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1 Introduction

The AdS/CFT correspondence [1] relates properties of quantum states in conformal field

theories (CFTs) to those of geometries in their holographic spacetimes. The analysis of

entanglement entropy in CFTs [2, 3] and the holographic calculation of entanglement en-

tropy [4–7] have shown that it is a useful quantity for connecting a spacetime geometry to

its dual CFT data.

To probe the dynamical aspects of this correspondence by using entanglement entropy,

it will be helpful to excite ground states in CFTs so that we can study propagations of

excitations in the spacetime. So far, the most studied excited states are the so called

quantum quenches, which are generated by a sudden change of Hamiltonian. We can

choose, for example, this change to be translationally invariant and such quenches are called

global [8]. The holographic analysis of global quenches has been discussed intensively (see

e.g. [9–11]).

An interesting construction of a gravity dual of global quench from an eternal AdS black

hole has been found in [12]. In the extended Penrose diagram of eternal AdS black hole,
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there are two asymptotic AdS boundaries dual to two copies of CFTs in the thermofield

formulation of finite temperature CFT. The gravity dual of quantum quench is obtained

by removing one of the two boundaries and picking a half of eternal AdS black hole, with

an additional boundary put inside the horizon (see [13] for generalization with chemical

potential). In the eternal AdS black hole dual to the thermofield formulation, it is also

interesting to consider a time-dependent process when we excite one of the two CFTs.

A related problem has been studied in the intriguing papers [14–16]. The consistency

between the causality of entanglement entropy and the bulk spacetime structure with such

a non-trivial topology has been generally worked out in [17].

To probe local structures of spacetime, it will also be useful to consider locally ex-

cited states. A basic class of such locally excited states can be created by acting with

local (primary field) operators O(x) on the CFT vacuum |0〉.1 The computations of (both

von-Neumann and Renyi) entanglement entropies for such locally excited states have been

formulated in [18] (see also [19, 22] for a closely related calculations). Calculations of en-

tanglement entropy for free scalar fields have been done in [18, 20] (see also [21] for another

interesting approach). Results for rational conformal field theories in two dimensions have

been obtained in [23]. It was shown there that the increased amount of entanglement

entropy is given by the log of the quantum dimension of the local operator. Moreover,

computations of entanglement entropy for locally excited states in large N CFTs have been

done in [24].

In the paper [25], it was argued that a gravity dual for a locally excited state produced

by a local operator with a large conformal dimension can be approximated by a falling

massive particle in the AdS space (see also [26–31] for other approaches). The holographic

entanglement entropy has been computed analytically in the AdS3/CFT2 set-up and the

result is similar to the local quenches at zero temperature [32]. Recently, this holographic

result has been reproduced from purely conformal field theoretic calculations using the

large central charge limit by the authors in [33]. A generalization of this set-up to locally

excited states in a finite temperature CFT would involve a falling massive particle into an

eternal AdS black hole. Therefore we expect that the analysis of entanglement entropy in

such a set-up will be closely related to the physics of free falling objects in a black hole

background.

Motivated by this, we would like to study the time-evolution of (Renyi) entanglement

entropy of locally excited states in two dimensional CFTs at finite temperature. In par-

ticular, we study the Renyi entanglement entropy in both free field CFTs and large N

CFTs (or equally large central charge c CFTs) by using the field theoretic replica method.

In addition, we support our CFT results with the computation of the holographic entan-

glement entropy in a gravity dual consisting on the back-reacted geometry of a massive

falling particle in a BTZ black hole. We also formulate the replica method calculation

of Renyi entanglement entropy for the thermofield double description and compute the

mutual information between two CFTs in the thermofield double (TFD).

1Note that this class of excited states should be distinguished from the excited states which are given

by primary states with definite eigenvalues of dilatational operator (L0, L̄0). See the appendix A in the

present paper for more details and the analysis of entanglement entropy.
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This paper is organized as follows: in section two, we give a brief review of the ther-

mofield description of finite temperature CFTs and its holographic interpretation. In sec-

tion three, we compute the time-evolution of the Renyi entanglement entropy of locally

excited states in two dimensional CFTs at finite temperature. In section four, we formu-

late the replica method for the thermofield description, calculate the mutual information

between two CFTs in the thermofield double and provide some intuitive explanation for our

results. In section five we discuss our holographic results obtained in a back-reacted geom-

etry from a falling particle. In section six, we summarize our conclusions. In appendix A,

we study a class of excited states given by primary states in two dimensional CFTs and

analyze their entanglement entropy. In appendix B, we present the exact expressions for

the cross-ratios used in our CFT calculations.

When finishing this work, we became aware that an independent derivation of our

results in appendix A was obtained in [33] as a part of their results.

2 The thermofield double and black holes

Consider two non-interacting CFTs, say CFTL and CFTR, in two dimensions with iso-

morphic Hilbert spaces HL,R. A particular entangled state in the total Hilbert space

H = HL ⊗HR is the thermofield double state

|Ψβ〉 =
1√
Z(β)

∑
n

e−
β
2
En |n〉L |n〉R (2.1)

where Z(β) =
∑

n e
−βEn is the standard partition function in one of the Hilbert spaces.

|n〉L is an eigenstate of the hamiltonian HL acting on HL with eigenvalue En (and similarly

for |n〉R). Furthermore, |n〉L is the CPT conjugate of the state |n〉R and to simplify notation

we write |n〉L ⊗ |n〉R as |n〉L |n〉R.

By construction, the reduced density matrix of (2.1) on either Hilbert space equals to

a thermal state. For example, tracing over HL gives rise to

ρR(β) = trHL (|Ψβ〉 〈Ψβ|) =
1

Z(β)

∑
n∈HR

e−βEn |n〉R 〈n|R , (2.2)

the thermal state in HR. Thus, any correlation functions of observables OR acting on HR
will equal thermal correlation functions

〈Ψβ| OR(x1, t1) . . .OR(xn, tn) |Ψβ〉 = trHR (ρR(β)OR(x1, t1) . . .OR(xn, tn)) . (2.3)

Even in the absence of interactions, quantum entanglement is responsible for the ex-

istence of non-trivial correlations between HL and HR. These correlations are encoded

in two-sided correlation functions involving operators OL,R acting on each Hilbert space

HL,R, respectively,

〈Ψβ| OL(x1, t) . . .OR(x′n, t
′
n) |Ψβ〉 . (2.4)

Remarkably, these two-sided correlators can be computed by analytical continuation

〈Ψβ| OL(x1,−t) . . .OR(x′n, t
′
n) |Ψβ〉 = trHR

(
ρR(β)OR(x1, t− iβ/2) . . .OR(x′n, t

′
n)
)
. (2.5)

This observation will play an important role in our CFT entanglement calculations in

section 4.
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Figure 1. Penrose diagram for an eternal AdS black hole.

2.1 Gravity dual description

Whenever the 2d CFTs in the previous discussion have a holographic dual, the AdS/CFT

correspondence asserts the existence of a gravity dual realization of the thermofield double

state. Maldacena proposed the entangled state (2.1) to be dual to the eternal AdS black

hole [34]. For 2d CFTs, this would correspond to the BTZ black hole [35]. Its Penrose

diagram is shown in figure 1.

