Skip to main content

Advertisement

Log in

Crosstalk between cerebral endothelium and oligodendrocyte

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

It is now relatively well accepted that the cerebrovascular system does not merely provide inert pipes for blood delivery to the brain. Cerebral endothelial cells may compose an embedded bunker of trophic factors that contribute to brain homeostasis and function. Recent findings suggest that soluble factors from cerebral endothelial cells nourish neighboring cells, such as neurons and astrocytes. Although data are strongest in supporting mechanisms of endothelial-neuron and/or endothelial-astrocyte trophic coupling, it is likely that similar interactions also exist between cerebral endothelial cells and oligodendrocyte lineage cells. In this mini-review, we summarize current advances in the field of endothelial-oligodendrocyte trophic coupling. These endothelial-oligodendrocyte interactions may comprise the oligovascular niche to maintain their cellular functions and sustain ongoing angiogenesis/oligodendrogenesis. Importantly, it should be noted that the cell–cell interactions are not static—the trophic coupling is disturbed under acute phase after brain injury, but would be recovered in the chronic phase to promote brain remodeling and repair. Oligodendrocyte lineage cells play critical roles in white matter function, and under pathological conditions, oligodendrocyte dysfunction lead to white matter damage. Therefore, a deeper understanding of the mechanisms of endothelial-oligodendrocyte trophic coupling may lead to new therapeutic approaches for white matter-related diseases, such as stroke or vascular dementia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lo EH, Dalkara T, Moskowitz MA (2003) Mechanisms, challenges and opportunities in stroke. Nat Rev Neurosci 4:399–415

    CAS  PubMed  Google Scholar 

  2. del Zoppo GJ (2006) Stroke and neurovascular protection. N Engl J Med 354:553–555

    PubMed  Google Scholar 

  3. Iadecola C (2004) Neurovascular regulation in the normal brain and in Alzheimer’s disease. Nat Rev Neurosci 5:347–360

    CAS  PubMed  Google Scholar 

  4. Zlokovic BV (2008) The blood–brain barrier in health and chronic neurodegenerative disorders. Neuron 57:178–201

    CAS  PubMed  Google Scholar 

  5. Lok J, Gupta P, Guo S, Kim WJ, Whalen MJ, van Leyen K, Lo EH (2007) Cell–cell signaling in the neurovascular unit. Neurochem Res 32:2032–2045

    CAS  PubMed  Google Scholar 

  6. Besancon E, Guo S, Lok J, Tymianski M, Lo EH (2008) Beyond NMDA and AMPA glutamate receptors: emerging mechanisms for ionic imbalance and cell death in stroke. Trends Pharmacol Sci 29:268–275

    CAS  PubMed  Google Scholar 

  7. Dreier JP (2011) The role of spreading depression, spreading depolarization and spreading ischemia in neurological disease. Nat Med 17:439–447

    CAS  PubMed  Google Scholar 

  8. Iadecola C, Anrather J (2011) The immunology of stroke: from mechanisms to translation. Nat Med 17:796–808

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Zlokovic BV (2011) Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders. Nat Rev Neurosci 12:723–738

    CAS  PubMed  Google Scholar 

  10. Bell RD, Winkler EA, Sagare AP, Singh I, LaRue B, Deane R, Zlokovic BV (2010) Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging. Neuron 68:409–427

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Zlokovic BV (2010) Neurodegeneration and the neurovascular unit. Nat Med 16:1370–1371

    CAS  PubMed  Google Scholar 

  12. Makita T, Sucov HM, Gariepy CE, Yanagisawa M, Ginty DD (2008) Endothelins are vascular-derived axonal guidance cues for developing sympathetic neurons. Nature 452:759–763

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Dugas JC, Mandemakers W, Rogers M, Ibrahim A, Daneman R, Barres BA (2008) A novel purification method for CNS projection neurons leads to the identification of brain vascular cells as a source of trophic support for corticospinal motor neurons. J Neurosci 28:8294–8305

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Guo S, Kim WJ, Lok J, Lee SR, Besancon E, Luo BH, Stins MF, Wang X, Dedhar S, Lo EH (2008) Neuroprotection via matrix-trophic coupling between cerebral endothelial cells and neurons. Proc Natl Acad Sci USA 105:7582–7587

    CAS  PubMed  Google Scholar 

  15. Ohab JJ, Fleming S, Blesch A, Carmichael ST (2006) A neurovascular niche for neurogenesis after stroke. J Neurosci 26:13007–13016

    CAS  PubMed  Google Scholar 

  16. Teng H, Zhang ZG, Wang L, Zhang RL, Zhang L, Morris D, Gregg SR, Wu Z, Jiang A, Lu M, Zlokovic BV, Chopp M (2008) Coupling of angiogenesis and neurogenesis in cultured endothelial cells and neural progenitor cells after stroke. J Cereb Blood Flow Metab 28:764–771

