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analysis the radiative corrections obtained from the electroweak theory for the gravi-

ton/photon/photon vertex. In this approach, the cross section is related to the angular

variation of the impact parameter (b), which is then solved for b as a function of the angle

of deflection, and measured in horizon units (bh ≡ b/(2GM)). Exact numerical solutions

for the angular deflection are presented. The numerical analysis shows that perturbation

theory in a weak background agrees with the classical Einstein formula for the deflection

already at distances of the order of 20 horizon units (∼ 20 bh) and it is optimal in the de-

scription both of very strong and weak lensings. We show that the electroweak corrections

to the cross section are sizeable, becoming very significant for high energy gamma rays.

Our analysis covers in energy most of the photon spectrum, from the cosmic microwave

background up to very high energy gamma rays, and scatterings with any value of the

photon impact parameter. We also study the helicity-flip photon amplitude, which is of

O(α2) in the weak coupling α, and its massless fermion limit, which involves the exchange

of a conformal anomaly pole. The corresponding cross section is proportional to the Born

level result and brings to a simple renormalization of Einsten’s formula.
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1 Introduction

Photon scattering [1] and lensing by gravity has been investigated along the years with an

ever increasing interest both in astrophysics and cosmology. Since Einstein’s original work,

this topic has developed into a very important area of research, providing both a method to

test Einstein’s general relativity (GR), and also a way to probe the distribution of matter

and dark matter in the universe [2]. Studies of weak lensing [3, 4], for instance, which

are relevant in the latter case, concern the identification of small deflections of the photon

paths due to gravity. In this case they are of the order of 1 arcsecond or so, and are investi-

gated on large statistical galaxy samples in order to provide information on the underlying

distribution of matter or dark matter on very large scales. On the other hand, larger angles

of deflection (∼ 20 arcsecs), classified as deflections due to strong lensing, are expected to
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occur when a photon trajectory nears a large concentration of matter. Obviously, even

stronger lensing effects are felt by the photons when these approach the horizon of a black

hole (very strong lensing), where the angular deflection of an incoming beam may be of few

degrees or even larger. In the limiting case of a beam grazing the photon sphere of a black

hole, the photons may perform one or more turns around the deflector before reaching the

asymptotic region, a phenomenon which renders these studies more involved. In this case,

in fact, the lens provides two infinite sets of images (see the discussion in [5]). Analytical and

numerical studies of black hole lenses have covered Schwarzschild, Reissner-Nordström and

other metric solutions, such as spherically symmetric and rotating geometries, braneworld

geometries, naked singularities etc. (see for instance [5–8] and refs. therein).

While the classical deflection of a photon path by gravity is a well-studied aspect of

GR, the explicit form of the full electroweak corrections have never been discussed before.

In particular, they have been limited only to the case of QED and for weak lensing [1].

With no doubt these corrections are small, but grow in size as one approaches scattering

centers of larger gravitational force and at high energy. In general, a gravitational cross

section grows quadratically with the massM of the source, here assumed to be of the order

of the solar mass M⊙ or larger. At the same time, the log(E) and log(E)2 dependence in

the perturbative expansion is responsible for the growth with the energy E of the corre-

sponding K-factors at 1-loop, being the leading order cross section independent of energy.

Such is the case of high energy/very high energy gamma rays, which are part of the photon

spectrum at cosmological level, covering energies up to 1018 eV, a region known as “the

ankle” of the cosmic ray spectrum. These may originate from primary protons of very

high energy, via the mechanisms of pion photoproduction, or by the inelastic nuclear col-

lisions of these primaries, close to their original sources. The possible extragalactic origin

of these very energetic cosmic rays, especially for energies above the TeV region, which are

expected to be accompanied by almost equally energetic gamma emissions, is nowadays

widely debated [9–11].

In the case of photons, one important point which, we believe, has not been sufficiently

investigated up to now, is the relation between the quantum and the classical predictions

of their scattering and lensing. For instance, the study of their deflection has mostly been

limited to the case of classical GR and given by Einstein’s expression. We recall that Ein-

stein’s formula for the deflection of light (see [12, 13]) finds application in the context of

gravitational lensing - both strong and weak - being at the basis of the gravitational lens

equation. However, the comparison between the two descriptions, first at Born level and

then with the inclusion of the corresponding radiative corrections, is of extraordinary inter-

est. It involves a semiclassical limit which needs to be investigated with care. The study of

this limit and the determination of the region where classical and semiclassical approaches,

mediated by the quantum corrections, share similar predictions, motivates our analysis.