The existence of two conformal boundaries matches the presence of two CFTs in our

field theory discussion. Tracing overHL is equivalent to tracing over the region of spacetime

causally connected to it. This is why an observer at infinity, measuring in HR, perceives her

event horizon as a thermal atmosphere. This is in manifest agreement with why observables

measured by such observers are thermal.

There are two bulk interpretations of the thermofield double state (2.1). The most

canonical one describes a single black hole in thermal equilibrium [36]. Hamiltonian evo-

lution is generated by the boost

Htf = IL ⊗HR −HL ⊗ IR . (2.6)

To simplify our notation, we will refer to it as HR − HL. Its action can be understood

as propagating time upwards in HR and downwards in HL. This is again in agreement

with (2.5). Notice the state (2.1) is an eigenstate of this hamiltonian with vanishing

eigenvalue. Thus, the state has no time evolution because it is boost invariant.

An alternative interpretation of the eternal AdS black hole is as an approximate de-

scription of the state at t = 0 of two AdS black holes. In this case, hamiltonian evolution

is generated by

H = IL ⊗HR +HL ⊗ IR ≡ HR +HL . (2.7)

Notice this corresponds to propagating time upwards in both boundaries. Since this action

is no longer an isometry of the geometry, the thermofield double state (2.1) will have a

non-trivial time evolution. In fact, it is no longer an eigenvector of H, but instead

|Ψβ(t)〉 =
1√
Z(β)

∑
n

e−
β
2
En e−2iEnt |n〉L |n〉R . (2.8)
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Despite the manifest time dependence of the state, the corresponding reduced density

matrices (ρL or ρR) remain time-independent thermal density matrices.

If the quantum state would be a product state, then the two black holes would be

described by disconnected spaces, in agreement with the lack of correlations between CFTL
and CFTR. The existence of 2-sided correlations in the CFT, due to quantum entanglement

of the thermofield double state (2.1), can be generically understood in terms of causal

connection between the two boundaries in the future interior of the black hole. More

recently, it was suggested in [37] that even though the two black holes belong to non-

interacting universes in the second bulk interpretation of the thermofield double state, the

manifestation of quantum entanglement is through an Einstein-Rosen bridge connecting

both geometries: one identifies their bifurcate horizons and fills in the space in the interior

of both black holes. This reasoning lead to the EPR=ER conjecture [37].

One of the motivations of this work is to develop the CFT machinery required to un-

derstand the physics of restoration to thermal equilibrium, after perturbing the thermal

equilibrium state with a local perturbation, using entanglement measures. This has intrin-

sic value in different branches of physics. For example, from the perspective of holography

and black hole physics, one of our motivations is to eventually carry first principle CFT

calculations that will be able to probe the physics of scrambling [38, 39]. The gravity

dual calculation has been recently done in [14–16], where the authors compute the mutual

information and other correlations in shock wave geometries.

3 (Renyi) entanglement entropy for locally excited states at finite tem-

perature

Consider a 2d CFT in a thermal state and locally perturb it by inserting an operator O at

t = 0, x = −l. Hamiltonian evolution gives rise to the time dependent density matrix

ρ(t) = N e−iHte−εHO(−l)e−βH+2εHO†(−l)e−εHeiHt

≡ NO(x2, x̄2) e−βH O†(x1, x̄1)
(3.1)

where N is a normalization constant to ensure Tr(ρ) = 1. We are following the same

notation as in [18, 23, 24]. In particular, the ε factor was introduced to regulate the

distance between the insertion points of the local operators (figure 2). More precisely,

these points are

x1 = t− l + iε x̄1 = −l − t− iε (3.2)

x2 = t− l − iε x̄2 = −l − t+ iε . (3.3)

Thus, the distance x1 − x2 equals 2iε.

We are interested in measuring the amount of entanglement in some region A. For

simplicity, we will focus on the semi-infinite interval A = [0,∞]. By tracing out the

complement of region A, we obtain the reduced density matrix ρA(t). Then, using the

replica method and following [18], we define the growth of the n-th Renyi entanglement

– 5 –
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Figure 2. The reduced density matrix for our excited states is described by a path-integral on a

cylinder with complex coordinates x = σ+ iτ . The two operators inserted at distance x = −l from

the cut A are separated by ∆x = 2iε. TrρnA is computed as a partition function on the n-copies of

these cylinders glued along A.

entropy in a thermal state excited by a local operator as

∆S
(n)
A =

1

1− n
log

(
Tr(ρnA)

Tr(ρ
(0)
A )n

)
=

1

1− n
log

[
〈O(x1, x̄1)O†(x2, x̄2) . . .O†(x2n, x̄2n)〉Cn

(〈O(x1, x̄1)O†(x2, x̄2)〉C1)
n

]
.

(3.4)

The 2n-point function is computed on an n-sheeted cylinder Cn, each with a cut corre-

sponding to A, glued cyclically along the semi-infinite intervals. A pair of operators is

inserted on each cylinder, to describe the local excitation, and separated by 2iε. The

insertion points on the n-th cylinder are

x2n−1 = x1 + i(n− 1)β, x2n = x2 + i(n− 1)β (3.5)

ρ
(0)
A is the density matrix without the insertion of local operators. Thus, by construction,

∆S
(n)
A measures the variation in the n-th Renyi entanglement entropy in A due to the local

excitations O.

From now on, mostly for simplicity of computations, we focus on the second Renyi

entanglement entropy (i.e. n = 2) and on excitations by primary operators. From the

information theory point of view, Renyi entropies can be thought of as approximations to

the von-Neumann entropy n = 1 and are more detailed measures of entanglement structure

in a quantum state (entanglement spectrum). In particular for n = 2 the Trρ2, that we

will compute below, is called a purity and is widely used to measure how far a particular

entangled state is from a pure state.

For n = 2, ∆S
(2)
A depends both on the 2-pt function on the cylinder,

〈O(x1, x̄1)O†(x2, x̄2)〉C1 =

∣∣∣∣βπ sinh

(
πx12

β

)∣∣∣∣−4∆O

(3.6)

and a 4-pt function on C2. The latter can be computed if we find a conformal map from

C2 to the complex plane C, where such 4-pt function is given by

〈O†(z1, z̄1)O(z2, z̄2)O†(z3, z̄3)O(z4, z̄4)〉C = |z13z24|−4∆OG(z, z̄) , (3.7)

– 6 –
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where zij = zi − zj and G(z, z̄) is a theory dependent function of the conformal ratios

z = (z12z34)/(z13z24).

The crucial step in our calculation is to realise that the two-sheeted cylinder C2 with

coordinates x = σ + iτ and semi-infinite cuts at τ = 0 can be mapped to the complex

plane by

z(x) =

√
e

2πx
β − 1 . (3.8)

This map can be derived as a composition of conformal maps. Indeed, first, map each

cylinder with a semi-infinite cut to the plane with an interval cut from [1,∞] using the

exponential map w(x) = exp(2πx/β). Second, use the uniformization map z2(w) = w−1.2

Using the map (3.8), we learn that the insertion points of the operators in the second

cylinder are mapped to the plane points z3 = z(x1 + iβ) = −z1 and z4 = z(x2 + iβ) = −z2.

