Skip to main content

Advertisement

Log in

Adult neurogenesis in Parkinson’s disease

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD), the second most common neurodegenerative disorder, affects 1–2 % of humans aged 60 years and older. The diagnosis of PD is based on motor symptoms such as bradykinesia, rigidity, tremor, and postural instability associated with the striatal dopaminergic deficit that is linked to neurodegenerative processes in the substantia nigra (SN). In the past, cellular replacement strategies have been evaluated for their potential to alleviate these symptoms. Adult neurogenesis, the generation of new neurons within two proliferative niches in the adult brain, is being intensively studied as one potential mode for cell-based therapies. The subventricular zone provides new neurons for the olfactory bulb functionally contributing to olfaction. The subgranular zone of the hippocampus produces new granule neurons for the dentate gyrus, required for memory formation and proper processing of anxiety provoking stimuli. Recent years have revealed that PD is associated with non-motor symptoms such as hyposmia, anhedonia, lack of novelty seeking behavior, depression, and anxiety that are not directly associated with neurodegenerative processes in the SN. This broad spectrum of non-motor symptoms may partly rely on proper olfactorial processing and hippocampal function. Therefore, it is conceivable that some non-motor deficits in PD are related to defective adult neurogenesis. Accordingly, in animal models and postmortem studies of PD, adult neurogenesis is severely affected, although the exact mechanisms and effects of these changes are not yet fully understood or are under debate due to conflicting results. Here, we review the current concepts related to the dynamic interplay between endogenous cellular plasticity and PD-associated pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Farrer MJ (2006) Genetics of Parkinson disease: paradigm shifts and future prospects. Nat Rev Genet 7(4):306–318

    PubMed  CAS  Google Scholar 

  2. Tolosa E, Poewe W (2009) Premotor Parkinson disease. Neurology 72(7 Suppl):S1

    PubMed  Google Scholar 

  3. Braak H, Del Tredici K, Rüb U, de Vos RAI, Jansen Steur ENH, Braak E (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24(2):197–211

    PubMed  Google Scholar 

  4. O’Sullivan SS, Williams DR, Gallagher DA, Massey LA, Silveira-Moriyama L, Lees AJ (2008) Nonmotor symptoms as presenting complaints in Parkinson’s disease: a clinicopathological study. Mov Disord 23(1):101–106

    PubMed  Google Scholar 

  5. Aarsland D, Bronnick K, Williams-Gray C et al (2010) Mild cognitive impairment in Parkinson disease: a multicenter pooled analysis. Neurology 75(12):1062–1069

    PubMed  CAS  Google Scholar 

  6. Conway KA, Lee SJ, Rochet JC, Ding TT, Williamson RE, Lansbury PT (2000) Acceleration of oligomerization, not fibrillization, is a shared property of both alpha-synuclein mutations linked to early-onset Parkinson’s disease: implications for pathogenesis and therapy. Proc Natl Acad Sci USA 97(2):571–576

    PubMed  CAS  Google Scholar 

  7. Bartels T, Choi JG, Selkoe DJ (2011) α-Synuclein occurs physiologically as a helically folded tetramer that resists aggregation. Nature 477(7362):107–110

    PubMed  CAS  Google Scholar 

  8. Desplats P, Lee H-J, Bae E-J, Patrick C, Rockenstein E, Crews L, Spencer B, Masliah E, Lee S-J (2009) Inclusion formation and neuronal cell death through neuron-to-neuron transmission of alpha-synuclein. Proc Natl Acad Sci USA 106(31):13010–13015

    PubMed  CAS  Google Scholar 

  9. Danzer KM, Haasen D, Karow AR, Moussaud S, Habeck M, Giese A, Kretzschmar H, Hengerer B, Kostka M (2007) Different species of alpha-synuclein oligomers induce calcium influx and seeding. J Neurosci 27(34):9220–9232

    PubMed  CAS  Google Scholar 

  10. Winner B, Jappelli R, Maji SK et al (2011) In vivo demonstration that alpha-synuclein oligomers are toxic. Proc Natl Acad Sci USA 108(10):4194–4199

    PubMed  CAS  Google Scholar 

  11. Danzer KM, Krebs SK, Wolff M, Birk G, Hengerer B (2009) Seeding induced by α-synuclein oligomers provides evidence for spreading of α-synuclein pathology. J Neurochem 111(1):192–203

    PubMed  CAS  Google Scholar 

  12. Lee H-J, Suk J-E, Patrick C, Bae E-J, Cho J-H, Rho S, Hwang D, Masliah E, Lee S-J (2010) Direct transfer of alpha-synuclein from neuron to astroglia causes inflammatory responses in synucleinopathies. J Biol Chem 285(12):9262–9272

    PubMed  CAS  Google Scholar 

  13. Li J-Y, Englund E, Holton JL et al (2008) Lewy bodies in grafted neurons in subjects with Parkinson’s disease suggest host-to-graft disease propagation. Nat Med 14(5):501–503

    PubMed  CAS  Google Scholar 

  14. Kordower JH, Chu Y, Hauser RA, Freeman TB, Olanow CW (2008) Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson’s disease. Nat Med 14(5):504–506

    PubMed  CAS  Google Scholar 

  15. McGeer PL, McGeer EG (2008) Glial reactions in Parkinson’s disease. Mov Disord 23(4):474–483

    PubMed  Google Scholar 

  16. Damier P, Hirsch EC, Zhang P, Agid Y, Javoy-Agid F (1993) Glutathione peroxidase, glial cells and Parkinson’s disease. Neuroscience 52(1):1–6

    PubMed  CAS  Google Scholar 

  17. Hirsch EC, Hunot S (2009) Neuroinflammation in Parkinson’s disease: a target for neuroprotection? Lancet Neurol 8(4):382–397

    PubMed  CAS  Google Scholar 

  18. Altman J (1969) Autoradiographic and histological studies of postnatal neurogenesis. IV. Cell proliferation and migration in the anterior forebrain, with special reference to persisting neurogenesis in the olfactory bulb. J Comp Neurol 137(4):433–457