A way to compare classical and quantum predictions was suggested long ago by Del-

bourgo and Phocas-Cosmetatos [14]. In their work, the authors equate the quantum me-

chanical cross section, computed in ordinary perturbation theory, with the classical one,

expressed in terms of the impact parameter of the incoming photon, treated as a classical
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particle
b

sin θ

db

dθ
=
dσ

dΩ
. (1.1)

The expression above defines a differential equation for the impact parameter whose solu-

tion relates b to θ, the classical angle of deflection. This allows a comparison between the

two approaches, giving a deflection which is in agreement with Einsten’s prediction in the

case of weak lensing.

As we have already mentioned, in the presence of radiative corrections, the angle

of deflection becomes energy dependent, generating a true gravitational rainbow [14–16].

This feature, which is absent both in the classical case and in the quantum case at Born

level, is an important effect which sets a distinction between the classical and the quantum

approaches to lensing. Obviously, its phenomenological impact is quite small in size, unless

one can show that the semiclassical description can be extended also to regions which are

far closer to the event horizon of a compact massive source.

In [14] the authors also derived an effective vertex describing the local operator emerg-

ing from the exchange of a charged boson or fermion in the loop of spin J , given by the

interaction

− 1

4
gµν

[

gκλFµκFνλ +
α

720m2
(−1)2J(2J + 1)Fκλ

↔

∂µ
↔

∂ ν Fκλ

]

, (1.2)

where m the mass of the virtual particle. Eq. (1.2) was then used in eq. (1.1) to predict

the photon deflection in the case of weak lensing.

It should be remarked that the effective vertex defined above is only valid at the lowest

order in an expansion in t/m2, where t is the momentum transfer of the graviton and m is

the mass of the lightest virtual particle exchanged in the loops. As such, it does not account

for the full one-loop corrections and cannot be used for a wider study of the deflection. In

any case, eq. (1.2) is expected to provide a realistic description of the photon deflection

only in the limit of weak deflection, where the typical momentum transfers of the graviton

cover the far infrared region. Such are those scatterings characterized by very large impact

parameters, as we are going to specify in detail below. Obviously, the approach becomes

inaccurate once we get very close to the Schwarzschild radius (RS = 2GM) of a compact

source, while the full perturbative solution of eq. (1.1) is expected to be predictive at

distances of the order of 106RS , which are comparable with the radius of the sun.

Our study shows that the range of validity of perturbation theory in the presence of

a weak gravitational background is not only limited to very large distances, very far from

the event horizon, as known before, but becomes realistic also at distances which are much

closer to it. It is essential, for this result to hold, to include in the numerical analysis the

entire dependence on the momentum transfer t of the graviton/photon/photon vertex.

In the case of infrared photons, for instance for photons of the CMB, the typical mo-

mentum transfers involved in the interaction are quite small, at least for scattering far from

the horizon, and one is allowed to perform a suitable expansion in t/m2, withm being, in the

SM, the electron mass. A first order expansion in this parameter is sufficient to obtain very

accurate results both for the differential cross section and for the semiclassical deflection
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obtained via eq. (1.1). On the other hand, closer to the horizon of the source, photons of the

CMB are expected to deflect significantly, and the inclusion of the additional contributions

in t/m2, which are generated by the radiative corrections, is therefore mandatory. As we

are going to show, at the other end of the spectrum - for very high energy (VHE) photons -

the numerical analysis of eq. (1.1) is quite straightforward to perform, and the convergence

of the differential equation for the impact parameter at any value of b is rather optimal.

1.1 Content of our work

Our work is organized as follows. In the next few sections we are going to briefly overview

the formalism of photon scattering in a weak background, defining our conventions. The

interaction is worked out for the case of an external body of heavy mass (M), treated as

a static point-like source, which is the case relevant for photon-gravity interactions off the

external core of the source. Some modifications of this approach which take into account the

geometric form factor of the source are necessary if a particle is allowed to interact with the

interior region, such as for a neutrino or a dark matter fermion, but they are not relevant in

the photon case. By using the impact parameter cross section and its solution b as a function

of the angle of deflection, we discuss the inversion of eq. (1.1), proceeding with several

numerical studies. We then present the radiative corrections to the amplitude and to the

cross section. We then turn to extract the expression of b to one-loop order in the complete

electroweak theory, determining the structure of the angular deflection at this order.

The background metric, over which we expand, is the retarded solution of the lin-

earized Einstein’s equations and coincides with the Schwarzschild metric, once we take its

expression in the limit of a weak external field.