This implies that the cross-ratio determining G(z, z̄) reduces to

zA ≡
z12z34

z13z24
=

1

2

(
1− z2

1 + z2
2

2z1z2

)
(3.9)

and similarly for z̄A, where the subindex A refers to the dependence on the semi-infinite

cut characterising the entanglement region A.

Using the transformation law of correlators of primary operators under conformal

maps, it is straightforward to show that

〈O(x1, x̄1)O†(x2, x̄2)O(x3, x̄3)O†(x4, x̄4)〉C2

(〈O(x1, x̄1)O†(x2, x̄2)〉C1)
2 = |zA(1− zA)|4∆O G(zA, z̄A) . (3.10)

This is a general formula for a 2d CFT that only relies on the conformal map (3.8). It

leads to a concise expression for the growth of the Renyi entanglement entropy

∆S
(2)
A = − log

(
|zA(1− zA)|4∆O G(zA, z̄A)

)
. (3.11)

Let us stress that the dependence of ∆S
(2)
A on time, the inverse temperature β and the

regulator ε is entirely through the cross-ratios zA and z̄A.

The examination of these cross-ratios for the map (3.8) is explained in appendix B.

The main observation is that if we remove the cut-off, i.e. ε → 0, we recover the same

behaviour reported for T = 0 in [18, 20, 23, 24]. This is because the cross-ratios behave as

(zA, z̄A)→ (0, 0) for early times t < l, whereas we get (zA, z̄A)→ (1, 0) for late times t > l.

Thus, at late time, the growth of the Renyi entanglement entropy approaches a constant

value.3 The latter characterizes the entanglement of local operators.

This conclusion may not be surprising since the 2-pt function at finite temperature (3.6)

is not sensitive to the temperature in the deep UV. Since our primary operators are inserted

2iε away, the ε→ 0 limit explores such UV and the answer is expected to be temperature

independent. Another way to understand the ε → 0 result comes from the fact that we

2There exists a similar map z2(x) = (w(x) − 1)/(w(x) − w(L)) for a cylinder with finite interval cut

[0, L] to the complex plane C. For clarity of the presentation we only consider A ∈ [0,∞].
3For a finite interval entanglement region of size L, the constant value is obtained for l < t < l + L.
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are dealing with an integrable theory and only a particular sector is excited, therefore the

‘thermalization procedure’ is finished instantaneously.

Let us stress again that, in order to take into account finite temperature effects, we must

keep the regulator4 ε finite. We elaborate on this observation below in a few examples. We

will provide a physical interpretation for these finite temperature effects in coming sections.

3.1 Finite ε examples

In this section we consider three different situations: free bosons, the Ising model and the

large c limit of 2d CFTs. In all our calculations of ∆S
(2)
A , we will keep ε small, but finite,

keeping only terms up to order O(ε).

Free bosons. Our first example considers the CFT of a single free boson φ(z, z̄) in two

dimensions. We study this CFT in the thermal state (3.1) with a local primary operator

O(x, x̄) =
1√
2

(
e
i
2
φ + e−

i
2
φ
)
, ∆O = ∆̄O =

1

8
. (3.12)

At zero temperature, the evolution of ∆S
(n)
A in a state locally excited by this operator was

studied in [23]. It was found that ∆S
(n)
A → log 2 at late time. Following [32], the physical

interpretation is as follows. The insertion of the local operator (3.12) is equivalent to the

creation of an entangled EPR-like pair propagating with the speed of light away from the

insertion points. Once one member of the pair enters the region A, it contributes to the

entanglement between A and its complement by a value of log 2, a bit of entanglement.

Let us see how this picture is modified at finite temperature.

For a free boson 2d CFT, the function G(z, z̄) controlling 4-pt functions equals [23]

G(z, z̄) =
1

2
√
|z(1− z)|

(1 + |z|+ |1− z|) . (3.13)

Inserting this into (3.11) we obtain the growth of the second Renyi entanglement entropy

for a free boson CFT with local EPR-like operator (3.12)

∆S
(2)
A = log

(
2

1 + |zA|+ |1− zA|

)
. (3.14)

A careful analysis of the cross-ratios zA, z̄A (B.1) for small, but finite ε, reveals that at late

time t > l, the limiting constant value for the growth of the Renyi entangelment entropy

is decreased as follows

∆S
(2)
A ' log 2− πε

β
+O(ε2) . (3.15)

Physically, this can be understood by the influence of thermal fluctuations on the propa-

gating EPR pair that is now represented by two wave packets of size ε propagating away

from each other.5

4Even though we use ε to regulate the distance between the operators, it is not a priori the UV cut-off

of the underlying field theory. As we will see, in our non-equilibrium, locally excited system, ε seems to be

related to the way that a local excitation experiences the temperature of the background once it spreads

through the system.
5We comment further on this wave packet interpretation in section 3.2.
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Critical Ising model. The second example is the critical Ising model, i.e. the (4, 3)

minimal model also studied in [23]. Consider the spin σ primary operator as a local

excitation

O(x, x̄) = σ(x, x̄), ∆σ = ∆̄σ =
1

16
. (3.16)

Notice the chiral dimension of σ is half that of the free scalar operator (3.12) (∆σ = 1
2∆O).

Furthermore, a general 2n-point correlator in the critical Ising model on the plane is equal

to the square root of the 2n-point function of the free boson operator [40]. As a result, the

growth of the Renyi entanglement entropy is equal to 1/2 of the free boson answer. For

small ε, this equals

∆S
(2)
A ' log

(√
2
)
− πε

2β
+O(ε2) . (3.17)

This is the logarithm of the quantum dimension of σ obtained in [23], but decreased by

the finite temperature effect, which equals half of the amount in the free boson CFT

calculation. This is still consistent with the picture of the propagating EPR-like pair since

different operators can contribute different amounts to the entanglement entropy.

Large c general 2d CFT. Consider a two dimensional CFT with a large central charge

c which has a gap as required by the gravity dual as in the calculation of [41]. We take

a locally excited state and assume that the conformal dimension of local operator ∆O is

much larger than one but much smaller than c: 1 � ∆O � c. As shown in [24], at zero

temperature the growth of the Renyi entanglement entropy diverges logarithmically with

time with a universal coefficient proportional to the conformal dimension ∆O of the local

operator used as the excitation

∆S
(2)
A ' 4∆O log

(
2t

ε

)
. (3.18)

This CFT prediction (3.18) was reproduced holographically in the large ∆O limit corre-

sponding to the geodesic bulk approximation to correlators [24], keeping only disconnected

Witten diagrams.

A gravity dual for heavy local operator insertion was proposed in [25], which is given by

a massive particle falling from the AdS boundary to the interior horizon. The corresponding

calculations of holographic entanglement entropy lead to the behavior ∆SA ∼ c
6 log t

ε . This

holographic result has been fully reproduced from a large c limit analysis in [33] for the

operators such that ∆O ∼ O(c). This logarithmic time dependence is reminiscent of the

one found in local quenches [32] after replacing ∆O by the central charge c of the CFT,

which behaves like ∆SA ∼ c
3 log t

ε .