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Kokovay E, Goderie S, Wang Y, Lotz S, Lin G, Sun Y, Roysam B, Shen Q, Temple S (2010) Adult SVZ lineage cells home to and leave the vascular niche via differential responses to SDF1/CXCR4 signaling. Cell Stem Cell 7:163–173

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Taguchi A, Soma T, Tanaka H, Kanda T, Nishimura H, Yoshikawa H, Tsukamoto Y, Iso H, Fujimori Y, Stern DM, Naritomi H, Matsuyama T (2004) Administration of cd34+ cells after stroke enhances neurogenesis via angiogenesis in a mouse model. J Clin Invest 114:330–338

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Thored P, Wood J, Arvidsson A, Cammenga J, Kokaia Z, Lindvall O (2007) Long-term neuroblast migration along blood vessels in an area with transient angiogenesis and increased vascularization after stroke. Stroke 38:3032–3039

    PubMed  Google Scholar 

  20. Seo JH, Miyamoto N, Hayakawa K, Pham LD, Maki T, Ayata C, Kim KW, Lo EH, Arai K (2013) Oligodendrocyte precursors induce early blood-brain barrier opening after white matter injury. J Clin Invest 123:782–786

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Pham LD, Hayakawa K, Seo JH, Nguyen MN, Som AT, Lee BJ, Guo S, Kim KW, Lo EH, Arai K (2012) Crosstalk between oligodendrocytes and cerebral endothelium contributes to vascular remodeling after white matter injury. Glia 60:875–881

    PubMed Central  PubMed  Google Scholar 

  22. Scadden DT (2006) The stem-cell niche as an entity of action. Nature 441:1075–1079

    CAS  PubMed  Google Scholar 

  23. Alvarez-Buylla A, Lim DA (2004) For the long run: maintaining germinal niches in the adult brain. Neuron 41:683–686

    CAS  PubMed  Google Scholar 

  24. Menn B, Garcia-Verdugo JM, Yaschine C, Gonzalez-Perez O, Rowitch D, Alvarez-Buylla A (2006) Origin of oligodendrocytes in the subventricular zone of the adult brain. J Neurosci 26:7907–7918

    CAS  PubMed  Google Scholar 

  25. Chintawar S, Cayrol R, Antel J, Pandolfo M, Prat A (2009) Blood-brain barrier promotes differentiation of human fetal neural precursor cells. Stem Cells 27:838–846

    PubMed  Google Scholar 

  26. Plane JM, Andjelkovic AV, Keep RF, Parent JM (2010) Intact and injured endothelial cells differentially modulate postnatal murine forebrain neural stem cells. Neurobiol Dis 37:218–227

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Thomas JL, Spassky N, Perez Villegas EM, Olivier C, Cobos I, Goujet-Zalc C, Martinez S, Zalc B (2000) Spatiotemporal development of oligodendrocytes in the embryonic brain. J Neurosci Res 59:471–476

    CAS  PubMed  Google Scholar 

  28. Qi Y, Stapp D, Qiu M (2002) Origin and molecular specification of oligodendrocytes in the telencephalon. Trends Neurosci 25:223–225

    CAS  PubMed  Google Scholar 

  29. Arai K, Lo EH (2009) Oligovascular signaling in white matter stroke. Biol Pharm Bull 32:1639–1644

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Polito A, Reynolds R (2005) Ng2-expressing cells as oligodendrocyte progenitors in the normal and demyelinated adult central nervous system. J Anat 207:707–716

    PubMed  Google Scholar 

  31. Blakemore WF (1972) Observations on oligodendrocyte degeneration, the resolution of status spongiosus and remyelination in cuprizone intoxication in mice. J Neurocytol 1:413–426

    CAS  PubMed  Google Scholar 

  32. Prineas JW, Connell F (1979) Remyelination in multiple sclerosis. Ann Neurol 5:22–31

    CAS  PubMed  Google Scholar 

  33. Kaplan MS, Hinds JW (1980) Gliogenesis of astrocytes and oligodendrocytes in the neocortical grey and white matter of the adult rat: electron microscopic analysis of light radioautographs. J Comp Neurol 193:711–727

    CAS  PubMed  Google Scholar 

  34. McCarthy GF, Leblond CP (1988) Radioautographic evidence for slow astrocyte turnover and modest oligodendrocyte production in the corpus callosum of adult mice infused with 3 h-thymidine. J Comp Neurol 271:589–603

    CAS  PubMed  Google Scholar 

  35. Gensert JM, Goldman JE (1997) Endogenous progenitors remyelinate demyelinated axons in the adult CNS. Neuron 19:197–203

    CAS  PubMed  Google Scholar 

  36. Chari DM, Blakemore WF (2002) Efficient recolonisation of progenitor-depleted areas of the CNS by adult oligodendrocyte progenitor cells. Glia 37:307–313

    PubMed  Google Scholar 

  37. Nait-Oumesmar B, Decker L, Lachapelle F, Avellana-Adalid V, Bachelin C, Van Evercooren AB (1999) Progenitor cells of the adult mouse subventricular zone proliferate, migrate and differentiate into oligodendrocytes after demyelination. Eur J Neurosci 11:4357–4366