We will investigate both the polarized and the unpolarized cross sections, and present

results for these over a very wide range of energy. The photon spectrum, which we are

interested in, will cover in our analysis both the case of infrared photons and of ultra high

energy gamma’s. We will give particular attention to the helicity-flip cross section, which

is quite small compared to the helicity-preserving component, but grows significantly as

we increase the energy (∼ E4), at least for small values of E, finally reaching a plateau at

high energy. As for any gravitational cross section, it grows quadratically with the mass of

the source, becoming relevant for scatterings off massive/ supermassive black holes. This

component of the unpolarized cross section appears at O(α2) and carries information on

the anomaly form factor of the graviton/photon/photon vertex.

2 Definitions and conventions

We will be following the same conventions already used in a previous investigation [17],

where the action describing the dynamics of the SM in a gravitational background is defined

as

S = SSM + SG + SI (2.1)

with SSM denoting the SM Lagrangian, while

SG = − 1

κ2

∫

d4x
√−g R
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SI = χ

∫

d4x
√−g RH†H (2.2)

denote respectively the gravitational Einstein term, with κ2 = 16πG and a term of im-

provement SI involving the Higgs doublet H. The latter, for the conformal value χ = 1/6,

is responsible for generating a symmetric and traceless energy-momentum tensor (EMT)

and guarantees the renormalizability of Green functions containing external gravitons and

an arbitrary set of SM fields. We will be using the flat metric ηµν = diag(1,−1,−1,−1),

with an expansion of the form

gµν = ηµν + κhµν +O(κ2) . (2.3)

The energy momentum tensor (EMT) is computed for the SM by embedding the corre-

sponding Lagrangian to a curved spacetime by the relation

Tµν =
2√−g

δ (SSM + SI)

δgµν

∣

∣

∣

∣

g=η

. (2.4)

We recall, at this point, that the fermions are coupled to gravity using the spin connection

Ω induced by the curved metric gµν . This allows to define a spinor derivative D which

transforms covariantly under local Lorentz transformations. If we denote with a, b the

Lorentz indices of a local free-falling frame, and with σab the generators of the Lorentz

group in the spinorial representation, the spin connection takes the form

Ωµ(x) =
1

2
σabV ν

a (x)Vbν;µ(x) , (2.5)

where we have introduced the vielbein V µ
a (x). The covariant derivative of a spinor in a given

representation (R) of the gauge symmetry group, expressed in curved (Dµ) coordinates is

then given by

Dµ =
∂

∂xµ
+Ωµ +Aµ, (2.6)

where Aµ ≡ Aa
µ T

a
(R) are the gauge fields and T

a
(R) the group generators, giving a Lagrangian

of the form

L =
√−g

{

i

2

[

ψ̄γµ(Dµψ)− (Dµψ̄)γ
µψ

]

−mψ̄ψ

}

. (2.7)

The full EMT is given by a minimal tensor TMin
µν (without improvement) and a term of

improvement, T I
µν , generated by the conformal coupling of the scalars

Tµν = TMin
µν + T I

µν , (2.8)

where the minimal tensor is decomposed into

TMin
µν = T f.s.

µν + T ferm.
µν + THiggs

µν + TYukawa
µν + T g.fix.

µν + T ghost
µν (2.9)

in terms of the field strength contributions (f.s.), the Higgs and Yukawa terms, the gauge-

fixing terms (g.fix.) and the ghost contributions, whose expressions have been given in [17].

Notice that T I
µν is defined modulo the constant (χ) of SI , as defined in eq. (2.2).
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The evaluation of all the vertices describing the coupling of this operator to all the

fields of the SM is rather cumbersome. For this reason, in a previous work we have derived

a large set of Ward and Slavnov-Taylor identities (STI’s) for correlators involving a Tµν
insertion, in order to secure the consistency of the explicit expressions of all the one-loop

corrections. The STI’s have been obtained in the Rξ gauge, which is our chosen gauge.

Details of this analysis in the neutral current sector of the SM can be found in [17]. The

analyses in the QED and QCD cases have been performed, respectively, in [18] and [19].

As a side remark on our notations, we will be denoting with θd the angular deflection

as predicted by the classical geodetic equation of GR. The solution of (1.1), which relates

the impact parameter to the semiclassical angle of deflection, will be indeed denoted as

b = b(θd). Instead, we will denote with θ the scattering angle of the quantum differential

cross section. The transition from θ to θd requires the integration of (1.1), with θd being

the boundary of the angular integration in θ of dσ/dΩ, as discussed in section 7.