To study the effect of finite temperature, we use the approximation for the conformal

block in the large c limit [42]

G(z, z̄) ' |z|−4∆O . (3.19)

Since the latter is valid at all times, the growth of the Renyi entanglement entropy (3.11)

becomes

∆S
(2)
A ' −4∆O log (|1− zA|) . (3.20)

– 9 –
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We stress this is a universal 2d CFT result in the large c limit. Cross-ratios (B.1) determine

the behaviour of this Renyi entropy: zA, z̄A → 0 for t < l, leading to a vanishing growth

in the Renyi entanglement entropy, whereas zA → 1, keeping z̄A → 0 for t > l. We learn

that, at late times and small ε

∆S
(2)
A ' 4∆O log

(
β

πε

)
+O(ε2) . (3.21)

Thus, the effect of finite temperature is equivalent to introducing a cut-off for the time

tmax ' β/2π. A CFT at finite temperature has a black hole geometry as a holographic

dual [43]. It is then very suggestive to interpret this time cut-off derived in the CFT, as

the time taking a massive particle to approach the black hole horizon. We will discuss this

interpretation in subsection 5 when presenting our gravity dual calculations.

3.2 Energy density

As shown in [25], the picture of propagating EPR pairs is also consistent with the expec-

tation value of the energy. Namely, the time dependent correlator of the energy has the

form of two profiles propagating from the insertion point of the local operator. Let us then

compute the expectation value of Ttt(x, x̄) = −(T (x) + T̄ (x̄)) in the excited state in 2d

CFT at finite temperature

〈Ttt(x, x̄)〉O ≡
〈O†(x1, x̄1)Ttt(x, x̄)O(x2, x̄2)〉C1

〈O†(x1, x̄1)O(x2, x̄2)〉C1

. (3.22)

Using the map from the plane to the cylinder with circumference β, z = exp
(

2πx
β

)
and

the appropriate transformation of the primary operators as well as the energy momentum

tensor we get

〈Ttt(x, x)〉O =
cπ2

3β2
−

π2∆O
β2 sinh2

(
πx12
β

)
sinh2

(
π(x−x1)

β

)
sinh2

(
π(x−x2)

β

) − π2∆O
β2 sinh2

(
πx̄12
β

)
sinh2

(
π(x−x̄1)

β

)
sinh2

(
π(x−x̄2)

β

) .
(3.23)

Once we plug the insertion points points (3.3) the final result becomes

〈Ttt(x)〉O =

4π2∆O
β2 sin2

(
2πε
β

)
(

cosh
(

2π(l−t+x)
β

)
− cos

(
2πε
β

))2 +

4π2∆O
β2 sin2

(
2πε
β

)
(

cosh
(

2π(l+t+x)
β

)
− cos

(
2πε
β

))2

+
π2c

3β2
.

(3.24)

The expectation value of the energy is then described by two profiles propagating

away from each other from the insertion of the operator x = −l. The width of the profiles

is determined by the ratio of ε/β and in the limit ε → 0 the profiles become two delta

functions as in the zero temperature case [25].

A basic property of our excited state created by the primary operator O insertion can

be seen from (3.24): the energy density is that of a thermal state
(
π2c
3β2

)
plus two lumps

of energy propagating in opposite directions. Thus, there is no natural sense in which this

perturbation relaxes to thermal equilibrium.

– 10 –
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Figure 3. Reduced density matrix in the thermofield double state. CFTL corresponds to x = i0

and CFTR to x = iβ2 .

4 Mutual information in the thermofield double

In section 3, we developed the formalism introduced in [18, 23, 24] to compute Renyi en-

tanglement entropies in 2d CFTs whose thermal states are locally excited by a primary

operator. Our goal in this section is to extend these tools for the set-up described in

section 2 involving the thermofield double (TFD) state (2.1). Below we will develop calcu-

lations of the mutual information in [12, 45] and compute the mutual information in the

thermofield double formalism for our locally excited states.

The main observation, explained in great detail in the appendix of [45], is that just

as single sided thermal correlation functions, such as (2.3), must be computed on a single

cylinder with periodicity τ ∼ τ + β, two-sided correlators, such as (2.4), involve a path

integral over a cylinder with the same periodicity τ ∼ τ +β, where all operators OR acting

on HR are inserted at τ = iβ/2, whereas operators OL acting on HL are still inserted at

τ = 0 . This is consistent with the analytic continuation (2.5).

Our set-up. We consider the thermofield double state (2.1) and two semi-infinite inter-

vals: A = [0,∞] in the left CFTL and B = [b,∞] in the right CFTR. We perturb the TFD

by the insertion of a local primary operator OL acting on CFTL at x = −l , t = 0 and

follow the real time evolution of the change in the mutual information defined in terms of

the growths of Renyi entanglement entropies introduced in the previous section as

∆I
(2)
A:B = ∆S

(2)
A + ∆S

(2)
B −∆S

(2)
A∪B. (4.1)

By definition (3.4), the second Renyi entanglement entropies ∆S
(2)
X , where X ∈ {A,B,A∪

B}, require the computation of 4-point correlators on two cylinders glued along the cor-

responding cuts. At t = 0, the interval A corresponds to a cut at τ = 0, whereas the

interval B corresponds to a cut at τ = iβ/2. The operator insertions in the first cylinder

remain equal to x1 and x2, i.e. −l± iε at t = 0, whereas the insertion points on the second

cylinder are

x3 = x1 + iβ, x4 = x2 + iβ (4.2)

and similarly for x̄3 and x̄4. Figure 3 summarises the entire construction.
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As reviewed in section 2, there are two different natural time evolutions to consider.

Using the hamiltonian HR −HL, the time dependent density matrix is

ρ(t) = N e−i(HR−HL)te−εHLOL(−l) |Ψβ〉 〈Ψβ| O†L(−l)e−εHLei(HR−HL)t

≡ NOL(x2, x̄2) |Ψβ〉 〈Ψβ| O†L(x1, x̄1) .
(4.3)

On the other hand, the hamiltonian HR +HL gives rise to the density matrix

ρ(t) = N e−i(HL+HR)te−εHLOL(−l) |Ψβ〉 〈Ψβ| O†L(−l)e−εHLei(HL+HR)t

= NOL(x2, x̄2)e−i(HL+HR)t |Ψβ〉 〈Ψβ| ei(HL+HR)tO†L(x1, x̄1).
(4.4)

Technically, the main difference is that under HR +HL evolution, both the local operator

and the state |Ψβ〉 evolve non-trivially, whereas for HR −HL only OL does, since |Ψβ〉 is

boost invariant.

To sum up, for both hamiltonians the positions of the operators depend on time but

for HR − HL the position of the cuts is fixed, whereas for HR + HL, the semi-infinite

interval A starts at fixed (xA, x̄A) = (0, 0) but the starting point of the semi-infinite cut

B (xB, x̄B) = (b + iβ/2 + 2t, b − iβ/2 − 2t) depends time (see [12]). We will now analyze

the real time evolution of ∆I
(2)
A:B using the appropriate conformal maps. For each of the

hamiltonians we will present the results for the free boson CFT and a general 2d CFT at

large central charge. A physical picture behind all the results for mutual information will

be given in section 4.3.

