Skip to main content
Log in

Multivariate discrimination and the Higgs+W/Z search

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

A systematic method for optimizing multivariate discriminants is developed and applied to the important example of a light Higgs boson search at the Tevatron and the LHC. The Significance Improvement Characteristic (SIC), defined as the signal efficiency of a cut or multivariate discriminant divided by the square root of the background efficiency, is shown to be an extremely powerful visualization tool. SIC curves demonstrate numerical instabilities in the multivariate discriminants, show convergence as the number of variables is increased, and display the sensitivity to the optimal cut values. For our application, we concentrate on Higgs boson production in association with a W or Z boson with \( H \to b\bar{b} \) and compare to the irreducible standard model background, \( {{Z} \left/ {W} \right.} + b\bar{b} \). We explore thousands of experimentally motivated, physically motivated, and unmotivated single variable discriminants. Along with the standard kinematic variables, a number of new ones, such as twist, are described which should have applicability to many processes. We find that some single variables, such as the pull angle, are weak discriminants, but when combined with others they provide important marginal improvement. We also find that multiple Higgs boson-candidate mass measures, such as from mild and aggressively trimmed jets, when combined may provide additional discriminating power. Comparing the significance improvement from our variables to those used in recent CDF and DØ searches, we find that a 10-20% improvement in significance against \( {{Z} \left/ {W} \right.} + b\bar{b} \) is possible. Our analysis also suggests that the H + W/Z channel with \( H \to b\bar{b} \) is also viable at the LHC, without requiring a hard cut on the W/Z transverse momentum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. http://www-cdf.fnal.gov/physics/new/hdg//Results_files/results/whlnubb_jul10/.

  2. http://www-cdf.fnal.gov/physics/new/hdg//Results_files/results/zhllbb_jul10/comb/zhllbb_comb_web/.

  3. http://www-d0.fnal.gov/Run2Physics/WWW/results/prelim/Higgs/H95/.

  4. http://www-d0.fnal.gov/Run2Physics/WWW/results/prelim/Higgs/H92/.

  5. D0 collaboration, V.M. Abazov et al., Search for \( ZH \to {\ell^{+} }{\ell^{-} }b\bar{b} \) production in 4.2 fb −1 of \( p\bar{p} \) collisions at \( \sqrt {s} = 1.96\;TeV \), Phys. Rev. Lett. 105 (2010) 251801 [arXiv:1008.3564] [SPIRES].

    Article  ADS  Google Scholar 

  6. ATLAS collaboration, Atlas Technical Design Report “Higgs Searches” (1999) http://www.cern.ch/Atlas/GROUPS/PHYSICS/TDR/physics_tdr/printout/Volume_II/letter/Higgs_searches_letter.ps.gz.

  7. J.M. Butterworth, A.R. Davison, M. Rubin and G.P. Salam, Jet substructure as a new Higgs search channel at the LHC, Phys. Rev. Lett. 100 (2008) 242001 [arXiv:0802.2470] [SPIRES].

    Article  ADS  Google Scholar 

  8. ATLAS collaboration, G. Aad et. al., ATLAS Sensitivity to the Standard Model Higgs in the HW and HZ Channels at High Transverse Momenta, ATL-PHYS-PUB-2009-0881.

  9. ATLAS collaboration, G. Aad et. al., ATLAS Sensitivity to the Standard Model Higgs in the HW and HZ Channels at High Transverse Momenta, ATL-COM-PHYS-2009-345.

  10. CDF collaboration, T. Aaltonen et al., A Search for the Standard Model Higgs Boson in the Process \( ZH \to {\ell^{+} }{\ell^{-} }b\bar{b} \) Usnig 5.7fb 1 of CDF II Data, (July 16, 2010), CDF note 10235.

  11. D. Krohn, J. Thaler and L.-T. Wang, Jet Trimming, JHEP 02 (2010) 084 [arXiv:0912.1342] [SPIRES].

    Article  ADS  Google Scholar 

  12. J. Gallicchio and M.D. Schwartz, Seeing in Color: Jet Superstructure, Phys. Rev. Lett. 105 (2010) 022001 [arXiv:1001.5027] [SPIRES].

    Article  ADS  Google Scholar 

  13. R.K. Ellis, W.J. Stirling and B.R. Webber, QCD and collider physics, Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 8 (1996) 1.

    Google Scholar 

  14. J. Alwall et al., MadGraph/MadEvent v4: The New Web Generation, JHEP 09 (2007) 028 [arXiv:0706.2334] [SPIRES].

    Article  ADS  Google Scholar 

  15. T. Sjöstrand, S. Mrenna and P.Z. Skands, A Brief Introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [SPIRES].

    Article  ADS  MATH  Google Scholar 

  16. M. Cacciari and G.P. Salam, Dispelling the N 3 myth for the k t jet-finder, Phys. Lett. B 641 (2006) 57 [hep-ph/0512210] [SPIRES].

    ADS  Google Scholar 

  17. A. Djouadi, The Anatomy of electro-weak symmetry breaking. I: The Higgs boson in the standard model, Phys. Rept. 457 (2008) 1 [hep-ph/0503172] [SPIRES].