3 The external source

In this section we proceed with the analysis of the fluctuations of the metric in the

Schwarzschild case. We will consider the potential scattering of a photon off an exter-

nal static source, which acts as a perturbation on the otherwise flat spacetime background.

The source is characterized by an EMT T ext
µν and the fluctuations are determined by solving

the linearized equations of GR. These take the form

�

(

hµν −
1

2
ηµνh

)

= −κT ext
µν , (3.1)

where h ≡ hµνηµν , and can be rewritten as

�hµν = κSµν , with Sµν = −
(

T ext
µν − 1

2
ηµνT

ext

)

. (3.2)

The external field hµν is obtained by convoluting the static source with the retarded prop-

agator

GR(x, y) =
1

4π

δ(x0 − y0 − |~x− ~y|)
|~x− ~y| , (3.3)

normalized as

�GR(x, y) = δ4(x− y). (3.4)

The solution of eq. (3.2) takes the form

hextµν (x) = κ

∫

d4y GR(x, y)Sµν(y) (3.5)

with the EMT of the external localized source, defining Sµν , given by

T ext
µν =

PµPν

P0
δ3(~x) . (3.6)

For a compact source of mass M at rest at the origin, with Pµ = (M,~0), we have

T ext
µν =Mδ0µδ

0
νδ

3(~x) (3.7)
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which gives

Sµν =
M

2
S̄µν S̄µν ≡ ηµν − 2δ0µδ

0
ν (3.8)

and

hLµν(x) =
2GM

κ|~x| S̄µν , (3.9)

where the field generated by a local (point-like, L) mass distribution has the typical 1/r (r ≡
|~x|) behaviour. The fluctuations are normalized in such a way that hµν has mass dimension

1, as an ordinary bosonic field, with κ of mass dimension −1. Using the expression above,

the full metric takes the form

ds2 ≈
(

1− 2GM

|~x|

)

dt2 −
(

1 +
2GM

|~x|

)

d~x · d~x. (3.10)

This metric coincides with that of Schwarzschild, once we perform on the latter the weak

field limit. For this purpose we recall that, in the case of a spherically symmetric and

stationary source, the ansatz for the metric in polar coordinates takes the form

ds2 = eν(r)dt2 − eλ(r)dr2 − r2dθ − r2 sin2 θdφ2 (3.11)

in terms of two undeterminate functions which depend on a radial coordinate r, ν(r) and

λ(r). The Einstein equations in the vacuum determine these two functions in terms of a

single parameter C in the form

eλ(r) =
1

1− C
r

, eν(r) = 1− C

r
(3.12)

as

ds2 = (1− C

r
)dt2 − 1

1− C
r

dr2 − r2dθ − r2 sin2 θdφ2 . (3.13)

Using the change of variable in the radial coordinate

r = r′
(

1 +
C

4r′

)2

, (3.14)

it is possible to rewrite the vacuum solution in eq. (3.11) in the form

ds2 =

(

1− C
4r′

1 + C
4r′

)2

dt2 −
(

1 +
C

4r′

)4

(dr′2 + r′2dθ2 + r′2 sin θ2dφ2), (3.15)

which is characterized by a single factor multiplying the spatial part (d~x · d~x), as in the

retarded solution given in eq. (3.10). Taking the limit r′ → ∞, which corresponds to the

weak field approximation (i.e bN ≡ GM/(Rc2) ≪ 1), eq. (3.15) becomes

ds2 ≈
(

1− C

r′

)

−
(

1 +
C

r′

)

(dr′2 + r′2dθ2 + r′2 sin θ2dφ2), (3.16)

which allows us to identify C = 2GM and coincides with eq. (3.10).
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At this point, moving to momentum space, the Fourier transform of hµν in eq. (3.9) is

defined by

hµν(q0, ~q) =

∫

d4x eiq·x hµν(x) , (3.17)

which for a static field reduces to

hµν(q0, ~q) = 2π δ(q0)hµν(~q), (3.18)

with

hµν(~q) ≡ h0(~q)S̄µν . (3.19)

The expression above shows that the metric fluctuation in momentum space is entirely

defined in terms of the scalar form factor h(~q) which allows to rewrite it in the form

hµν(q0, ~q) = 2πδ(q0)
2GM

κ
S̄µν

∫

d3~x
ei~q·~x

|~x| = 2π δ(q0)

(

κM

2~q2

)

S̄µν (3.20)

with

h0(~q) ≡
(

κM

2~q2

)

, hµν(~q) ≡
(

κM

2~q2

)

S̄µν . (3.21)