    PubMed  CAS  Google Scholar 

  19. Curtis MA, Kam M, Nannmark U et al (2007) Human neuroblasts migrate to the olfactory bulb via a lateral ventricular extension. Science 315(5816):1243–1249

    PubMed  CAS  Google Scholar 

  20. Eriksson PS, Perfilieva E, Bjork-Eriksson T, Alborn AM, Nordborg C, Peterson DA, Gage FH (1998) Neurogenesis in the adult human hippocampus. Nat Med 4(11):1313–1317

    PubMed  CAS  Google Scholar 

  21. Zhao C, Deng W, Gage FH (2008) Mechanisms and functional implications of adult neurogenesis. Cell 132(4):645–660

    PubMed  CAS  Google Scholar 

  22. Mu Y, Lee SW, Gage FH (2010) Signaling in adult neurogenesis. Curr Opin Neurobiol 20(4):416–423

    PubMed  CAS  Google Scholar 

  23. Garcia ADR, Doan NB, Imura T, Bush TG, Sofroniew MV (2004) GFAP-expressing progenitors are the principal source of constitutive neurogenesis in adult mouse forebrain. Nat Neurosci 7(11):1233–1241

    PubMed  CAS  Google Scholar 

  24. Suh H, Consiglio A, Ray J, Sawai T, D’Amour KA, Gage FH (2007) In vivo fate analysis reveals the multipotent and self-renewal capacities of Sox2 + neural stem cells in the adult hippocampus. Cell Stem Cell 1(5):515–528

    PubMed  CAS  Google Scholar 

  25. Doetsch F (2003) A niche for adult neural stem cells. Curr Opin Genet Dev 13(5):543–550

    PubMed  CAS  Google Scholar 

  26. Corotto FS, Henegar JR, Maruniak JA (1994) Odor deprivation leads to reduced neurogenesis and reduced neuronal survival in the olfactory bulb of the adult mouse. Neuroscience 61(4):739–744

    PubMed  CAS  Google Scholar 

  27. Sanai N, Nguyen T, Ihrie RA et al (2011) Corridors of migrating neurons in the human brain and their decline during infancy. Nature 478(7369):382–386

    PubMed  CAS  Google Scholar 

  28. Doetsch F, Caillé I, Lim DA, Garcia-Verdugo JM, Alvarez-Buylla A (1999) Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97(6):703–716

    PubMed  CAS  Google Scholar 

  29. Doetsch F, Garcia-Verdugo JM, Alvarez-Buylla A (1997) Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain. J Neurosci 17(13):5046–5061

    PubMed  CAS  Google Scholar 

  30. Lendahl U, Zimmerman LB, McKay RD (1990) CNS stem cells express a new class of intermediate filament protein. Cell 60(4):585–595

    PubMed  CAS  Google Scholar 

  31. Lugert S, Basak O, Knuckles P, Haussler U, Fabel K, Götz M, Haas CA, Kempermann G, Taylor V, Giachino C (2010) Quiescent and active hippocampal neural stem cells with distinct morphologies respond selectively to physiological and pathological stimuli and aging. Cell Stem Cell 6(5):445–456

    PubMed  CAS  Google Scholar 

  32. Höglinger GU, Rizk P, Muriel MP, Duyckaerts C, Oertel WH, Caille I, Hirsch EC (2004) Dopamine depletion impairs precursor cell proliferation in Parkinson disease. Nat Neurosci 7(7):726–735

    PubMed  Google Scholar 

  33. Brown JP, Couillard-Despres S, Cooper-Kuhn CM, Winkler J, Aigner L, Kuhn HG (2003) Transient expression of double cortin during adult neurogenesis. J Comp Neurol 467(1):1–10

    PubMed  CAS  Google Scholar 

  34. Tomasiewicz H, Ono K, Yee D, Thompson C, Goridis C, Rutishauser U, Magnuson T (1993) Genetic deletion of a neural cell adhesion molecule variant (N-CAM-180) produces distinct defects in the central nervous system. Neuron 11(6):1163–1174

    PubMed  CAS  Google Scholar 

  35. Seki T, Arai Y (1999) Temporal and spacial relationships between PSA-NCAM-expressing, newly generated granule cells, and radial glia-like cells in the adult dentate gyrus. J Comp Neurol 410(3):503–513

    PubMed  CAS  Google Scholar 

  36. Luskin MB (1993) Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone. Neuron 11(1):173–189

    PubMed  CAS  Google Scholar 

  37. Lois C, Alvarez-Buylla A (1994) Long-distance neuronal migration in the adult mammalian brain. Science 264(5162):1145–1148

    PubMed  CAS  Google Scholar 

  38. Lois C, Garcia-Verdugo JM, Alvarez-Buylla A (1996) Chain migration of neuronal precursors. Science 271(5251):978–981

    PubMed  CAS  Google Scholar 

  39. Alvarez-Buylla A, Garcia-Verdugo J-M (2002) Neurogenesis in adult subventricular zone. J Neurosci 22(3):629–634

    PubMed  CAS  Google Scholar 

  40. Winner B, Cooper-Kuhn CM, Aigner R, Winkler J, Kuhn HG (2002) Long-term survival and cell death of newly generated neurons in the adult rat olfactory bulb. Eur J Neurosci 16(9):1681–1689

    PubMed  Google Scholar 

  41. Sandler R, Smith AD (1991) Coexistence of GABA and glutamate in mossy fiber terminals of the primate hippocampus: an ultrastructural study. J Comp Neurol 303(2):177–192

    PubMed  CAS  Google Scholar 

  42. Cameron HA, McEwen BS, Gould E (1995) Regulation of adult neurogenesis by excitatory input and NMDA receptor activation in the dentate gyrus. J Neurosci 15(6):4687–4692

    PubMed  CAS  Google Scholar 

  43. Kuhn HG, Dickinson-Anson H, Gage FH (1996) Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation. J Neurosci 16(6):2027–2033

    PubMed  CAS  Google Scholar 

  44. Ge S, Yang C-H, Hsu K-S, Ming G-L, Song H (2007) A critical period for enhanced synaptic plasticity in newly generated neurons of the adult brain. Neuron 54(4):559–566