    CAS  PubMed  Google Scholar 

  38. Picard-Riera N, Decker L, Delarasse C, Goude K, Nait-Oumesmar B, Liblau R, Pham-Dinh D, Evercooren AB (2002) Experimental autoimmune encephalomyelitis mobilizes neural progenitors from the subventricular zone to undergo oligodendrogenesis in adult mice. Proc Natl Acad Sci USA 99:13211–13216

    CAS  PubMed  Google Scholar 

  39. Parent JM, von dem Bussche N, Lowenstein DH (2006) Prolonged seizures recruit caudal subventricular zone glial progenitors into the injured hippocampus. Hippocampus 16:321–328

    CAS  PubMed  Google Scholar 

  40. Li L, Harms KM, Ventura PB, Lagace DC, Eisch AJ, Cunningham LA (2010) Focal cerebral ischemia induces a multilineage cytogenic response from adult subventricular zone that is predominantly gliogenic. Glia 58:1610–1619

    PubMed Central  PubMed  Google Scholar 

  41. Zhang RL, Chopp M, Roberts C, Jia L, Wei M, Lu M, Wang X, Pourabdollah S, Zhang ZG (2011) Ascl1 lineage cells contribute to ischemia-induced neurogenesis and oligodendrogenesis. J Cereb Blood Flow Metab 31:614–625

    CAS  PubMed  Google Scholar 

  42. Zhang RL, Chopp M, Roberts C, Wei M, Wang X, Liu X, Lu M, Zhang ZG (2012) Sildenafil enhances neurogenesis and oligodendrogenesis in ischemic brain of middle-aged mouse. PLoS One 7:e48141

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Fancy SP, Zhao C, Franklin RJ (2004) Increased expression of Nkx2.2 and Olig2 identifies reactive oligodendrocyte progenitor cells responding to demyelination in the adult CNS. Mol Cell Neurosci 27:247–254

    CAS  PubMed  Google Scholar 

  44. Petratos S, Gonzales MF, Azari MF, Marriott M, Minichiello RA, Shipham KA, Profyris C, Nicolaou A, Boyle K, Cheema SS, Kilpatrick TJ (2004) Expression of the low-affinity neurotrophin receptor, p75(ntr), is upregulated by oligodendroglial progenitors adjacent to the subventricular zone in response to demyelination. Glia 48:64–75

    PubMed  Google Scholar 

  45. Arai K, Lo E (2009) An oligovascular niche: cerebral endothelial cells promote the survival and proliferation of oligodendrocyte precursor cells. J Neurosci 29:4351–4356

    CAS  PubMed  Google Scholar 

  46. Hayakawa K, Seo J, Pham L-D, Miyamoto N, Som A, Guo S, Kim K-W, Lo E, Arai K (2012) Cerebral endothelial-derived vascular endothelial growth factor promotes the migration but not the proliferation of oligodendrocyte precursor cells in vitro. Neurosci Lett 513:42–46

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Hayakawa K, Pham L-D, Som A, Lee B, Guo S, Lo E, Arai K (2011) Vascular endothelial growth factor regulates the migration of oligodendrocyte precursor cells. J Neurosci 31:10666–10770

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Hansson E, Ronnback L (2003) Glial neuronal signaling in the central nervous system. FASEB J 17:341–348

    CAS  PubMed  Google Scholar 

  49. Wilkins A, Majed H, Layfield R, Compston A, Chandran S (2003) Oligodendrocytes promote neuronal survival and axonal length by distinct intracellular mechanisms: a novel role for oligodendrocyte-derived glial cell line-derived neurotrophic factor. J Neurosci 23:4967–4974

    CAS  PubMed  Google Scholar 

  50. Lee Y, Morrison BM, Li Y, Lengacher S, Farah MH, Hoffman PN, Liu Y, Tsingalia A, Jin L, Zhang PW, Pellerin L, Magistretti PJ, Rothstein JD (2012) Oligodendroglia metabolically support axons and contribute to neurodegeneration. Nature 487:443–448

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Pham LD, Hayakawa K, Seo JH, Nguyen MN, Som AT, Lee BJ, Guo S, Kim KW, Lo EH, Arai K (2012) Crosstalk between oligodendrocytes and cerebral endothelium contributes to vascular remodeling after white matter injury. Glia 60:875–881

    PubMed Central  PubMed  Google Scholar 

  52. Zacchigna S, Lambrechts D, Carmeliet P (2008) Neurovascular signalling defects in neurodegeneration. Nat Rev Neurosci 9:169–181

    CAS  PubMed  Google Scholar 

  53. Chopp M, Zhang ZG, Jiang Q (2007) Neurogenesis, angiogenesis, and MRI indices of functional recovery from stroke. Stroke 38:827–831