4 The leading order cross section

We proceed with the leading order analysis of the photon/graviton interaction, using the

tree-level graviton/photon/photon vertex. For this purpose we denote with T̂ (0)µν the

tree-level matrix element characterizing the transition amplitude between the initial and

the final state photon, in the presence of the gravitational background, mediated by the

insertion of the EMT. This is given by

− i
κ

2
T̂ (0)µν = V µναβ(p1, p2)A

i
α(p1)A

f
β(p2) , (4.1)

where V µναβ(p1, p2) denotes the on-shell graviton/photon/photon vertex in momentum

space, having labeled the momenta of the incoming and outgoing photons with p1 and p2
respectively. It is explicitly given by

V µναβ(p1, p2) = −iκ
2

{

− p1 · p2Cµναβ +Dµναβ(p1, p2)

}

Cµναβ = ηµα ηνβ + ηµβ ηνα − ηµν ηαβ ,

Dµναβ(p1, p2) = −ηµν pβ1 pα2 +

[

ηµβpν1p
α
2 + ηµα pβ1 p

ν
2 − ηαβ pµ1 p

ν
2 + (µ↔ ν)

]

. (4.2)

The incoming and outgoing plane waves have been defined as

Ai
α(p1) = Ni ǫα(p1) , Af

α(p2) = Nf ǫ
∗
α(p2) , Ni =

√

1

2E1 V
, Nf =

√

1

2E2 V
, (4.3)

where V denotes a finite volume normalization of the two scattering states; E1,2 are the en-

ergies of the incoming and outgoing photons, respectively, while ǫα(p1) and ǫ
∗
α(p2) are their

– 8 –
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polarization vectors. Using these notations, the same matrix element can be expressed in

position space in terms of the operator Tµν(x) on the incoming and outgoing photon eigen-

states, multiplied by the corresponding incoming (Ai) and outgoing (Af ) wave functions

− i
κ

2
〈p2|T (0)µν(x)|p1〉 = V µναβ(p1, p2)A

i
α(p1)A

f
β(p2) e

iq·x. (4.4)

We will be denoting with q = p2 − p1 the 4-momentum transfer on the graviton line. The

scattering tree-level matrix element is then written as

iS(0)
if = −i κ

2

∫

V

d4x eiq·xhµν(x)T̂
(0)µν

= 2πδ(q0)NiNf hµν(~q)V
µναβ(p1, p2) ǫα(p1) ǫ

∗
β(p2), (4.5)

where V denotes the relevant region of integration allowed by the interaction. Using

the conservation of the photon energy (E1 = E2 ≡ E) and the elementary relation

p1 · p2 = E2 (1− cos θ), with θ the photon scattering angle, the square scattering ma-

trix element takes the form

|iS(0)
if |2 =

(

−κ
2

)2
(NiNf )

2 × (2πδ(q0)T )×
(

κM

2~q2

)2

× 16E4 cos4
(

θ

2

)

, (4.6)

where we have averaged over the polarizations of the initial photon and summed over the

polarization of the final one. As usual, we have extracted, from the square of the delta

function, the transition time T , using (2πδ(q0))
2 = 2πδ(q0)T .

To compute the differential cross section we multiply eq. (4.6) by the density of final

states dnf given by

dW =
iSif

2

ji
dnf , (4.7)

normalized with respect to the incident photon flux ji = |~p1|/(EiV ) in a volume V . We

use the expression

dnf =
V

(2π)3
d3~pf =

V

(2π)3
|~p2|E2dE2dΩ (4.8)

with dΩ = sin θdθdφ denoting the angular integration. To obtain the differential cross

section we need the transition rate per unit time (dσ ≡ dW/T ) that we integrate over the

energy of the final photon to obtain the tree-level expression

dσ

dΩ0
= (GM)2 cot4

(

θ

2

)

(4.9)

which shares for small θ the typical 1/θ4 behaviour of the Rutherford cross section. This

expression can already be the starting point for a semiclassical analysis of the lensing of a

photon in a weak gravitational background. Notice that eq. (4.9) is energy independent.