    PubMed  CAS  Google Scholar 

  45. Biebl M, Winner B, Winkler J (2005) Caspase inhibition decreases cell death in regions of adult neurogenesis. NeuroReport 16(11):1147–1150

    PubMed  CAS  Google Scholar 

  46. Lazarini F, Lledo P-M (2011) Is adult neurogenesis essential for olfaction? Trends Neurosci 34(1):20–30

    PubMed  CAS  Google Scholar 

  47. Mouret A, Gheusi G, Gabellec M–M, de Chaumont F, Olivo-Marin J-C, Lledo P-M (2008) Learning and survival of newly generated neurons: when time matters. J Neurosci 28(45):11511–11516

    PubMed  CAS  Google Scholar 

  48. Alonso M, Viollet C, Gabellec M–M, Meas-Yedid V, Olivo-Marin J-C, Lledo P-M (2006) Olfactory discrimination learning increases the survival of adult-born neurons in the olfactory bulb. J Neurosci 26(41):10508–10513

    PubMed  CAS  Google Scholar 

  49. Mandairon N, Linster C (2009) Odor perception and olfactory bulb plasticity in adult mammals. J Neurophysiol 101(5):2204–2209

    PubMed  Google Scholar 

  50. Sultan S, Mandairon N, Kermen F, Garcia S, Sacquet J, Didier A (2010) Learning-dependent neurogenesis in the olfactory bulb determines long-term olfactory memory. FASEB J 24(7):2355–2363

    PubMed  CAS  Google Scholar 

  51. Valley MT, Mullen TR, Schultz LC, Sagdullaev BT, Firestein S (2009) Ablation of mouse adult neurogenesis alters olfactory bulb structure and olfactory fear conditioning. Front Neurosci 3:51

    PubMed  Google Scholar 

  52. Lazarini F, Mouthon M-A, Gheusi G, de Chaumont F, Olivo-Marin J-C, Lamarque S, Abrous DN, Boussin FD, Lledo P-M (2009) Cellular and behavioral effects of cranial irradiation of the subventricular zone in adult mice. PLoS One 4(9):e7017

    PubMed  Google Scholar 

  53. Nissant A, Bardy C, Katagiri H, Murray K, Lledo P-M (2009) Adult neurogenesis promotes synaptic plasticity in the olfactory bulb. Nat Neurosci 12(6):728–730

    PubMed  CAS  Google Scholar 

  54. Kelsch W, Lin C-W, Mosley CP, Lois C (2009) A critical period for activity-dependent synaptic development during olfactory bulb adult neurogenesis. J Neurosci 29(38):11852–11858

    PubMed  CAS  Google Scholar 

  55. Feierstein CE, Lazarini F, Wagner S, Gabellec M–M, de Chaumont F, Olivo-Marin J-C, Boussin FD, Lledo P-M, Gheusi G (2010) Disruption of adult neurogenesis in the olfactory bulb affects social interaction but not maternal behavior. Front Behav Neurosci 4:176

    PubMed  Google Scholar 

  56. Negoias S, Croy I, Gerber J, Puschmann S, Petrowski K, Joraschky P, Hummel T (2010) Reduced olfactory bulb volume and olfactory sensitivity in patients with acute major depression. Neuroscience 169(1):415–421

    PubMed  CAS  Google Scholar 

  57. Yang D, Li Q, Fang L, Cheng K, Zhang R, Zheng P, Zhan Q, Qi Z, Zhong S, Xie P (2011) Reduced neurogenesis and pre-synaptic dysfunction in the olfactory bulb of a rat model of depression. Neuroscience 192:609–618

    PubMed  CAS  Google Scholar 

  58. Morgane PJ, Galler JR, Mokler DJ (2005) A review of systems and networks of the limbic forebrain/limbic midbrain. Prog Neurobiol 75(2):143–160

    PubMed  Google Scholar 

  59. Mayford M, Bach ME, Huang YY, Wang L, Hawkins RD, Kandel ER (1996) Control of memory formation through regulated expression of a CaMKII transgene. Science 274(5293):1678–1683

    PubMed  CAS  Google Scholar 

  60. Raber J, Rola R, LeFevour A, Morhardt D, Curley J, Mizumatsu S, VandenBerg SR, Fike JR (2004) Radiation-induced cognitive impairments are associated with changes in indicators of hippocampal neurogenesis. Radiat Res 162(1):39–47

    PubMed  CAS  Google Scholar 

  61. Clelland CD, Choi M, Romberg C et al (2009) A functional role for adult hippocampal neurogenesis in spatial pattern separation. Science 325(5937):210–213

    PubMed  CAS  Google Scholar 

  62. Sahay A, Scobie KN, Hill AS, O’Carroll CM, Kheirbek MA, Burghardt NS, Fenton AA, Dranovsky A, Hen R (2011) Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation. Nature 472(7344):466–470

    PubMed  CAS  Google Scholar 

  63. Dranovsky A, Picchini AM, Moadel T, Sisti AC, Yamada A, Kimura S, Leonardo ED, Hen R (2011) Experience dictates stem cell fate in the adult hippocampus. Neuron 70(5):908–923

    PubMed  CAS  Google Scholar 

  64. Papez JW (1939) Connections of the pulvinar. Arch Neurol Psychiatry 41(2):277–289

    Google Scholar 

  65. Revest J-M, Dupret D, Koehl M, Funk-Reiter C, Grosjean N, Piazza P-V, Abrous DN (2009) Adult hippocampal neurogenesis is involved in anxiety-related behaviors. Mol Psychiatry 14(10):959–967

    PubMed  Google Scholar 

  66. Malberg JE, Eisch AJ, Nestler EJ, Duman RS (2000) Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J Neurosci 20(24):9104–9110

    PubMed  CAS  Google Scholar 

  67. Manev H, Uz T, Smalheiser NR, Manev R (2001) Antidepressants alter cell proliferation in the adult brain in vivo and in neural cultures in vitro. Eur J Pharmacol 411(1–2):67–70