    Article  ADS  Google Scholar 

  18. M. Cacciari, G.P. Salam and G. Soyez, The anti-k t jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [SPIRES].

    Article  ADS  Google Scholar 

  19. A. Hoecker et al., TMVA Toolkit for Multivariate Data Analysis with ROOT, http://tmva.sourceforge.net/.

  20. R. Brun and F. Rademakers, ROOT - An Object Oriented Data Analysis Framework, in Proceedings AIHENP’96 Workshop, Lausanne, Sep. 1996, Nucl. Instrum. Meth. A 389 (1997) 81.

  21. http://root.cern.ch/.

  22. M. Bahr et al., HERWIG++ Physics and Manual, Eur. Phys. J. C 58 (2008) 639 [arXiv:0803.0883] [SPIRES].

    Article  ADS  Google Scholar 

  23. CDF and D0 collaboration, T. Chwalek, Measurement of the W-boson helicity fractions in top-quark decays at CDF, arXiv:0705.2966 [SPIRES].

  24. L.G. Almeida et al., Substructure of high-p T Jets at the LHC, Phys. Rev. D 79 (2009) 074017 [arXiv:0807.0234] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  25. C.F. Berger, T. Kucs and G.F. Sterman, Event shape/energy flow correlations, Phys. Rev. D 68 (2003) 014012 [hep-ph/0303051] [SPIRES].

    ADS  Google Scholar 

  26. S.D. Ellis, C.K. Vermilion, J.R. Walsh, A. Hornig and C. Lee, Jet Shapes and Jet Algorithms in SCET, JHEP 11 (2010) 101 [arXiv:1001.0014] [SPIRES].

    Article  ADS  Google Scholar 

  27. D0 collaboration, Search for the standard model Higgs boson in the ZHbbvv channel in 6.4 fb-1 of ppbar collisions at \( \sqrt {s} = 1.96\;TeV \), Preliminary Results for Summer 2010 Conferences, http://www-d0.fnal.gov/Run2Physics/WWW/results/prelim/Higgs/H90/, August 2010, D0Note 6087-CONF.

  28. J.D. Bjorken and S.J. Brodsky, Statistical Model for electron-Positron Annihilation Into Hadrons, Phys. Rev. D 1 (1970) 1416 [SPIRES].

    ADS  Google Scholar 

  29. Y. Freund and R.E. Schapire, Experiments with a new boosting algorithm, Proc COLT, 209-217, ACM Press, New York U.S.A. (1996).

    Google Scholar 

  30. B.P. Roe et al., Boosted decision trees, an alternative to artificial neural networks, Nucl. Instrum. Meth. A 543 (2005) 577 [physics/0408124].

    ADS  Google Scholar 

  31. B.P. Roe, H.J. Yang and J. Zhu, Boosted decision trees, a powerful event classifier, Prepared for PHYSTATO5: Statistical Problems in Particle Physics, Astrophysics and Cosmology, Oxford, England, United Kingdom, 12–15 Sep 2005.

  32. S. Catani, Y.L. Dokshitzer, M.H. Seymour and B.R. Webber, Longitudinally invariant K t clustering algorithms for hadron hadron collisions, Nucl. Phys. B 406 (1993) 187 [SPIRES].

    Article  ADS  Google Scholar 

  33. G.P. Salam and G. Soyez, A practical Seedless Infrared-Safe Cone jet algorithm, JHEP 05 (2007) 086 [arXiv:0704.0292] [SPIRES].

    Article  ADS  Google Scholar 

  34. D.E. Soper and M. Spannowsky, Combining subjet algorithms to enhance ZH detection at the LHC, JHEP 08 (2010) 029 [arXiv:1005.0417] [SPIRES].

    Article  ADS  Google Scholar 

  35. S.D. Ellis, C.K. Vermilion and J.R. Walsh, Recombination Algorithms and Jet Substructure: Pruning as a Tool for Heavy Particle Searches, Phys. Rev. D 81 (2010) 094023 [arXiv:0912.0033] [SPIRES].

    ADS  Google Scholar 

  36. J.M. Butterworth et al., The Tools and Monte Carlo working group Summary Report, arXiv:1003.1643 [SPIRES].

  37. D.E. Kaplan, K. Rehermann, M.D. Schwartz and B. Tweedie, Top Tagging: A Method for Identifying Boosted Hadronically Decaying Top Quarks, Phys. Rev. Lett. 101 (2008) 142001 [arXiv:0806.0848] [SPIRES].

    Article  ADS  Google Scholar 

  38. G.P. Salam, Towards Jetography, Eur. Phys. J. C 67 (2010) 637 [arXiv:0906.1833] [SPIRES].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew D. Schwartz.

Additional information

ArXiv ePrint: 1010.3698

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gallicchio, J., Huth, J., Kagan, M. et al. Multivariate discrimination and the Higgs+W/Z search. J. High Energ. Phys. 2011, 69 (2011). https://doi.org/10.1007/JHEP04(2011)069

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP04(2011)069

Keywords

Navigation