Once this is inserted into (1.1) and solved for b as a function of the angle of deflection, it

allows to obtain the quantum counterpart of the classical lensing expression, which is also

energy independent. We will come back to this point in the following sections. For the

moment we prefer to move on with our analysis, by discussing the SM one-loop corrections

to the Born level result given above. The link between the classical and the quantum Born

level result will be re-addressed in section 7.
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5 One-loop corrections

The analysis of the one-loop corrections to the interaction of the fields of the SM with grav-

ity, in the weak gravitational field limit, has only received sporadic attention over several

decades. In particular, the renormalizability of the SM Lagrangian in curved backgrounds,

in the weak field limit, has never been considered in full generality, although specific results

concerning this issue, at least for specific correlators, are available. For these reasons, in this

section we are going to briefly elaborate on this point, which is crucial for our further anal-

ysis. We anticipate that our investigation will be restricted to the issue of renormalizability

of the graviton/photon/photon interaction (TAA vertex), with no claim to generality. As

discussed in [17], the renormalizability is guaranteed if and only if the coupling of the Higgs

doublet to the scalar curvature R of the metric background is conformal. Our analysis,

in this case, is based on an explicit computation of the vertex, which is performed in the

Rξ gauge and in dimensional regularization. In particular, the counterterms of the TAA

correlators are those derived from the SM Lagrangian at one-loop order.

Originally, the radiative QED corrections to the propagation of fermions and photons

were computed long ago by Berends and Gastmans in [1], who showed the finiteness of the

corresponding interactions. The extension of those results to the SM case have been ad-

dressed only quite recently [20–23]. The neutral currents sector, instead, has been discussed

in [17].

5.1 The vertex at one-loop order: overview

The perturbative expansion at this order is characterized by several contributions with

different topologies, that we are going to detail. We show in figure 1 the contributions of

triangle-type, while in figure 2 we have included the “t-bubble” diagrams, where the point of

insertion of the EMT coincides with that of the gauge current. The diagrams characterized

by two gauge bosons emerging from a single vertex are named “s-bubbles” and are shown

in figure 3. Other contributions are distinguished by their tadpole topologies and are

illustrated in figure 4. Obviously, all these terms are accompanied by similar diagrams

with the exchange of the two photons.

The complete one-loop correlator, that we call Γµναβ(p1, p2), can be organized into two

contributions in the form

Γµναβ(p1, p2) = Σµναβ(p1, p2) + ∆µναβ(p1, p2) , (5.1)

where Σµναβ(p1, p2) denotes the complete one-particle irreducible vertex, while

∆µναβ(p1, p2) is characterized by the presence of a bilinear graviton-Higgs mixing ver-

tex on the external graviton line. As discussed in [17], the latter is necessary in order to

consistently solve the Ward and the STI’s satisfied by the same correlator. The completely

cut vertex, Σµναβ(p1, p2), on the other hand, can be split into the sum of three different

sectors, depending on the particles running inside the loops,

Σµναβ(p1, p2) = Σµναβ
F (p1, p2) + Σµναβ

B (p1, p2) + Σµναβ
I (p1, p2). (5.2)
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These correspond to the fermion (F) sector, figure 1(a) and figure 2(a), which also include

the electromagnetic contribution; the weak sector (B), involving the charged gauge bosons

W± together with their Goldstones and ghosts, figure 1 (b)-(g), figure 2 (b)-(g), figure 3

and figure 4, and, finally, the sector of “improvement” (I). The latter contributions are

given by the diagrams depicted in figure 1 (c), (e) and figure 3 (b), with the graviton -

scalar - scalar vertices obtained from the Tµν
I . As we have mentioned a suitable choice of

χ (χ = 1/6) in TI guarantees the conformal coupling of the Higgs.

The contributions in eq. (5.2) can be expanded, for a given fermion of mass mf , as

Σµναβ
F (p1, p2) =

3
∑

i=1

Φi F (t, 0, 0,m
2
f )φ

µναβ
i (p1, p2) , (5.3)

Σµναβ
B (p1, p2) =

3
∑

i=1

Φi B(t, 0, 0,M
2
W )φµναβi (p1, p2) , (5.4)

Σµναβ
I (p1, p2) = Φ1 I(t, 0, 0,M

2
W )φµναβ1 (p1, p2) + Φ4 I(t, 0, 0,M

2
W )φµναβ4 (p1, p2) , (5.5)

where the tensor basis is given by the following four tensors

φµναβ
1 (p1, p2) = (t ηµν − kµkν)uαβ(p1, p2) ,

φµναβ
2 (p1, p2) = −2uαβ(p1, p2) [t η

µν + 2(pµ1 p
ν
1 + pµ2 p

ν
2) + 4 (pµ1 p

ν
2 + pµ2 p

ν
1)] ,

φµναβ
3 (p1, p2) = −

(

pµ1p
ν
2 + pν1p

µ
2

)

ηαβ +
t

2

(

ηανηβµ + ηαµηβν
)

− ηµν uαβ(p1, p2)

+
(

ηβνpµ1 + ηβµpν1

)

pα2 +
(

ηανpµ2 + ηαµpν2
)

pβ1 ,

φµναβ4 (p, q) = (t ηµν − kµkν) ηαβ , (5.6)

with uαβ(p1, p2) defined as

uαβ(p1, p2) = pα2 p
β
1 − (p1 · p2) ηαβ . (5.7)

The first three arguments of the form factors Φ in the expressions above stand for the

three independent kinematical invariants, k2 = (p2 − p1)
2 = t, p21 = p22 = 0 respectively,

while the remaining one denotes the masses of the particles circulating in the loop.