    PubMed  CAS  Google Scholar 

  68. Santarelli L, Saxe M, Gross C et al (2003) Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 301(5634):805–809

    PubMed  CAS  Google Scholar 

  69. Perera TD, Coplan JD, Lisanby SH et al (2007) Antidepressant-induced neurogenesis in the hippocampus of adult nonhuman primates. J Neurosci 27(18):4894–4901

    PubMed  CAS  Google Scholar 

  70. Surget A, Saxe M, Leman S, Ibarguen-Vargas Y, Chalon S, Griebel G, Hen R, Belzung C (2008) Drug-dependent requirement of hippocampal neurogenesis in a model of depression and of antidepressant reversal. Biol Psychiatry 64(4):293–301

    PubMed  CAS  Google Scholar 

  71. Boldrini M, Underwood MD, Hen R, Rosoklija GB, Dwork AJ, John Mann J, Arango V (2009) Antidepressants increase neural progenitor cells in the human hippocampus. Neuropsychopharmacology 34(11):2376–2389

    PubMed  CAS  Google Scholar 

  72. Winkler J, Ehret R, Büttner T, Dillmann U, Fogel W, Sabolek M, Winkelmann J, Kassubek J (2011) Parkinson’s disease risk score: moving to a premotor diagnosis. J Neurol 258(Suppl 2):S311–S315

    PubMed  Google Scholar 

  73. Shiba M, Bower JH, Maraganore DM, McDonnell SK, Peterson BJ, Ahlskog JE, Schaid DJ, Rocca WA (2000) Anxiety disorders and depressive disorders preceding Parkinson’s disease: a case-control study. Mov Disord 15(4):669–677

    PubMed  CAS  Google Scholar 

  74. Jellinger KA (2012) Neuropathology of sporadic Parkinson’s disease: evaluation and changes of concepts. Mov Disord 27(1):8–30

    PubMed  CAS  Google Scholar 

  75. Baker SA, Baker KA, Hagg T (2004) Dopaminergic nigrostriatal projections regulate neural precursor proliferation in the adult mouse subventricular zone. Eur J Neurosci 20(2):575–579

    PubMed  Google Scholar 

  76. O’Keeffe GC, Tyers P, Aarsland D, Dalley JW, Barker RA, Caldwell MA (2009) Dopamine-induced proliferation of adult neural precursor cells in the mammalian subventricular zone is mediated through EGF. Proc Natl Acad Sci USA 106(21):8754–8759

    PubMed  Google Scholar 

  77. Iwakura Y, Piao Y-S, Mizuno M, Takei N, Kakita A, Takahashi H, Nawa H (2005) Influences of dopaminergic lesion on epidermal growth factor-ErbB signals in Parkinson’s disease and its model: neurotrophic implication in nigrostriatal neurons. J Neurochem 93(4):974–983

    PubMed  CAS  Google Scholar 

  78. van den Berge SA, van Strien ME, Korecka JA et al (2011) The proliferative capacity of the subventricular zone is maintained in the parkinsonian brain. Brain 134(Pt 11):3249–3263

    PubMed  Google Scholar 

  79. Brodoehl S, Klingner C, Volk GF, Bitter T, Witte OW, Redecker C (2012) Decreased olfactory bulb volume in idiopathic parkinson's disease detected by 3.0-tesla magnetic resonance imaging. Mov Disord [Epub ahead of print]

  80. Mundiñano I-C, Caballero M-C, Ordóñez C, Hernandez M, DiCaudo C, Marcilla I, Erro M-E, Tuñon M-T, Luquin M-R (2011) Increased dopaminergic cells and protein aggregates in the olfactory bulb of patients with neurodegenerative disorders. Acta Neuropathol 122(1):61–74

    PubMed  Google Scholar 

  81. Huisman E, Uylings HBM, Hoogland PV (2004) A 100 % increase of dopaminergic cells in the olfactory bulb may explain hyposmia in Parkinson’s disease. Mov Disord 19(6):687–692

    PubMed  Google Scholar 

  82. Huisman E, Uylings HBM, Hoogland PV (2008) Gender-related changes in increase of dopaminergic neurons in the olfactory bulb of Parkinson’s disease patients. Mov Disord 23(10):1407–1413

    PubMed  Google Scholar 

  83. Freundlieb N, François C, Tandé D, Oertel WH, Hirsch EC, Höglinger GU (2006) Dopaminergic substantia nigra neurons project topographically organized to the subventricular zone and stimulate precursor cell proliferation in aged primates. J Neurosci 26(8):2321–2325

    PubMed  CAS  Google Scholar 

  84. Schober A (2004) Classic toxin-induced animal models of Parkinson’s disease: 6-OHDA and MPTP. Cell Tissue Res 318(1):215–224

    PubMed  Google Scholar 

  85. Lennington JB, Pope S, Goodheart AE, Drozdowicz L, Daniels SB, Salamone JD, Conover JC (2011) Midbrain dopamine neurons associated with reward processing innervate the neurogenic subventricular zone. J Neurosci 31(37):13078–13087

    PubMed  CAS  Google Scholar 

  86. Coronas V, Bantubungi K, Fombonne J, Krantic S, Schiffmann SN, Roger M (2004) Dopamine D3 receptor stimulation promotes the proliferation of cells derived from the post-natal subventricular zone. J Neurochem 91(6):1292–1301

    PubMed  CAS  Google Scholar 

  87. Winner B, Geyer M, Couillard-Despres S, Aigner R, Bogdahn U, Aigner L, Kuhn G, Winkler J (2006) Striatal deafferentation increases dopaminergic neurogenesis in the adult olfactory bulb. Exp Neurol 197(1):113–121

    PubMed  CAS  Google Scholar 

  88. Winner B, Desplats P, Hagl C et al (2009) Dopamine receptor activation promotes adult neurogenesis in an acute Parkinson model. Exp Neurol 219(2):543–552

    PubMed  CAS  Google Scholar 

  89. Baker SA, Baker KA, Hagg T (2005) D3 dopamine receptors do not regulate neurogenesis in the subventricular zone of adult mice. Neurobiol Dis 18(3):523–527

