83, 564–565.

  • Herrin, E.T., Kim, T.S., and Stump, B.W. (2006), Evidence for an infrasound waveguide, Geophys. Res. Lett. 33.

  • Kalnay, E., Kanamitsu, M., and Baker, W.E. (1990), Global Numerical Weather Prediction at the National-Meteorological-Center, Bull. Am. Meteor. Soc. 71, 1410–1428.

  • Le Pichon, A., Antier, K., Cansi, Y., Hernandez, B., Minaya, E., Burgoa, B., Drob, D., Evers, L.G., and Vaubaillon, J. (2008a), Evidence for a meteoritic origin of the September 15, 2007, Carancas crater, Meteor. Planet. Sci. 43, 1797–1809.

  • Le Pichon, A., Blanc, E., Drob, D., Lambotte, S., Dessa, J.X., Lardy, M., Bani, P., and Vergniolle, S. (2005), Infrasound monitoring of volcanoes to probe high-altitude winds, J. Geophy. Res.-Atmos. 110.

  • Le Pichon, A., Garces, M., Blanc, E., Barthelemy, M., and Drob, D.P. (2002), Acoustic propagation and atmosphere characteristics derived from infrasonic waves generated by the Concorde, J. Acoust. Soc. Am. 111, 629–641.

  • Le Pichon, A., Vergoz, J., Herry, P., and Ceranna, L. (2008b), Analyzing the detection capability of infrasound arrays in Central Europe, J. Geophys. Res.-Atmos. 113, 9.

  • Le Pichon, A., Vergoz, J., Herry, P., and Ceranna, L. (2008c), Analyzing the detection capability of infrasound arrays in Central Europe, J. Geophys. Res.-Atmos. 113.

  • Lieberman, R.S., Riggin, D.M., Ortland, D.A., Nesbitt, S.W., and Vincent, R.A. (2007), Variability of mesospheric diurnal tides and tropospheric diurnal heating during 1997-1998, J. Geophys. Res.-Atmos. 112, 17.

  • Lighthill, M.J. Waves in Fluids, (Cambridge University Press, Cambridge [Eng.]; New York 1978).

  • Lingevitch, J.F., Collins, M.D., Dacol, D.K., Drob, D.P., Rogers, J.C.W., and Siegmann, W.L. (2002), A wide angle and high Mach number parabolic equation, J. Acoust. Soc. Am. 111, 729–734.

  • Manney, G.L., Kruger, K., Pawson, S., Minschwaner, K., Schwartz, M.J., Daffer, W.H., Livesey, N.J., Mlynczak, M.G., Remsberg, E.E., Russell, J.M., and Waters, J.W. (2008), The evolution of the stratopause during the 2006 major warming: Satellite data and assimilated meteorological analyses, J. Geophys. Res.-Atmos. 113.

  • McLandress, C., Ward, W.E., Fomichev, V.I., Semeniuk, K., Beagley, S.R., McFarlane, N.A., and Shepherd, T.G. (2006), Large-scale dynamics of the mesosphere and lower thermosphere: An analysis using the extended Canadian Middle Atmosphere Model, J. Geophys. Res.-Atmos. 111.

  • Menke, W. Geophysical Data Analysis: Discrete Inverse Theory, Rev. edn. (Academic Press, San Diego 1989).

  • Millet, C., Robinet, J.C., and Roblin, C. (2007), On using computational aeroacoustics for long-range propagation of infrasounds in realistic atmospheres, Geophys. Res. Lett. 34.

  • Nemtchinov, I.V., Svetsov, V.V., Kosarev, I.B., Golub, A.P., Popova, O.P., Shuvalov, V.V., Spalding, R.E., Jacobs, C., and Tagliaferri, E. (1997), Assessment of kinetic energy of meteoroids detected by satellite-based light sensors, Icarus 130, 259–274.

  • Ostashev, V.E., Chunchuzov, I.P., and Wilson, D.K. (2005), Sound propagation through and scattering by internal gravity waves in a stably stratified atmosphere, J. Acoust. Soc. Am. 118, 3420–3429.

  • Picone, J.M., Hedin, A.E., Drob, D.P., and Aikin, A.C. (2002), NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues, J. Geophys. Res.-Space Phys. 107.

  • Pierce, A.D. (1967), Guided infrasonic modes in a temperature- and wind-stratified atmosphere, J. Acoust. Soc. Am. 41, 597.

  • Press, W.H. Numerical Recipes: The Art of Scientific Computing, (Cambridge University Press, Cambridge; New York 1989).

  • Smith, A.K. (1996), Longitudinal variations in mesospheric winds: Evidence for gravity wave filtering by planetary waves, J. Atmos. Sci. 53, 1156–1173.

Download references

Acknowledgments

The methodologies and tools presented here were developed in part in an effort supported by the Office of Naval Research to investigate whether signals from infrasound ground-truth events could be inverted to obtain information about the atmosphere, i.e., ground-to-space infrasound acoustic tomography, such as is currently in routine use in oceanography and seismology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas P. Drob.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drob, D.P., Garcés, M., Hedlin, M. et al. The Temporal Morphology of Infrasound Propagation. Pure Appl. Geophys. 167, 437–453 (2010). https://doi.org/10.1007/s00024-010-0080-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-010-0080-6

Keywords

Navigation