4.1 HR −HL evolution

The calculation of ∆S
(2)
X involves a 4-pt function. We follow the same strategy as in

section 3. That is, we compute the relevant 4-pt function by mapping our two glued

cylinders to the plane. These maps are given below for the different X:

z(x) =

√
e

2π
β
x − 1 , for X = A

z(x) =

√
e

2π
β
x

+ e
2π
β
b
, for X = B

z(x) =

√√√√ e
2π
β
x − 1

e
2π
β
x

+ e
2πb
β

, for X = A ∪B .

(4.5)

The same maps apply for z̄(x̄). These were obtained as the map (3.8): they are the

composition of a map from the cylinder to the plane followed by a uniformization map

dealing with the existing cuts.

Since all maps (4.5) satisfy z3 = −z1 and z4 = −z2, all ∆S
(2)
X will still satisfy

∆S
(2)
X = − log

(
|zX(1− zX)|4∆O G(zX , z̄X)

)
, X = {A,B,A ∪B} , (4.6)

as already derived in section 3. The explicit form of the different cross-ratios zX , z̄X
determining the behaviour of these Renyi entanglement entropies is presented in equa-

tions (B.1), (B.2) and (B.3). In the following, we discuss the small ε expansion for different

times t in different CFTs.
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Figure 4. Growth of the Renyi entanglement entropies for free scalar in TDF. Parameters ε/β =

1/12 and b 6= 0 .

Free boson. Using (3.13) in (4.6) with three different cross-ratios, the change in mutual

information equals

∆I
(2)
A:B = log

(
2

1 + |zA∪B|+ |1− zA∪B|
(1 + |zA|+ |1− zA|) (1 + |zB|+ |1− zB|)

)
. (4.7)

Figure 4 shows the three growths ∆S
(2)
X and the change in the mutual information ∆I

(2)
A:B.

For small ε
β , the entropy ∆S

(2)
B is negligible, i.e. O(ε2), for all times. Thus, the change in

the mutual information reduces to

∆I
(2)
A:B = ∆S

(2)
A −∆S

(2)
A∪B +O(ε2) . (4.8)

Both ∆S
(2)
A and ∆S

(2)
A∪B approach log 2 − πε

β in the time interval l < t < l + b, whereas

for t > l + b, the growth of the Renyi entanglement entropy of the union increases to the

maximal value

∆S
(2)
A∪B → log 2 , t > l + b . (4.9)

As a result, the change in the mutual information is mostly zero up to the time t ' l + b

and saturates at the negative value

∆I
(2)
A:B → −

πε

β
+O(ε2) , (4.10)

soon afterwards.

Large c general 2d CFT. Using the large c behavior of the conformal blocks (3.19) and

the form of the growth of the Renyi entanglement entropies (3.20). the change in mutual

information is

∆I
(2)
A:B ' 4∆O log

(
|1− zA∪B|

|1− zA||1− zB|

)
. (4.11)

In figure 5, we plot the three growths ∆S
(2)
X and the change in the mutual information.

Notice ∆S
(2)
B is zero for all times. Since ∆S

(2)
A , ∆S

(2)
A∪B → 4∆O log

(
β
πε

)
for l < t < l + b

(as in (3.21) ), ∆I
(2)
A:B still vanishes in this interval. When t > l+ b, ∆S

(2)
A∪B grows linearly
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Figure 5. Growths on the Renyi entanglement entropies and the change in the mutual information

at large c for ε
β = 1

30 .

with time. This results in the linear decrease of the change in the mutual information from

0 to −∞:

∆I
(2)
A:B ' −

8π∆Ot

β
. (4.12)

Interestingly, since ∆S
(2)
B is negligible, all ε dependence cancels at this order.

4.2 HR +HL evolution

We follow the same strategy as in previous sections and compute the relevant 4-pt function

using appropriate conformal maps. When time evolution is generated by HR+HL, these are

z(x) =

√
e

2π
β
x − 1, z̄(x̄) =

√
e

2π
β
x̄ − 1 , for X = A

z(x) =

√
e

2π
β
x

+ e
2π
β

(b+2t)
, z̄(x̄) =

√
e

2π
β
x̄

+ e
2π
β

(b−2t)
, for X = B

z(x) =

√√√√ e
2π
β
x − 1

e
2π
β
x

+ e
2π
β

(b+2t)
, z̄(x̄) =

√√√√ e
2π
β
x̄ − 1

e
2π
β
x̄
+e

2π
β

(b−2t)
, for X = A ∪B .

(4.13)

Notice these maps encode the time evolution of the cuts inserted at τ = iβ2 through the

shifts b → b + 2t for functions of x and b → b − 2t for functions of x̄, when compared

with the maps (4.5). But they still satisfy z3 = −z1 and z4 = −z2. This means that the

individual growths ∆S
(2)
X will be computed by (4.6). This requires the computation of the

new cross-ratios (zB, z̄B) and (zA∪B, z̄A∪B), given in (B.4) and (B.5) respectively.

Free boson. There is no change in any of the ∆S
(2)
X up to t = l + b when compared to

HR −HL evolution (see figure 6). However, for t > l + b, ∆S
(2)
A∪B approaches

∆S
(2)
A∪B → log(2)− 2πε

β
. (4.14)

Notice how the maximal value of log 2 is now decreased twice as much as for ∆S
(2)
A .

This implies that for HR+HL evolution, at late time and small ε, the change in the mutual
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Figure 6. Growths in the Renyi entanglement entropies and the change in the mutual information

for the free boson for ε/β = 1/12 and b 6= 0 .
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Figure 7. Growths of Renyi entanglement entropies and mutual information for HR+HL evolution,

ε/β = 1
8 .

information increases by the same amount as its counterpart decreases for the hamiltonian

HR −HL

∆I
(2)
A:B →

πε

β
+O(ε2) . (4.15)

Large c generic 2d CFT. The variation in mutual information is still given by (4.11),

but using the appropriate cross-ratios dealing with the evolution generated by HR + HL.

Results are plotted in figure 7. Surprisingly, there is no change in the mutual information

for all times in the small ε limit. Technically, the reason this happens is because when

t > l + b, the difference between ∆S
(2)
A∪B and ∆S

(2)
A is order O(ε2). This is the same

order as the neglected contribution from ∆S
(2)
B . Thus, ∆I

(2)
A∪B vanishes, at this order, for

late times.

Since we know the exact dependence of the cross-ratios on all our parameters, we can

check how and when the growths ∆S
(2)
X as well as the change in the mutual information

∆I
(2)
A:B differ. Under HR +HL evolution, it turns out there exists a small difference in the

regime 0 < t < l + b. We plot ∆I
(2)
A:B in this region for several values of ε

β in figure 8.
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Figure 8. Mutual information for HR +HL evolution, b = 4l .

Figure 9. The structure of entanglement for the TFD at t = 0. The upper and lower chain

describe a lattice analogue of CFTL and CFTR, respectively. In CFTL, we insert the local operator

at x = −l, which creates entangled pair described by the yellow dots. They propagate at the speed

of light in the opposite directions.

4.3 Possible physical interpretation

In this subsection, we would like to provide a possible physical explanation for our results

on the growth of Renyi entanglement entropies and mutual information in terms of the

propagating entangled pairs created by the local operator O in TFD (figure 9). Our

energy density calculations in section 3.2 suggest that, in the limit ε
β � 1, the positions of

this pair at time t are peaked at x = ±t− l. In the following, we refer to Ac and Bc as the

complementary regions to A and B in the entire CFTL and CFTR spaces, respectively.