    PubMed  CAS  Google Scholar 

  90. Dawirs RR, Hildebrandt K, Teuchert-Noodt G (1998) Adult treatment with haloperidol increases dentate granule cell proliferation in the gerbil hippocampus. J Neural Transm 105(2–3):317–327

    PubMed  CAS  Google Scholar 

  91. Kippin TE, Kapur S, van der Kooy D (2005) Dopamine specifically inhibits forebrain neural stem cell proliferation, suggesting a novel effect of antipsychotic drugs. J Neurosci 25(24):5815–5823

    PubMed  CAS  Google Scholar 

  92. Aponso PM, Faull RLM, Connor B (2008) Increased progenitor cell proliferation and astrogenesis in the partial progressive 6-hydroxydopamine model of Parkinson’s disease. Neuroscience 151(4):1142–1153

    PubMed  CAS  Google Scholar 

  93. Liu BF, Gao EJ, Zeng XZ, Ji M, Cai Q, Lu Q, Yang H, Xu QY (2006) Proliferation of neural precursors in the subventricular zone after chemical lesions of the nigrostriatal pathway in rat brain. Brain Res 1106(1):30–39

    PubMed  CAS  Google Scholar 

  94. Kuhn HG, Winkler J, Kempermann G, Thal LJ, Gage FH (1997) Epidermal growth factor and fibroblast growth factor-2 have different effects on neural progenitors in the adult rat brain. J Neurosci 17(15):5820–5829

    PubMed  CAS  Google Scholar 

  95. Winner B, Couillard-Despres S, Geyer M, Aigner R, Bogdahn U, Aigner L, Kuhn HG, Winkler J (2008) Dopaminergic lesion enhances growth factor-induced striatal neuroblast migration. J Neuropathol Exp Neurol 67(2):105–116

    PubMed  CAS  Google Scholar 

  96. Langston JW, Ballard P, Tetrud JW, Irwin I (1983) Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219(4587):979–980

    PubMed  CAS  Google Scholar 

  97. Jackson-Lewis V, Jakowec M, Burke RE, Przedborski S (1995) Time course and morphology of dopaminergic neuronal death caused by the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Neurodegeneration 4(3):257–269

    PubMed  CAS  Google Scholar 

  98. Sedelis M, Schwarting RK, Huston JP (2001) Behavioral phenotyping of the MPTP mouse model of Parkinson’s disease. Behav Brain Res 125(1–2):109–125

    PubMed  CAS  Google Scholar 

  99. Tatton NA, Kish SJ (1997) In situ detection of apoptotic nuclei in the substantia nigra compacta of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mice using terminal deoxynucleotidyl transferase labelling and acridine orange staining. Neuroscience 77(4):1037–1048

    PubMed  CAS  Google Scholar 

  100. Yamada M, Onodera M, Mizuno Y, Mochizuki H (2004) Neurogenesis in olfactory bulb identified by retroviral labeling in normal and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated adult mice. Neuroscience 124(1):173–181

    PubMed  CAS  Google Scholar 

  101. Iancu R, Mohapel P, Brundin P, Paul G (2005) Behavioral characterization of a unilateral 6-OHDA-lesion model of Parkinson’s disease in mice. Behav Brain Res 162(1):1–10

    PubMed  CAS  Google Scholar 

  102. Gasbarri A, Sulli A, Packard MG (1997) The dopaminergic mesencephalic projections to the hippocampal formation in the rat. Prog Neuropsychopharmacol Biol Psychiatry 21(1):1–22

    PubMed  CAS  Google Scholar 

  103. Suzuki K, Okada K, Wakuda T et al (2010) Destruction of dopaminergic neurons in the midbrain by 6-hydroxydopamine decreases hippocampal cell proliferation in rats: reversal by fluoxetine. PLoS One 5(2):e9260

    PubMed  Google Scholar 

  104. Mu Y, Zhao C, Gage FH (2011) Dopaminergic modulation of cortical inputs during maturation of adult-born dentate granule cells. J Neurosci 31(11):4113–4123

    PubMed  CAS  Google Scholar 

  105. Park J-H, Enikolopov G (2010) Transient elevation of adult hippocampal neurogenesis after dopamine depletion. Exp Neurol 222(2):267–276

    PubMed  CAS  Google Scholar 

  106. Brezun JM, Daszuta A (1999) Depletion in serotonin decreases neurogenesis in the dentate gyrus and the subventricular zone of adult rats. Neuroscience 89(4):999–1002

    PubMed  CAS  Google Scholar 

  107. Suh H, Deng W, Gage FH (2009) Signaling in adult neurogenesis. Annu Rev Cell Dev Biol 25(1):253–275

    PubMed  CAS  Google Scholar 

  108. Melrose HL, Lincoln SJ, Tyndall GM, Farrer MJ (2006) Parkinson’s disease: a rethink of rodent models. Exp Brain Res 173(2):196–204

    PubMed  Google Scholar 

  109. Dawson TM, Ko HS, Dawson VL (2010) Genetic animal models of Parkinson’s disease. Neuron 66(5):646–661

    PubMed  CAS  Google Scholar 

  110. Masliah E, Rockenstein E, Veinbergs I, Mallory M, Hashimoto M, Takeda A, Sagara Y, Sisk A, Mucke L (2000) Dopaminergic loss and inclusion body formation in alpha-synuclein mice: implications for neurodegenerative disorders. Science 287(5456):1265–1269

    PubMed  CAS  Google Scholar 

  111. Winner B, Lie DC, Rockenstein E, Aigner R, Aigner L, Masliah E, Kuhn HG, Winkler J (2004) Human wild-type alpha-synuclein impairs neurogenesis. J Neuropathol Exp Neurol 63(11):1155–1166

    PubMed  CAS  Google Scholar 

  112. Lim Y, Kehm VM, Lee EB, Soper JH, Li C, Trojanowski JQ, Lee VM-Y (2011) α-Syn suppression reverses synaptic and memory defects in a mouse model of dementia with Lewy bodies. J Neurosci 31(27):10076–10087