    PubMed  Google Scholar 

  54. Greenberg DA, Jin K (2005) From angiogenesis to neuropathology. Nature 438:954–959

    CAS  PubMed  Google Scholar 

  55. Leventhal C, Rafii S, Rafii D, Shahar A, Goldman SA (1999) Endothelial trophic support of neuronal production and recruitment from the adult mammalian subependyma. Mol Cell Neurosci 13:450–464

    CAS  PubMed  Google Scholar 

  56. Shen Q, Goderie SK, Jin L, Karanth N, Sun Y, Abramova N, Vincent P, Pumiglia K, Temple S (2004) Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science 304:1338–1340

    CAS  PubMed  Google Scholar 

  57. Acheson A, Conover JC, Fandl JP, DeChiara TM, Russell M, Thadani A, Squinto SP, Yancopoulos GD, Lindsay RM (1995) A BDNF autocrine loop in adult sensory neurons prevents cell death. Nature 374:450–453

    CAS  PubMed  Google Scholar 

  58. Huang EJ, Reichardt LF (2001) Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci 24:677–736

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Van’t Veer A, Du Y, Fischer TZ, Boetig DR, Wood MR, Dreyfus CF (2009) Brain-derived neurotrophic factor effects on oligodendrocyte progenitors of the basal forebrain are mediated through Trkb and the map kinase pathway. J Neurosci Res 87:69–78

    PubMed  Google Scholar 

  60. Vondran MW, Clinton-Luke P, Honeywell JZ, Dreyfus CF (2010) Bdnf+/− mice exhibit deficits in oligodendrocyte lineage cells of the basal forebrain. Glia 58:848–856

    PubMed Central  PubMed  Google Scholar 

  61. Xiao J, Ferner AH, Wong AW, Denham M, Kilpatrick TJ, Murray SS (2012) Extracellular signal-regulated kinase 1/2 signaling promotes oligodendrocyte myelination in vitro. J Neurochem 122:1167–1180

    CAS  PubMed  Google Scholar 

  62. Xiao J, Wong AW, Willingham MM, van den Buuse M, Kilpatrick TJ, Murray SS (2010) Brain-derived neurotrophic factor promotes central nervous system myelination via a direct effect upon oligodendrocytes. Neurosignals 18:186–202

    CAS  PubMed  Google Scholar 

  63. VonDran MW, Singh H, Honeywell JZ, Dreyfus CF (2011) Levels of BDNF impact oligodendrocyte lineage cells following a cuprizone lesion. J Neurosci 31:14182–14190

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Nakajima H, Uchida K, Yayama T, Kobayashi S, Guerrero AR, Furukawa S, Baba H (2010) Targeted retrograde gene delivery of brain-derived neurotrophic factor suppresses apoptosis of neurons and oligodendroglia after spinal cord injury in rats. Spine (Phila Pa 1976) 35:497–504

    Google Scholar 

  65. Chen BY, Wang X, Wang ZY, Wang YZ, Chen LW, Luo ZJ (2013) Brain-derived neurotrophic factor stimulates proliferation and differentiation of neural stem cells, possibly by triggering the Wnt/beta-catenin signaling pathway. J Neurosci Res 91:30–41

    CAS  PubMed  Google Scholar 

  66. Kermani P, Hempstead B (2007) Brain-derived neurotrophic factor: a newly described mediator of angiogenesis. Trends Cardiovasc Med 17:140–143

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Dai X, Qu P, Dreyfus CF (2001) Neuronal signals regulate neurotrophin expression in oligodendrocytes of the basal forebrain. Glia 34:234–239

    CAS  PubMed  Google Scholar 

  68. Dai X, Lercher LD, Clinton PM, Du Y, Livingston DL, Vieira C, Yang L, Shen MM, Dreyfus CF (2003) The trophic role of oligodendrocytes in the basal forebrain. J Neurosci 23:5846–5853

    CAS  PubMed  Google Scholar 

  69. Dougherty KD, Dreyfus CF, Black IB (2000) Brain-derived neurotrophic factor in astrocytes, oligodendrocytes, and microglia/macrophages after spinal cord injury. Neurobiol Dis 7:574–585

    CAS  PubMed  Google Scholar 

  70. Wetmore C, Olson L (1995) Neuronal and nonneuronal expression of neurotrophins and their receptors in sensory and sympathetic ganglia suggest new intercellular trophic interactions. J Comp Neurol 353:143–159

    CAS  PubMed  Google Scholar 

  71. McKinnon RD, Matsui T, Dubois-Dalcq M, Aaronson SA (1990) FGF modulates the PDGF-driven pathway of oligodendrocyte development. Neuron 5:603–614

    CAS  PubMed  Google Scholar 

  72. Gard AL, Pfeiffer SE (1993) Glial cell mitogens bFGF and PDGF differentially regulate development of o4+galc-oligodendrocyte progenitors. Dev Biol 159:618–630

    CAS  PubMed  Google Scholar 

  73. Bansal R, Pfeiffer SE (1994) Inhibition of protein and lipid sulfation in oligodendrocytes blocks biological responses to FGF-2 and retards cytoarchitectural maturation, but not developmental lineage progression. Dev Biol 162:511–524