In all our examples, ∆S
(2)
B is always negligible in the approximation ε

β � 1. This is

natural because it is highly non-trivial (but not impossible) for the excitation in CFTL to

affect the entanglement entropy in CFTR. Keeping this in mind, we focus our attention on

the behavior of ∆S
(2)
A and ∆S

(2)
A∪B below. The mutual information is given by the difference

between these two quantities, as in (4.8).

Free Scalar with H = HR − HL. When 0 < t < l, causality ensures the entangled

pair created by the local operator OL remains in Ac. Thus, ∆S
(2)
X is trivial. When l < t <

l + b, one part of each entangled pair enters into A. Since the original thermofield double

state (2.1) is highly entangled from the perspective of HL and HR, the addition of this

extra entanglement is expected to break the original entanglement due to the monogamy

property. By regarding CFTL and CFTR as our laboratory and thermal bath, this is a

– 16 –



J
H
E
P
0
1
(
2
0
1
5
)
1
0
2

AA

B

c

B
c

0

Figure 10. Late time (t > l+ b) entangled structure for the free boson TFD with H = HR −HL .

basic example of decoherence. Since thermal entropy density is proportional to 1/β, the

reduction in entanglement between A and Bc is expected to be of the order ε/β to take into

account the width of the local perturbation. Thus, both ∆S
(2)
A and ∆S

(2)
A∪B are reduced by

O(ε/β). This explains our CFT result ∆S
(2)
A = ∆S

(2)
A∪B = log 2− πε

β .

At later times, when t > l+ b, the excitation is propagating through points in A which

are thermally entangled with B. Thus, the entanglement breaking mechanism described

for l < t < l + b does not apply for ∆S
(2)
A∪B (since this would require the entangled pair

to involve A and Bc or Ac and B). Thus in this time region, ∆S
(2)
A is still decreased to

log 2− πε
β , whereas ∆S

(2)
A∪B = log 2, in agreement with our CFT calculations.

This heuristic picture is summarized in figure 10, in terms of a composite system

of 4 subsystems A, Ac, B, Bc and the amount of entanglement gained or reduced when

considering different pairings. We assumed that the entanglement between B and Bc is

vanishing to draw this picture.

Free scalar with H = HR+HL. As previously stressed, the evolution under HR+HL

makes the location of the cut B move with time. In other words, at the time t generated

by HR + HL, the thermofield double entanglement leads to the entanglement between a

point x in CFTL with x ± 2t in CFTR. Our discussion and interpretation do not change

for l < t < l + b since in this time interval the variations in the amount of entanglement

are due to entanglement between A and Bc. When t > l+ b, ∆S
(2)
A remains unchanged but

∆S
(2)
A∪B is further decreased due to the extra breaking of entanglement between Ac and B,

qualitatively reproducing our CFT results ∆S
(2)
A = log 2 − πε

β and ∆S
(2)
A∪B = log 2 − 2πε

β .

This is again heuristically represented in figure 11.

Large c with H = HR −HL. Even though the large c limit may typically correspond

to a strong interacting CFT limit, we can still provide a qualitative interpretation for our

results using similar arguments to the ones in the free scalar case. The main difference

encountered in the large c limit is that ∆S
(2)
A∪B ∼ −∆I

(2)
A:B ∼

8π∆
β t at late times (t > l+ b).

This linear t behavior may be interpreted by the effect of breaking of original entangled
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Figure 11. Late time (t > l+ b) entangled structure for the free boson TFD with H = HR +HL .

pairs that remains at later time as opposed to the free scalar theory. This can be due

to the fact that we are considering the large c strongly interacting CFTs and thus the

entanglement breaking effect of the local operator is strong enough to last forever once

it happens.

Large c with H = HR +HL. In this case, we find trivial results for the change in the

mutual information at any time. The reason why ∆S
(2)
A∪B is suppressed is because the local

excitation does not break the original entanglement between A and B but it does the one

between A (or B) and Bc (or Ac).

5 Holographic results: falling particle in BTZ

In this section we consider the entanglement entropy SA for the subsystem A defined by

the semi-infinite line x > 0 in a two dimensional CFT with a gravity dual. Based on

the AdS3/CFT2, we want to holographically compute the time evolution of the entangle-

ment entropy after the local operator insertion at x = 0, by simply setting l = 0 in our

previous set-up.

In the AdS/CFT correspondence, the perturbation due to a heavy operator with con-

formal dimension ∆(= 2∆O) can be approximated by a massive point particle with mass

m = ∆/R starting its motion at the distance z = ε from the boundary in Poincaré AdS

space with AdS radius R and, as time progresses, falls into the AdS horizon [25]. The

particle back-reaction is initially localised around the particle and spreads out with time.

The mass parameter µ characterising the back-reacted gravity solution is proportional to

the mass m of the falling particle, µ = 8GNR
2m, In terms of the CFT dual data, one finds

the relation µ = 24∆O
c R2.

Geodesic approximation. A natural generalisation of this set-up to finite temperature

is to study a falling particle in the BTZ background [35]

ds2 =
R2

z2

(
−
(
1−Mz2

)
dt2 +

dz2

(1−Mz2)
+ dx2

)
. (5.1)
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The mass M of the black hole is related to its Hawking’s temperature by β = T−1 = 2π√
M

.

Furthermore, since our CFT calculations involved a non-compact manifold, we will take

x ∈ R. Thus, we will be considering the BTZ string background, as in [12]. We parametrize

the trajectory of a particle at x = 0 in the gauge (t, z) = (τ, z(τ)). The action for such

particle of mass m in (5.1) is then given by

Sp = −mR
∫

dτ

z(τ)

√
1−Mz(τ)2 − ż(τ)2

1−Mz(τ)2
. (5.2)

Its equations of motion yield the trajectory

z(τ) =
β

2π

√√√√1−

(
1−

(
2πε

β

)2
)(

1− tanh2

(
2πτ

β

))
. (5.3)

Notice we already used the boundary condition z(0) = ε, where ε parametrises the size

of the CFT perturbation, as in our previous subsection. The behaviour of this geodesic

already indicates that the natural time scale after which the particle is close to the horizon,

z ∼ 1/
√
M = β/(2π), is t ' β

2π , already matching our CFT calculation in (3.21).

Back-reaction metric. The back-reaction of this falling massive particle is found in

complete analogy to [25, 44]. Since the problem can be solved in global AdS3, all we have

to do is to map the BTZ coordinates into global ones. We provide this map below using

the embedding R2,2 space:√
r2 +R2 sin τ̃ =

R√
Mz

√
1−Mz2 sinh

(√
Mt
)
,

√
r2 +R2 cos τ̃ =

R
(

cosh(λ) cosh
(√

Mx
)
−
√

1−Mz2 sinh(λ) cosh
(√

Mt
))

√
Mz

,

r sin(φ) =
R√
Mz

sinh
(√

Mx
)
,

r cos(φ) =
R
(

cosh(λ)
√

1−Mz2 cosh
(√

Mt
)
− sinh(λ) cosh

(√
Mx

))
√
Mz

.