    PubMed  CAS  Google Scholar 

  113. Nuber S, Petrasch-Parwez E, Winner B et al (2008) Neurodegeneration and motor dysfunction in a conditional model of Parkinson’s disease. J Neurosci 28(10):2471–2484

    PubMed  CAS  Google Scholar 

  114. Rockenstein E, Mallory M, Hashimoto M, Song D, Shults CW, Lang I, Masliah E (2002) Differential neuropathological alterations in transgenic mice expressing alpha-synuclein from the platelet-derived growth factor and Thy-1 promoters. J Neurosci Res 68(5):568–578

    PubMed  CAS  Google Scholar 

  115. Tani M, Hayakawa H, Yasuda T, Nihira T, Hattori N, Mizuno Y, Mochizuki H (2010) Ectopic expression of α-synuclein affects the migration of neural stem cells in mouse subventricular zone. J Neurochem 115(4):854–863

    PubMed  CAS  Google Scholar 

  116. Winner B, Rockenstein E, Lie DC, Aigner R, Mante M, Bogdahn U, Couillard-Despres S, Masliah E, Winkler J (2008) Mutant alpha-synuclein exacerbates age-related decrease of neurogenesis. Neurobiol Aging 29(6):913–925

    PubMed  CAS  Google Scholar 

  117. Kohl Z, Winner B, Ubhi K, Rockenstein E, Mante M, Münch M, Barlow C, Carter T, Masliah E, Winkler J (2012) Fluoxetine rescues impaired hippocampal neurogenesis in a transgenic A53T synuclein mouse model. Eur J Neurosci 35(1):10–19

    PubMed  Google Scholar 

  118. Marxreiter F, Nuber S, Kandasamy M, Klucken J, Aigner R, Burgmayer R, Couillard-Despres S, Riess O, Winkler J, Winner B (2009) Changes in adult olfactory bulb neurogenesis in mice expressing the A30P mutant form of alpha-synuclein. Eur J Neurosci 29(5):879–890

    PubMed  Google Scholar 

  119. Crews L, Mizuno H, Desplats P, Rockenstein E, Adame A, Patrick C, Winner B, Winkler J, Masliah E (2008) Alpha-synuclein alters Notch-1 expression and neurogenesis in mouse embryonic stem cells and in the hippocampus of transgenic mice. J Neurosci 28(16):4250–4260

    PubMed  CAS  Google Scholar 

  120. Breunig JJ, Silbereis J, Vaccarino FM, Sestan N, Rakic P (2007) Notch regulates cell fate and dendrite morphology of newborn neurons in the postnatal dentate gyrus. Proc Natl Acad Sci USA 104(51):20558–20563

    PubMed  CAS  Google Scholar 

  121. Specht CG, Schoepfer R (2001) Deletion of the alpha-synuclein locus in a subpopulation of C57BL/6 J inbred mice. BMC Neurosci 2:11

    PubMed  CAS  Google Scholar 

  122. Chen PE, Specht CG, Morris RGM, Schoepfer R (2002) Spatial learning is unimpaired in mice containing a deletion of the alpha-synuclein locus. Eur J Neurosci 16(1):154–158

    PubMed  Google Scholar 

  123. Abeliovich A, Schmitz Y, Fariñas I et al (2000) Mice lacking alpha-synuclein display functional deficits in the nigrostriatal dopamine system. Neuron 25(1):239–252

    PubMed  CAS  Google Scholar 

  124. Chandra S, Fornai F, Kwon H-B et al (2004) Double-knockout mice for alpha- and beta-synucleins: effect on synaptic functions. Proc Natl Acad Sci USA 101(41):14966–14971

    PubMed  CAS  Google Scholar 

  125. Greten-Harrison B, Polydoro M, Morimoto-Tomita M et al (2010) αβγ-Synuclein triple knockout mice reveal age-dependent neuronal dysfunction. Proc Natl Acad Sci USA 107(45):19573–19578

    PubMed  CAS  Google Scholar 

  126. Gorbatyuk OS, Li S, Nash K et al (2010) In vivo RNAi-mediated alpha-synuclein silencing induces nigrostriatal degeneration. Mol Ther 18(8):1450–1457

    PubMed  CAS  Google Scholar 

  127. Dauer W, Kholodilov N, Vila M et al (2002) Resistance of alpha -synuclein null mice to the parkinsonian neurotoxin MPTP. Proc Natl Acad Sci USA 99(22):14524–14529

    PubMed  CAS  Google Scholar 

  128. Schlüter OM, Fornai F, Alessandrí MG, Takamori S, Geppert M, Jahn R, Südhof TC (2003) Role of alpha-synuclein in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonism in mice. Neuroscience 118(4):985–1002

    PubMed  Google Scholar 

  129. Drolet RE, Behrouz B, Lookingland KJ, Goudreau JL (2004) Mice lacking alpha-synuclein have an attenuated loss of striatal dopamine following prolonged chronic MPTP administration. Neurotoxicology 25(5):761–769

    PubMed  CAS  Google Scholar 

  130. Robertson DC, Schmidt O, Ninkina N, Jones PA, Sharkey J, Buchman VL (2004) Developmental loss and resistance to MPTP toxicity of dopaminergic neurones in substantia nigra pars compacta of gamma-synuclein, alpha-synuclein and double alpha/gamma-synuclein null mutant mice. J Neurochem 89(5):1126–1136

    PubMed  CAS  Google Scholar 

  131. Klivenyi P, Siwek D, Gardian G, Yang L, Starkov A, Cleren C, Ferrante RJ, Kowall NW, Abeliovich A, Beal MF (2006) Mice lacking alpha-synuclein are resistant to mitochondrial toxins. Neurobiol Dis 21(3):541–548

    PubMed  CAS  Google Scholar 

  132. Alvarez-Fischer D, Henze C, Strenzke C, Westrich J, Ferger B, Höglinger GU, Oertel WH, Hartmann A (2008) Characterization of the striatal 6-OHDA model of Parkinson’s disease in wild type and alpha-synuclein-deleted mice. Exp Neurol 210(1):182–193