    CAS  PubMed  Google Scholar 

  74. Bogler O, Wren D, Barnett SC, Land H, Noble M (1990) Cooperation between two growth factors promotes extended self-renewal and inhibits differentiation of oligodendrocyte-type-2 astrocyte (o-2a) progenitor cells. Proc Natl Acad Sci USA 87:6368–6372

    CAS  PubMed  Google Scholar 

  75. Osterhout DJ, Ebner S, Xu J, Ornitz DM, Zazanis GA, McKinnon RD (1997) Transplanted oligodendrocyte progenitor cells expressing a dominant-negative FGF receptor transgene fail to migrate in vivo. J Neurosci 17:9122–9132

    CAS  PubMed  Google Scholar 

  76. Milner R, Anderson HJ, Rippon RF, McKay JS, Franklin RJ, Marchionni MA, Reynolds R, Ffrench-Constant C (1997) Contrasting effects of mitogenic growth factors on oligodendrocyte precursor cell migration. Glia 19:85–90

    CAS  PubMed  Google Scholar 

  77. Decker L, Avellana-Adalid V, Nait-Oumesmar B, Durbec P, Baron-Van Evercooren A (2000) Oligodendrocyte precursor migration and differentiation: combined effects of PSA residues, growth factors, and substrates. Mol Cell Neurosci 16:422–439

    CAS  PubMed  Google Scholar 

  78. Yasuda T, Grinspan J, Stern J, Franceschini B, Bannerman P, Pleasure D (1995) Apoptosis occurs in the oligodendroglial lineage, and is prevented by basic fibroblast growth factor. J Neurosci Res 40:306–317

    CAS  PubMed  Google Scholar 

  79. Barres BA, Schmid R, Sendnter M, Raff MC (1993) Multiple extracellular signals are required for long-term oligodendrocyte survival. Development 118:283–295

    CAS  PubMed  Google Scholar 

  80. Issa R, AlQteishat A, Mitsios N, Saka M, Krupinski J, Tarkowski E, Gaffney J, Slevin M, Kumar S, Kumar P (2005) Expression of basic fibroblast growth factor MRNA and protein in the human brain following ischaemic stroke. Angiogenesis 8:53–62

    CAS  PubMed  Google Scholar 

  81. ten Dijke P, Arthur HM (2007) Extracellular control of TGFbeta signalling in vascular development and disease. Nat Rev Mol Cell Biol 8:857–869

    PubMed  Google Scholar 

  82. McKinnon RD, Piras G, Ida JA Jr, Dubois-Dalcq M (1993) A role for TGF-beta in oligodendrocyte differentiation. J Cell Biol 121:1397–1407

    CAS  PubMed  Google Scholar 

  83. Hinks GL, Franklin RJ (1999) Distinctive patterns of PDGF-a, FGF-2, IGF-i, and TGF-beta1 gene expression during remyelination of experimentally-induced spinal cord demyelination. Mol Cell Neurosci 14:153–168

    CAS  PubMed  Google Scholar 

  84. Bottner M, Krieglstein K, Unsicker K (2000) The transforming growth factor-betas: structure, signaling, and roles in nervous system development and functions. J Neurochem 75:2227–2240

    CAS  PubMed  Google Scholar 

  85. Vivien D, Ali C (2006) Transforming growth factor-beta signalling in brain disorders. Cytokine Growth Factor Rev 17:121–128

    CAS  PubMed  Google Scholar 

  86. Krupinski J, Kumar P, Kumar S, Kaluza J (1996) Increased expression of TGF-beta 1 in brain tissue after ischemic stroke in humans. Stroke J Cereb Circ 27:852–857

    CAS  Google Scholar 

  87. Ata AK, Funa K, Olsson Y (1997) Expression of various TGF-beta isoforms and type i receptor in necrotizing human brain lesions. Acta Neuropathol 93:326–333

    CAS  PubMed  Google Scholar 

  88. Slevin M, Krupinski J, Slowik A, Kumar P, Szczudlik A, Gaffney J (2000) Serial measurement of vascular endothelial growth factor and transforming growth factor-beta1 in serum of patients with acute ischemic stroke. Stroke J Cereb Circ 31:1863–1870

    CAS  Google Scholar 

  89. Zhang ZG, Zhang L, Jiang Q, Chopp M (2002) Bone marrow-derived endothelial progenitor cells participate in cerebral neovascularization after focal cerebral ischemia in the adult mouse. Circ Res 90:284–288

    CAS  PubMed  Google Scholar 

  90. Krupinski J, Vodovotz Y, Li C, Slowik A, Beevers D, Flanders KC, Lip G, Kumar P, Szczudlik A (1998) Inducible nitric oxide production and expression of transforming growth factor-beta1 in serum and CSF after cerebral ischaemic stroke in man. Nitric Oxide Biol Chem 2:442–453