(5.4)

Notice the right hand side was already boosted in R1,1 ⊂ R2,2. We can fix the boost

parameter λ to be

tanhλ =
√

1−Mε2 . (5.5)

This ensures the point particle in global coordinates is at the origin of the AdS3 space

(r = 0). The back-reaction in global coordinates is known to be

ds2 = −(r2 +R2 − µ)dτ̃2 +
R2dr2

r2 +R2 − µ
+ r2dφ2 . (5.6)

This describes a black hole or a conical defect depending on the ratio µ/R2. By mapping

this metric back to BTZ coordinates using (5.4), we obtain the time dependent back-reacted

solution of Einstein’s equations describing a falling massive particle in BTZ. One can check

that this solution correctly reproduces the CFT energy density (3.24).
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Holographic entanglement entropy. To compute the holographic entanglement en-

tropy, we use the general result for the covariant entanglement entropy in metric (5.6) [25]

SA =
c

6

log
(
r(1)
∞ · r(2)

∞

)
+ log

2 cos

(
|∆τ̃∞|

√
R2−µ
R

)
− 2 cos

(
|∆φ∞|

√
R2−µ
R

)
R2 − µ

 (5.7)

where ∆φ∞ = φ
(2)
∞ − φ(1)

∞ , 0 < |∆φ∞| < π, and ∆τ̃∞ = τ̃
(2)
∞ − τ̃ (1)

∞ describe the global

end-points of the geodesic solving the extremal surface equation. Thus, all we have to

do is to map these end-points, using the conformal map (5.4), into their BTZ coordinate

counterparts (x
(1)
∞ , x

(2)
∞ ) at z∞ and time t. After using (5.5) and substituting

√
M = 2π/β,

the radial coordinate satisfies

r(i)
∞ =

Rβ2

4π2εz∞

√√√√√(2πε

β

)2

sinh2

(
2πx

(i)
∞

β

)
+

cosh

(
2πt

β

)
−

√
1−
(

2πε

β

)2

cosh

(
2πx

(i)
∞

β

)2

,

(5.8)

whereas the boundary coordinates satisfy

tan
(
τ̃ (i)
)

=
2πε

β

sinh
(

2πt
β

)
cosh

(
2πx

(i)
∞
β

)
−
√

1−
(

2πε
β

)2
cosh

(
2πt
β

)
tan

(
φ(i)
∞

)
=

2πε

β

sinh
(

2πx
(i)
∞
β

)
cosh

(
2πt
β

)
−
√

1−
(

2πε
β

)2
cosh

(
2πx

(i)
∞
β

) . (5.9)

To compare with our CFT computations, we consider (x
(1)
∞ , x

(2)
∞ ) = (0, L). L stands for the

size of the subsystem A. Since the latter was infinite, we shall be interested in the large L

limit, where L� β, keeping the dominant L dependence as a regularised subsystem length.

Our calculation of holographic entanglement entropy shows that at early time ε� t�
β, SA grows logarithmically with time t as

SA '
c

3
log

[
β

z∞
e
πL
β

]
+
c

6
log

t

4π2ε
+
c

6
log

 1√
1− 24∆O

c

sin

(
π

√
1− 24∆O

c

) . (5.10)

On the other hand, at late time t� β, it saturates to the value

SA '
c

3
log

[
β

z∞
e
πL
β

]
+
c

6
log

β

8π3ε
+
c

6
log

 1√
1− 24∆O

c

sin

(
π

√
1− 24∆O

c

) . (5.11)

The infinitesimal parameter z∞ represents the UV cut off of the z coordinate in AdS space.

The first right-hand side terms in (5.10) and (5.11) coincide with the known result of

entanglement entropy for finite temperature CFTs (without any local excitations). Thus,

our localized excitations are responsible for the variations on top of the UV answer, as

described by the subsequent terms. These variations behave
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Figure 12. The plot of time evolution of holographic entanglement entropy. It shows SA(t)−SA(0)

for the infinitely large subsystem A (i.e. a semi half line) as a function of t. Blue: full HEE, Red:

early time (5.10), Yellow: late time (5.11). We set R = 4GN = 1, ε = 0.001, β = 3 and M = 0.1.

• like ∼ c
6 log t

ε at early time t� β, reproducing the vanishing temperature behaviour

found in [25],

• like ∼ c
6 log β

ε at late time t� β.

This last behaviour is our new result peculiar to finite temperature. We interpret the

saturation to a finite value as due to the fact that for the time t� β the falling particle is

almost stopped at the black hole horizon in the gravity dual. We plotted the time evolution

for specific values of parameters in figure 12.

Note also that for ∆O larger than c/24 (the deficit angle geometry becomes the BTZ

black hole) the constant terms in (5.10) and (5.11) are expressed in terms of the effective

temperature (see appendix A). It would be interesting to clarify the physical meaning of

these universal terms at large c.

6 Conclusions

In this paper, we first studied the growth of (Renyi) entanglement entropy in the presence

of locally excited states in two dimensional conformal field theories (2d CFTs) at finite

temperature. We define our excited state by acting with a local operator O(x) with con-

formal dimension ∆O on the CFT thermal state. In all calculations in this paper we took

the subsystem A in the definition of the reduced density matrices ρA to be a semi-infinite

line. We found the general formula (3.11) for the growth of the second Renyi entanglement

entropy ∆S
(2)
A in any 2d CFTs in terms of the four point function of the local operators.

The result depends on the temperature T = 1/β and UV regularization parameter ε of the

local operator. We chose ε such that the local operator is smeared over a small width ε.

We explicitly evaluated this formula both for massless free field theories and CFTs in

the large central charge c limit (assuming ∆O � c). If we are allowed to take strictly ε = 0,

which is not possible in the latter case, then the result of ∆S
(2)
A does not depend on the

temperature T . In the former case (i.e. free CFTs), we found that the growth of entropy

is reduced by O(ε/β) compared with the zero temperature case. This is interpreted as a
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decoherence effect, where the original entanglement between the CFT and its thermofield

double is reduced because the local excitation (with the size ε) also breaks the original

quantum entanglement. In the large c limit case, the zero temperature result behaves like

∼ ∆O log t
ε , assuming ∆O � c. At finite temperature, we found that the time evolution is

stopped at time t ∼ β and ∆S
(2)
A gets saturated to a value ∼ ∆O log β

ε .

We calculated the holographic entanglement entropy in a gravity dual of this local

operator excitation at finite temperature. Our gravity description is given by a falling

massive particle in a BTZ black hole. Since this takes into account the full back-reaction,

the result corresponds to the local operator with a very large conformal dimension ∆ ∼
O(c), as opposed to our large c limit analysis of 2d CFTs. Despite their different regime of

validity, we find it takes time t ∼ β for the massive particle to approach the horizon, a time

scale that seems to agree with our analysis of Renyi entanglement entropy. Furthermore,

we analytically evaluate the time evolution of holographic entanglement entropy and found

that it is indeed saturated around t ∼ β to a value ∆SA ∼ c
6 log β

ε .

In the last part of this paper, we studied further the structure of quantum entanglement

by employing the thermofield double (TFD) description of finite temperature CFTs. This

has the nice advantage that we can study patterns of entanglement in an easier way as the

total system is described by a pure state. We studied the behavior of Renyi entanglement

entropy for two different time evolutions in free scalar field theories and large c 2d CFTs.