    PubMed  CAS  Google Scholar 

  133. Chandra S, Gallardo G, Fernández-Chacón R, Schlüter OM, Südhof TC (2005) α-Synuclein cooperates with CSPα in preventing neurodegeneration. Cell 123(3):383–396

    PubMed  CAS  Google Scholar 

  134. Hayashita-Kinoh H, Yamada M, Yokota T, Mizuno Y, Mochizuki H (2006) Down-regulation of alpha-synuclein expression can rescue dopaminergic cells from cell death in the substantia nigra of Parkinson’s disease rat model. Biochem Biophys Res Commun 341(4):1088–1095

    PubMed  CAS  Google Scholar 

  135. Melrose HL, Dächsel JC, Behrouz B et al (2010) Impaired dopaminergic neurotransmission and microtubule-associated protein tau alterations in human LRRK2 transgenic mice. Neurobiol Dis 40(3):503–517

    PubMed  CAS  Google Scholar 

  136. Winner B, Melrose HL, Zhao C et al (2011) Adult neurogenesis and neurite outgrowth are impaired in LRRK2 G2019S mice. Neurobiol Dis 41(3):706–716

    PubMed  CAS  Google Scholar 

  137. Sakaguchi-Nakashima A, Meir JY, Jin Y, Matsumoto K, Hisamoto N (2007) LRK-1, a C. elegans PARK8-related kinase, regulates axonal-dendritic polarity of SV proteins. Curr Biol 17(7):592–598

    PubMed  CAS  Google Scholar 

  138. van Praag H, Kempermann G, Gage FH (1999) Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat Neurosci 2(3):266–270

    PubMed  Google Scholar 

  139. van Praag H, Christie BR, Sejnowski TJ, Gage FH (1999) Running enhances neurogenesis, learning, and long-term potentiation in mice. Proc Natl Acad Sci USA 96(23):13427–13431

    PubMed  Google Scholar 

  140. van Praag H, Schinder AF, Christie BR, Toni N, Palmer TD, Gage FH (2002) Functional neurogenesis in the adult hippocampus. Nature 415(6875):1030–1034

    PubMed  Google Scholar 

  141. Kee N, Teixeira CM, Wang AH, Frankland PW (2007) Preferential incorporation of adult-generated granule cells into spatial memory networks in the dentate gyrus. Nat Neurosci 10(3):355–362

    PubMed  CAS  Google Scholar 

  142. Parent JM, Yu TW, Leibowitz RT, Geschwind DH, Sloviter RS, Lowenstein DH (1997) Dentate granule cell neurogenesis is increased by seizures and contributes to aberrant network reorganization in the adult rat hippocampus. J Neurosci 17(10):3727–3738

    PubMed  CAS  Google Scholar 

  143. Mohapel P, Frielingsdorf H, Häggblad J, Zachrisson O, Brundin P (2005) Platelet-derived growth factor (PDGF-BB) and brain-derived neurotrophic factor (BDNF) induce striatal neurogenesis in adult rats with 6-hydroxydopamine lesions. Neuroscience 132(3):767–776

    PubMed  CAS  Google Scholar 

  144. Nakatomi H, Kuriu T, Okabe S, Yamamoto S-I, Hatano O, Kawahara N, Tamura A, Kirino T, Nakafuku M (2002) Regeneration of hippocampal pyramidal neurons after ischemic brain injury by recruitment of endogenous neural progenitors. Cell 110(4):429–441

    PubMed  CAS  Google Scholar 

  145. Osman AM, Porritt MJ, Nilsson M, Kuhn HG (2011) Long-term stimulation of neural progenitor cell migration after cortical ischemia in mice. Stroke 42(12):3559–3565

    PubMed  Google Scholar 

  146. Arvidsson A, Collin T, Kirik D, Kokaia Z, Lindvall O (2002) Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med 8(9):963–970

    PubMed  CAS  Google Scholar 

  147. Parent JM, Vexler ZS, Gong C, Derugin N, Ferriero DM (2002) Rat forebrain neurogenesis and striatal neuron replacement after focal stroke. Ann Neurol 52(6):802–813

    PubMed  Google Scholar 

  148. Thored P, Arvidsson A, Cacci E, Ahlenius H, Kallur T, Darsalia V, Ekdahl CT, Kokaia Z, Lindvall O (2006) Persistent production of neurons from adult brain stem cells during recovery after stroke. Stem Cells 24(3):739–747

    PubMed  CAS  Google Scholar 

  149. Palmer TD, Ray J, Gage FH (1995) FGF-2-responsive neuronal progenitors reside in proliferative and quiescent regions of the adult rodent brain. Mol Cell Neurosci 6(5):474–486

    PubMed  CAS  Google Scholar 

  150. Zhao M, Momma S, Delfani K, Carlen M, Cassidy RM, Johansson CB, Brismar H, Shupliakov O, Frisen J, Janson AM (2003) Evidence for neurogenesis in the adult mammalian substantia nigra. Proc Natl Acad Sci USA 100(13):7925–7930

    PubMed  CAS  Google Scholar 

  151. Kay JN, Blum M (2000) Differential response of ventral midbrain and striatal progenitor cells to lesions of the nigrostriatal dopaminergic projection. Dev Neurosci 22(1–2):56–67

    PubMed  CAS  Google Scholar 

  152. Lie DC, Dziewczapolski G, Willhoite AR, Kaspar BK, Shults CW, Gage FH (2002) The adult substantia nigra contains progenitor cells with neurogenic potential. J Neurosci 22(15):6639–6649

    PubMed  CAS  Google Scholar 

  153. Frielingsdorf H, Schwarz K, Brundin P, Mohapel P (2004) No evidence for new dopaminergic neurons in the adult mammalian substantia nigra. Proc Natl Acad Sci USA 101(27):10177–10182

    PubMed  CAS  Google Scholar 

  154. Yoshimi K, Ren Y-R, Seki T et al (2005) Possibility for neurogenesis in substantia nigra of parkinsonian brain. Ann Neurol 58(1):31–40