    CAS  Google Scholar 

  91. Govani FS, Shovlin CL (2009) Hereditary haemorrhagic telangiectasia: a clinical and scientific review. Eur J Hum Genet 17:860–871

    CAS  PubMed  Google Scholar 

  92. Hara K, Shiga A, Fukutake T, Nozaki H, Miyashita A, Yokoseki A, Kawata H, Koyama A, Arima K, Takahashi T, Ikeda M, Shiota H, Tamura M, Shimoe Y, Hirayama M, Arisato T, Yanagawa S, Tanaka A, Nakano I, Ikeda S, Yoshida Y, Yamamoto T, Ikeuchi T, Kuwano R, Nishizawa M, Tsuji S, Onodera O (2009) Association of HTRA1 mutations and familial ischemic cerebral small-vessel disease. N Engl J Med 360:1729–1739

    CAS  PubMed  Google Scholar 

  93. Fok-Seang J, DiProspero NA, Meiners S, Muir E, Fawcett JW (1998) Cytokine-induced changes in the ability of astrocytes to support migration of oligodendrocyte precursors and axon growth. Eur J Neurosci 10:2400–2415

    CAS  PubMed  Google Scholar 

  94. Schnadelbach O, Mandl C, Faissner A (1998) Expression of DSD-1-pg in primary neural and glial-derived cell line cultures, upregulation by TGF-beta, and implications for cell-substrate interactions of the glial cell line oli-neu. Glia 23:99–119

    CAS  PubMed  Google Scholar 

  95. Kitamura K, Kangawa K, Kawamoto M, Ichiki Y, Nakamura S, Matsuo H, Eto T (1993) Adrenomedullin: a novel hypotensive peptide isolated from human pheochromocytoma. Biochem Biophys Res Commun 192:553–560

    CAS  PubMed  Google Scholar 

  96. Kitamura K, Kangawa K, Kawamoto M, Ichiki Y, Nakamura S, Matsuo H, Eto T (2012) Adrenomedullin: a novel hypotensive peptide isolated from human pheochromocytoma. 1993. Biochem Biophys Res Commun 425:548–555

    CAS  PubMed  Google Scholar 

  97. Kato J, Tsuruda T, Kita T, Kitamura K, Eto T (2005) Adrenomedullin: a protective factor for blood vessels. Arterioscler Thromb Vasc Biol 25:2480–2487

    CAS  PubMed  Google Scholar 

  98. Serrano J, Alonso D, Fernandez AP, Encinas JM, Lopez JC, Castro-Blanco S, Fernandez-Vizarra P, Richart A, Santacana M, Uttenthal LO, Bentura ML, Martinez-Murillo R, Martinez A, Cuttitta F, Rodrigo J (2002) Adrenomedullin in the central nervous system. Microsc Res Tech 57:76–90

    CAS  PubMed  Google Scholar 

  99. Dogan A, Suzuki Y, Koketsu N, Osuka K, Saito K, Takayasu M, Shibuya M, Yoshida J (1997) Intravenous infusion of adrenomedullin and increase in regional cerebral blood flow and prevention of ischemic brain injury after middle cerebral artery occlusion in rats. J Cereb Blood Flow Metab 17:19–25

    CAS  PubMed  Google Scholar 

  100. Watanabe K, Takayasu M, Noda A, Hara M, Takagi T, Suzuki Y, Yoshia J (2001) Adrenomedullin reduces ischemic brain injury after transient middle cerebral artery occlusion in rats. Acta Neurochir (Wien) 143:1157–1161

    CAS  Google Scholar 

  101. Eto T (2001) A review of the biological properties and clinical implications of adrenomedullin and proadrenomedullin n-terminal 20 peptide (PAMP), hypotensive and vasodilating peptides. Peptides 22:1693–1711

    CAS  PubMed  Google Scholar 

  102. Maki T, Ihara M, Fujita Y, Nambu T, Miyashita K, Yamada M, Washida K, Nishio K, Ito H, Harada H, Yokoi H, Arai H, Itoh H, Nakao K, Takahashi R, Tomimoto H (2011) Angiogenic and vasoprotective effects of adrenomedullin on prevention of cognitive decline after chronic cerebral hypoperfusion in mice. Stroke 42:1122–1128

    CAS  PubMed  Google Scholar 

  103. Uezono Y, Nakamura E, Ueda Y, Shibuya I, Ueta Y, Yokoo H, Yanagita T, Toyohira Y, Kobayashi H, Yanagihara N, Wada A (2001) Production of cAMP by adrenomedullin in human oligodendroglial cell line KG1C: comparison with calcitonin gene-related peptide and amylin. Brain Res Mol Brain Res 97:59–69

    CAS  PubMed  Google Scholar 

  104. Maki T, Ihara M, Fujita Y, Nambu T, Harada H, Ito H, Nakao K, Tomimoto H, Takahashi R (2011) Angiogenic roles of adrenomedullin through vascular endothelial growth factor induction. Neuroreport 22:442–447