We list below the radiative corrections coming from fermions. They would be the only

contributions if we were considering only the abelian sector of the SM, i.e. QED. They are

contained into 3 form factors for on-shell photons

Φ1F (t, 0, 0, m
2
f ) =

α

3π t
Q2

f

{

− 2

3
+

4m2
f

t
− 2m2

f C0(t, 0, 0,m2
f ,m

2
f ,m

2
f )

[

1−
4m2

f

t

]}

,

Φ2F (t, 0, 0, m
2
f ) =

α

3π t
Q2

f

{

− 1

12
−
m2

f

t
−

3m2
f

t
D0(t, 0, 0,m

2
f ,m

2
f )

−m2
fC0(t, 0, 0,m2

f ,m
2
f ,m

2
f )

[

1 +
2m2

f

t

]

}

,

Φ3F (t, 0, 0, m
2
f ) =

α

3π t
Q2

f

{

11 t

12
+ 3m2

f +D0(t, 0, 0,m
2
f ,m

2
f )
[

5m2
f + t

]

+ tB0(0,m
2
f ,m

2
f ) + 3m2

f C0(t, 0, 0,m2
f ,m

2
f ,m

2
f )
[

t+ 2m2
f

]

}

, (5.8)
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Figure 1. Amplitudes with the triangle topology.
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Figure 2. Amplitudes with t-bubble topology.
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Figure 3. Amplitudes with s-bubble topology.
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Figure 4. Amplitudes with the tadpole topology.
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H
=

H

f

f

f +
H

W±

W±

W± + . . .

Figure 5. Amplitude with the graviton-Higgs mixing vertex generated by the term of improvement.

The blob represents the SM Higgs-photon-photon vertex at one-loop.

where we have included only the contribution due to a single fermion of mass mf and

charge Qf running in the loops. We have denoted with α the fine structure constant.

The other gauge-invariant sector of the TAA vertex is the one mediated by the ex-

change of the gauge bosons W± and of their corresponding Goldstones and ghosts. In this

sector the form factors are explicitly given by the expressions

Φ1B(t, 0, 0, M
2
W ) =

α

π t

{

5

6
−

2M2
W

t
+ 2M2

W C0(t, 0, 0,M
2
W ,M

2
W ,M

2
W )

[

1−
2M2

W

t

]}

, (5.9)

Φ2B(t, 0, 0, M
2
W ) =

α

π t

{

1

24
+

M2
W

2 t
+

3M2
W

2 t
D0(t, 0, 0,M

2
W ,M

2
W )

+
M2

W

2
C0(t, 0, 0,M

2
W ,M

2
W ,M

2
W )

[

1 +
2M2

W

t

]}

, (5.10)

Φ3B(t, 0, 0, M
2
W ) =

α

π t

{

−
15 t

8
−

3M2
W

2
−

1

2
D0(t, 0, 0,M

2
W ,M

2
W )

[

5M2
W +

7

2
t

]

−
3

4
tB0(0,M

2
W ,M

2
W )−C0(t, 0, 0,M

2
W ,M

2
W ,M

2
W )
[

t
2+4M2

W t+3M4
W

]

}

.(5.11)

In the weak sector, we also have to consider the contributions related to the term of

improvement, which couples the Higgs boson to the graviton, as pointed out above in

eq. (2.2). The contributions due to this term are characterized by just two form factors

Φ1 I(t, 0, 0, M
2
W ) =

α

3π t

{

1 + 2M2
W C0(t, 0, 0,M

2
W ,M

2
W ,M

2
W )

}

,

Φ4 I(t, 0, 0, M
2
W ) = − α

6π
M2

W C0(t, 0, 0,M
2
W ,M

2
W ,M

2
W ), (5.12)

where we have already set the constant χ to 1/6. Finally, we also consider the correction to

the external graviton leg, ∆µναβ(p1, p2), to which the term of improvement contributes with

the diagram depicted in figure 5. As discussed in [17], this contribution has to be included

to solve consistently all the Ward and BRST identities of the one-loop correlator. It is built

by combining the tree-level vertex for graviton/Higgs mixing - coming from the improved