    PubMed  Google Scholar 

  155. Steiner B, Winter C, Hosman K, Siebert E, Kempermann G, Petrus DS, Kupsch A (2006) Enriched environment induces cellular plasticity in the adult substantia nigra and improves motor behavior function in the 6-OHDA rat model of Parkinson’s disease. Exp Neurol 199(2):291–300

    PubMed  Google Scholar 

  156. Arias-Carrión O, Yamada E, Freundlieb N et al (2009) Neurogenesis in substantia nigra of parkinsonian brains? J Neural Transm Suppl 73:279–285

    PubMed  Google Scholar 

  157. Van Kampen JM, Robertson HA (2005) A possible role for dopamine D3 receptor stimulation in the induction of neurogenesis in the adult rat substantia nigra. Neuroscience 136(2):381–386

    PubMed  Google Scholar 

  158. Van Kampen JM, Eckman CB (2006) Dopamine D3 receptor agonist delivery to a model of Parkinson’s disease restores the nigrostriatal pathway and improves locomotor behavior. J Neurosci 26(27):7272–7280

    PubMed  Google Scholar 

  159. Song H, Stevens CF, Gage FH (2002) Astroglia induce neurogenesis from adult neural stem cells. Nature 417(6884):39–44

    PubMed  CAS  Google Scholar 

  160. Barkho BZ, Song H, Aimone JB, Smrt RD, Kuwabara T, Nakashima K, Gage FH, Zhao X (2006) Identification of astrocyte-expressed factors that modulate neural stem/progenitor cell differentiation. Stem Cells Dev 15(3):407–421

    PubMed  CAS  Google Scholar 

  161. Klegeris A, Giasson BI, Zhang H, Maguire J, Pelech S, McGeer PL (2006) Alpha-synuclein and its disease-causing mutants induce ICAM-1 and IL-6 in human astrocytes and astrocytoma cells. FASEB J 20(12):2000–2008

    PubMed  CAS  Google Scholar 

  162. Saijo K, Winner B, Carson CT, Collier JG, Boyer L, Rosenfeld MG, Gage FH, Glass CK (2009) A Nurr1/CoREST pathway in microglia and astrocytes protects dopaminergic neurons from inflammation-induced death. Cell 137(1):47–59

    PubMed  CAS  Google Scholar 

  163. Cardona AE, Pioro EP, Sasse ME et al (2006) Control of microglial neurotoxicity by the fractalkine receptor. Nat Neurosci 9(7):917–924

    PubMed  CAS  Google Scholar 

  164. Bachstetter AD, Morganti JM, Jernberg J et al (2011) Fractalkine and CX 3 CR1 regulate hippocampal neurogenesis in adult and aged rats. Neurobiol Aging 32(11):2030–2044

    PubMed  CAS  Google Scholar 

  165. Ekdahl CT, Kokaia Z, Lindvall O (2009) Brain inflammation and adult neurogenesis: the dual role of microglia. Neuroscience 158(3):1021–1029

    PubMed  CAS  Google Scholar 

  166. Heinrich C, Blum R, Gascón S, Masserdotti G, Tripathi P, Sánchez R, Tiedt S, Schroeder T, Götz M, Berninger B (2010) Directing astroglia from the cerebral cortex into subtype specific functional neurons. PLoS Biol 8(5):e1000373

    PubMed  Google Scholar 

  167. Kim J, Su SC, Wang H et al (2011) Functional integration of dopaminergic neurons directly converted from mouse fibroblasts. Cell Stem Cell 9(5):413–419

    PubMed  CAS  Google Scholar 

  168. Nuber S, Petrasch-Parwez E, Arias-Carrión O et al (2011) Olfactory neuron-specific expression of A30P alpha-synuclein exacerbates dopamine deficiency and hyperactivity in a novel conditional model of early Parkinson’s disease stages. Neurobiol Dis 44(2):192–204

    PubMed  CAS  Google Scholar 

  169. Groman SM, Lee B, London ED et al (2011) Dorsal striatal D2-like receptor availability covaries with sensitivity to positive reinforcement during discrimination learning. J Neurosci 31(20):7291–7299

    PubMed  CAS  Google Scholar 

  170. Braak H, Rüb U, Del Tredici K (2006) Cognitive decline correlates with neuropathological stage in Parkinson’s disease. J Neurol Sci 248(1–2):255–258

    PubMed  Google Scholar 

  171. Bannerman DM, Matthews P, Deacon RMJ, Rawlins JNP (2004) Medial septal lesions mimic effects of both selective dorsal and ventral hippocampal lesions. Behav Neurosci 118(5):1033–1041

    PubMed  CAS  Google Scholar 

  172. Toni N, Sultan S (2011) Synapse formation on adult-born hippocampal neurons. Eur J Neurosci 33(6):1062–1068

    PubMed  Google Scholar 

  173. Hagell P, Brundin P (2001) Cell survival and clinical outcome following intrastriatal transplantation in Parkinson disease. J Neuropathol Exp Neurol 60(8):741–752

    PubMed  CAS  Google Scholar 

  174. Jaako-Movits K, Zharkovsky T, Pedersen M, Zharkovsky A (2006) Decreased hippocampal neurogenesis following olfactory bulbectomy is reversed by repeated citalopram administration. Cell Mol Neurobiol 26(7–8):1559–1570

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Bavarian State Ministry of Sciences, Research and the Arts, ForNeuroCell (J.W.; Erlangen, Germany), the Elite Network Bavaria (F.M., M.R., J.W.), and the Adalbert-Raps-Foundation (J.W.). F.M. is supported by the Interdisciplinary Center for Clinical Research (IZKF) Erlangen. The authors thank Julius Ecke for the graphic artwork.

Conflict of interest

None of the author has to declare a conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Winkler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marxreiter, F., Regensburger, M. & Winkler, J. Adult neurogenesis in Parkinson’s disease. Cell. Mol. Life Sci. 70, 459–473 (2013). https://doi.org/10.1007/s00018-012-1062-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-012-1062-x

Keywords

Navigation