    CAS  PubMed  Google Scholar 

  105. Schwarz N, Renshaw D, Kapas S, Hinson JP (2006) Adrenomedullin increases the expression of calcitonin-like receptor and receptor activity modifying protein 2 MRNA in human microvascular endothelial cells. J Endocrinol 190:505–514

    CAS  PubMed  Google Scholar 

  106. Iimuro S, Shindo T, Moriyama N, Amaki T, Niu P, Takeda N, Iwata H, Zhang Y, Ebihara A, Nagai R (2004) Angiogenic effects of adrenomedullin in ischemia and tumor growth. Circ Res 95:415–423

    CAS  PubMed  Google Scholar 

  107. Ichikawa-Shindo Y, Sakurai T, Kamiyoshi A, Kawate H, Iinuma N, Yoshizawa T, Koyama T, Fukuchi J, Iimuro S, Moriyama N, Kawakami H, Murata T, Kangawa K, Nagai R, Shindo T (2008) The GPCR modulator protein RAMP2 is essential for angiogenesis and vascular integrity. J Clin Invest 118:29–39

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Rosenstein JM, Krum JM (2004) New roles for VEGF in nervous tissue–beyond blood vessels. Exp Neurol 187:246–253

    CAS  PubMed  Google Scholar 

  109. Lambrechts D, Carmeliet P (2006) VEGF at the neurovascular interface: therapeutic implications for motor neuron disease. Biochim Biophys Acta 1762:1109–1121

    CAS  PubMed  Google Scholar 

  110. Chow J, Ogunshola O, Fan SY, Li Y, Ment LR, Madri JA (2001) Astrocyte-derived VEGF mediates survival and tube stabilization of hypoxic brain microvascular endothelial cells in vitro. Brain Res Dev Brain Res 130:123–132

    CAS  PubMed  Google Scholar 

  111. Carmeliet P, Storkebaum E (2002) Vascular and neuronal effects of VEGF in the nervous system: implications for neurological disorders. Semin Cell Dev Biol 13:39–53

    CAS  PubMed  Google Scholar 

  112. Le Bras B, Barallobre MJ, Homman-Ludiye J, Ny A, Wyns S, Tammela T, Haiko P, Karkkainen MJ, Yuan L, Muriel MP, Chatzopoulou E, Breant C, Zalc B, Carmeliet P, Alitalo K, Eichmann A, Thomas JL (2006) VEGF-c is a trophic factor for neural progenitors in the vertebrate embryonic brain. Nat Neurosci 9:340–348

    PubMed  Google Scholar 

  113. Sun Y, Jin K, Xie L, Childs J, Mao XO, Logvinova A, Greenberg DA (2003) VEGF-induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia. J Clin Invest 111:1843–1851

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Zhang ZG, Zhang L, Jiang Q, Zhang R, Davies K, Powers C, Bruggen N, Chopp M (2000) VEGF enhances angiogenesis and promotes blood–brain barrier leakage in the ischemic brain. J Clin Invest 106:829–838

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Dzietko M, Derugin N, Wendland MF, Vexler ZS, Ferriero DM (2013) Delayed VEGF treatment enhances angiogenesis and recovery after neonatal focal rodent stroke. Transl Stroke Res 4:189–200

    CAS  PubMed Central  PubMed  Google Scholar 

  116. Wang Y, Kilic E, Kilic U, Weber B, Bassetti CL, Marti HH, Hermann DM (2005) VEGF overexpression induces post-ischaemic neuroprotection, but facilitates haemodynamic steal phenomena. Brain 128:52–63

    PubMed  Google Scholar 

  117. Fagan SC, Hess DC, Hohnadel EJ, Pollock DM, Ergul A (2004) Targets for vascular protection after acute ischemic stroke. Stroke 35:2220–2225

    CAS  PubMed  Google Scholar 

  118. Hansen TM, Moss AJ, Brindle NP (2008) Vascular endothelial growth factor and angiopoietins in neurovascular regeneration and protection following stroke. Curr Neurovasc Res 5:235–244

    Google Scholar 

  119. Rosell A, Lo EH (2008) Multiphasic roles for matrix metalloproteinases after stroke. Curr Opin Pharmacol 8:82–89

    CAS  PubMed  Google Scholar 

  120. Rosenberg GA, Sullivan N, Esiri MM (2001) White matter damage is associated with matrix metalloproteinases in vascular dementia. Stroke 32:1162–1168

    CAS  PubMed  Google Scholar 

  121. Nakaji K, Ihara M, Takahashi C, Itohara S, Noda M, Takahashi R, Tomimoto H (2006) Matrix metalloproteinase-2 plays a critical role in the pathogenesis of white matter lesions after chronic cerebral hypoperfusion in rodents. Stroke 37:2816–2823