The first evolution is with respect to the time which is the Killing symmetry in the dual

eternal AdS black holes, which corresponds to the Hamiltonian HR − HL. Here HL and

HR are the Hamiltonians of the two CFTs in the thermofield double. The second evolution

is the non-trivial time evolution generated by HR + HL, which corresponds to the time

evolution along so called nice slices of eternal AdS black holes.

We formulated replica method calculations for both choices of the time evolutions and

evaluated explicitly the growth of the mutual information between two semi-infinite lines

on the two CFTs in the presence of local operator excitations. In the first case HR −HL,

we found that the mutual information decreases in general. This is naturally explained by

noting that the entangled pairs created by the local operator break the initial entanglement

between the two CFTs originated from the thermofield double construction. In the second

choice HR + HL, we found that the mutual information does not show this decreasing

behavior. This can be again understood intuitively. For this choice of time evolution the

time t in the first CFT corresponds to the time −t in the second CFT. Therefore the

entanglement which arises from the thermofield double construction connect two points in

the two CFTs which are separated by 2t. Thus the breaking of entanglement due to the

local operators does not contribute to the mutual information. It will be an interesting

future problem to confirm these CFT results from the calculations in some gravity duals.
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A Primary states as excited states

Consider a 2d CFT at zero temperature for simplicity. We should distinguish our locally

excited state O(x)|0〉 from the standard primary state |O〉 which corresponds to a primary

operator O. The latter is defined from the former by taking the far past limit τ → −∞
with respect to the Euclidean time τ and it has a definite conformal dimension ∆O as the

eigenvalue of the dilatational operator. On the other hand, our regularized locally excited

state e−εHO(x)|0〉 can be written as a linear combination of infinitely many primary and

descendant states. From this perspective, the parameter ε plays the role of an UV cut off

for the selection of such states.

As pointed out in the remarkable paper [46], the 4-pt function of two heavy operators

OB with two light operatorsOA equals a thermal 2-pt function in the large c limit as follows:

〈OB|OA(L)OA(0)|OB〉 =

(
1

πTB
sinh (πTBL)

)−2∆A

(A.1)

with effective temperature determined in terms of the conformal dimension ∆B of the heavy

operator

TB =
1

2π

√
24

c
∆B − 1 . (A.2)

This observation follows from the old observation that conformal blocks exponentiate in

the large c limit [47].

In fact, this result could be directly applied to the calculation of entanglement entropy

in heavy excited states. This observable equals

SL = lim
n→1

[
1

1− n
log (〈OB|σn(L)σ̃n(0)|OB〉)

]
. (A.3)

Using the conformal dimension of the twist operators σn

∆σ =
c

24

(
n− 1

n

)
, (A.4)

and taking the limit n→ 1, we derive the large c limit value for this entanglement entropy

SL =
c

6
log

(
βB
π

sinh

(
πL

βB

))
(A.5)

where βB = T−1
B . This agrees with the entanglement entropy at finite temperature in two

dimensional CFTs computed in [3] and also agrees with our expectation from the AdS/CFT
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correspondence. When finishing this work, we became aware that the authors of [33] got

the same observation (A.3) and (A.5) independently. We refer readers to this paper for

further analysis.

B Cross-ratios

In this appendix we collect the explicit form of the exact cross-ratios used in the main

text and determining the behaviour of the different quantum Renyi entropies and mutual

information. For the map (3.8), they are given by

zA =
1

2

1 +
cos
(

2πε
β

)
e

2π(t−l)
β − 1√(

cos
(

2πε
β

)
e

2π(t−l)
β − 1

)2

+ sin2
(

2πε
β

)
e

4π(t−l)
β



z̄A =
1

2

1 +
cos
(

2πε
β

)
e
− 2π(t+l)

β − 1√(
cos
(

2πε
β

)
e
− 2π(t+l)

β − 1

)2

+ sin2
(

2πε
β

)
e
− 4π(t+l)

β

 (B.1)

For the evolution of the thermofield double with hamiltonian HR−HL and maps (4.5), we

have for the cylinder with a cut B

zB =
1

2

1−
cos
(

2πε
β

)
e

2π(t−l)
β + e

2πb
β√

e
4π(t−l)

β + 2 cos
(

2πε
β

)
e

2π(t−l+b)
β + e

4πb
β



z̄B =
1

2

1−
cos
(

2πε
β

)
e
− 2π(l+t)

β + e
2πb
β√

e
− 4π(l+t)

β + 2 cos
(

2πε
β

)
e
− 2π(t+l−b)

β + e
4πb
β

 (B.2)

and for the cut A ∪B the ratios are

zA∪B =
1

2

1 +

e
4π(t−l)

β −
(

1− e
2πb
β

)
cos
(

2πε
β

)
e

2π(t−l)
β − e

2πb
β√(

−2 cos
(

2πε
β

)
e

2π(t−l)
β + e

4π(t−l)
β + 1

)(
e

4πb
β + 2 cos

(
2πε
β

)
e

2π(b−l+t)
β + e

4π(t−l)
β

)


z̄A∪B =
1

2

1 +

e
− 4π(l+t)

β −
(

1− e
2πb
β

)
cos
(

2πε
β

)
e
− 2π(l+t)

β − e
2πb
β√(

e
− 4π(l+t)

β − 2 cos
(

2πε
β

)
e
− 2π(l+t)

β + 1

)(
e

4πb
β + 2 cos

(
2πε
β

)
e

2π(b−l−t)
β + e

− 4π(l+t)
β

)


(B.3)
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When the evolution in the thermofield double is generated by the hamiltonian HR + HL

and maps (4.13), the cross-ratios for the cylinder with cut B are

zB =
1

2

1−
cos
(

2πε
β

)
e

2π(t−l)
β + e

2π(b+2t)
β√

e
4π(t−l)

β + 2 cos
(

2πε
β

)
e

2π(3t−l+b)
β + e

4π(b+2t)
β



z̄B =
1

2

1−
cos
(

2πε
β

)
e
− 2π(l+t)

β + e
2π(b−2t)

β√
e
− 4π(l+t)

β + 2 cos
(

2πε
β

)
e
− 2π(3t+l−b)

β + e
4π(b−2t)

β

 (B.4)

whereas those for the cut A ∪B are

zA∪B =
1

2

1 +

e
4π(t−l)

β −
(

1− e
2π(b+2t)

β

)
cos
(

2πε
β

)
e

2π(t−l)
β − e

2π(b+2t)
β√(

−2 cos
(

2πε
β

)
e

2π(t−l)
β + e

4π(t−l)
β + 1

)(
e

4π(b+2t)
β + 2 cos

(
2πε
β

)
e

2π(b−l+3t)
β + e

4π(t−l)
β

)


z̄A∪B =
1

2

1 +

e
− 4π(l+t)

β −
(

1− e
2π(b−2t)

β

)
cos
(

2πε
β

)
e
− 2π(l+t)

β − e
2π(b−2t)

β√(
e
− 4π(l+t)

β − 2 cos
(

2πε
β

)
e
− 2π(l+t)

β + 1

)(
e

4π(b−2t)
β + 2 cos

(
2πε
β

)
e

2π(b−l−3t)
β + e

− 4π(l+t)
β

)


(B.5)
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