    CAS  PubMed  Google Scholar 

  122. Monet-Lepretre M, Haddad I, Baron-Menguy C, Fouillot-Panchal M, Riani M, Domenga-Denier V, Dussaule C, Cognat E, Vinh J, Joutel A (2013) Abnormal recruitment of extracellular matrix proteins by excess notch3 ECD: a new pathomechanism in CADASIL. Brain 136:1830–1845

    PubMed  Google Scholar 

  123. Morancho A, Rosell A, Garcia-Bonilla L, Montaner J (2010) Metalloproteinase and stroke infarct size: role for anti-inflammatory treatment? Ann N Y Acad Sci 1207:123–133

    CAS  PubMed  Google Scholar 

  124. Gu Z, Kaul M, Yan B, Kridel SJ, Cui J, Strongin A, Smith JW, Liddington RC, Lipton SA (2002) S-nitrosylation of matrix metalloproteinases: signaling pathway to neuronal cell death. Science 297:1186–1190

    CAS  PubMed  Google Scholar 

  125. Zhao BQ, Tejima E, Lo EH (2007) Neurovascular proteases in brain injury, hemorrhage and remodeling after stroke. Stroke 38:748–752

    CAS  PubMed  Google Scholar 

  126. Zhao BQ, Wang S, Kim HY, Storrie H, Rosen BR, Mooney DJ, Wang X, Lo EH (2006) Role of matrix metalloproteinases in delayed cortical responses after stroke. Nat Med 12:441–445

    CAS  PubMed  Google Scholar 

  127. Lee SR, Kim HY, Rogowska J, Zhao BQ, Bhide P, Parent JM, Lo EH (2006) Involvement of matrix metalloproteinase in neuroblast cell migration from the subventricular zone after stroke. J Neurosci 26:3491–3495

    CAS  PubMed  Google Scholar 

  128. Larsen PH, Wells JE, Stallcup WB, Opdenakker G, Yong VW (2003) Matrix metalloproteinase-9 facilitates remyelination in part by processing the inhibitory NG2 proteoglycan. J Neurosci 23:11127–11135

    CAS  PubMed  Google Scholar 

  129. Hansmann F, Herder V, Kalkuhl A, Haist V, Zhang N, Schaudien D, Deschl U, Baumgartner W, Ulrich R (2012) Matrix metalloproteinase-12 deficiency ameliorates the clinical course and demyelination in Theiler’s murine encephalomyelitis. Acta Neuropathol 124:127–142

    CAS  PubMed  Google Scholar 

  130. Yang Y, Jalal FY, Thompson JF, Walker EJ, Candelario-Jalil E, Li L, Reichard RR, Ben C, Sang QX, Cunningham LA, Rosenberg GA (2011) Tissue inhibitor of metalloproteinases-3 mediates the death of immature oligodendrocytes via TNF-alpha/TACE in focal cerebral ischemia in mice. J Neuroinflammation 8:108

    CAS  PubMed Central  PubMed  Google Scholar 

  131. Byravan S, Foster LM, Phan T, Verity AN, Campagnoni AT (1994) Murine oligodendroglial cells express nerve growth factor. Proc Natl Acad Sci USA 91:8812–8816

    CAS  PubMed  Google Scholar 

  132. Wilkins A, Chandran S, Compston A (2001) A role for oligodendrocyte-derived IGF-1 in trophic support of cortical neurons. Glia 36:48–57

    CAS  PubMed  Google Scholar 

  133. Gonzalez D, Dees WL, Hiney JK, Ojeda SR, Saneto RP (1990) Expression of beta-nerve growth factor in cultured cells derived from the hypothalamus and cerebral cortex. Brain Res 511:249–258

    CAS  PubMed  Google Scholar 

  134. Raabe TD, Clive DR, Wen D, DeVries GH (1997) Neonatal oligodendrocytes contain and secrete neuregulins in vitro. J Neurochem 69:1859–1863

    CAS  PubMed  Google Scholar 

  135. Deadwyler GD, Pouly S, Antel JP, Devries GH (2000) Neuregulins and ERBB receptor expression in adult human oligodendrocytes. Glia 32:304–312

    CAS  PubMed  Google Scholar 

  136. Strelau J, Unsicker K (1999) Gdnf family members and their receptors: expression and functions in two oligodendroglial cell lines representing distinct stages of oligodendroglial development. Glia 26:291–301

    CAS  PubMed  Google Scholar 

  137. Kim JB, Lim CM, Yu YM, Lee JK (2008) Induction and subcellular localization of high-mobility group box-1 (HMGB1) in the postischemic rat brain. J Neurosci Res 86:1125–1131

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Institutes of Health, Research Abroad from the Uehara Memorial Foundation, National Research Foundation of Korea through the World Class University Program (R31-2008-000-10103-0), and the Global Research Laboratory Program (2011-0021874).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken Arai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miyamoto, N., Pham, LD.D., Seo, J.H. et al. Crosstalk between cerebral endothelium and oligodendrocyte. Cell. Mol. Life Sci. 71, 1055–1066 (2014). https://doi.org/10.1007/s00018-013-1488-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-013-1488-9

Keywords

Navigation