EMT - with the SM Higgs/photon/photon correlator at one-loop and it is given by

∆µναβ(p1, p2) = Ψ1 I(t, 0, 0,m
2
f ,M

2
W ,M

2
H)φµναβ1 (p1, p2) + Ψ4 I(t, 0, 0,M

2
W )φµναβ4 (p1, p2) ,

(5.13)

where the on-shell form factors are

Ψ1 I(t, 0, 0, m
2
f ,M

2
W ,M

2
H) = Ψ1 I F (t, 0, 0, m

2
f ,M

2
H) + Ψ1 I B(t, 0, 0, M

2
W ,M

2
H) ,

Ψ4 I(t, 0, 0,M
2
W ) = −Φ4 I(t, 0, 0, M

2
W ), (5.14)
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with

Ψ1 I F (t, 0, 0, m
2
f ,M

2
H) =

α

3π t(t−M2
H)

2m2
f Q

2
f

[

2 + (4m2
f − t)C0(t, 0, 0,m

2
f ,m

2
f ,m

2
f )

]

Ψ1 I B(t, 0, 0, M
2
W ,M

2
H) =

α

3π t(t−M2
H)

[

M2
H + 6M2

W

+2M2
W (M2

H+6M2
W−4t)C0(t, 0, 0,M

2
W ,M

2
W ,M

2
W )

]

. (5.15)

Notice that, given eqs. (5.12) and eq. (5.14), there is no contribution to Γµναβ(p1, p2)

coming from the φµναβ4 (p1, p2) tensor structure.

All the expressions presented above are given in terms of scalar integrals of two- and

three-point functions, B0, D0 and C0, which have been defined as

B0(t,m
2,m2) =

2

ǭ
− log

(

m2

µ2

)

+ 2− τ(t,m2) log

[

τ(t,m2) + 1

τ(t,m2)− 1

]

,

B0(0,m
2,m2) =

2

ǭ
− log

(

m2

µ2

)

,

D0(t, 0,m
2,m2) = B0(t,m

2,m2)−B0(0,m
2,m2)=2−τ(t,m2) log

[

τ(t,m2)+1

τ(t,m2)−1

]

,

C0(t, 0, 0,m2,m2,m2) =
1

2 t
log2

[

τ(t,m2) + 1

τ(t,m2)− 1

]

, (5.16)

with

τ(t,m2) =

√

1− 4m2

t
. (5.17)

Here we have set 2/ǭ = 2/ǫ − γ − log π, with ǫ = n − 4 in dimensional regularization

in n spacetime dimensions, and we have denotes with γ, as usual, the Euler-Mascheroni

constant.

5.2 The renormalization of the TAA vertex

Concerning the ultraviolet behaviour of the previous form factors, we observe that only the

B0 scalar integral is affected by a UV singularity. Therefore, the only UV divergent form

factors which need a suitable renormalization prescription are Φ3F and Φ3B. All the other

contributions are finite.

In our case, we have adopted the on-shell renormalization scheme in which the renor-

malization conditions are expressed in terms of the physical parameters of the theory. In

the electroweak sector of the SM these are the masses of the physical particles, the elec-

tric charge and the quark mixing matrix. Moreover, we have required a unit residue of

the 2-point functions on the physical particle poles, which define the wave function renor-

malization constants. These renormalization conditions allow to extract all the needed

counterterms and are indeed sufficient to cancel all the UV singularities of the vertex func-

tions built with an improved EMT on the external lines. We provide few more details on

this point since the approach may not be so obvious.
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From the counterterm Lagrangian of the SM one can compute the corresponding coun-

terterm of the EMT, δTµν , so that the bare Tµν
0 can be written in terms of the renormalized

one Tµν as

Tµν
0 = Tµν + δTµν . (5.18)

An explicit computation shows that the term of improvement in the EMT, in the confor-

mally coupled case (χ = 1/6), is necessary to ensure the finiteness of the complete one-loop

2-point function describing the bilinear mixing between the graviton and the Higgs scalar.

Concerning the TAA correlator, the suitable counterterm vertex extracted from δTµν

is given by

δ[TAA]µναβ(p1, p2) =

{

− p1 · p2Cµναβ +Dµναβ(p1, p2)

}

δZAA , (5.19)

where δZAA is the wave function renormalization constant of the photon field, defined as

δZAA = −∂Σ
AA
T (k2)

∂k2

∣

∣

∣

∣

k2=0

, (5.20)

with ΣAA
T being the transverse part of the one-loop photon self energy. The photon wave

function renormalization constant is explicitly given by

δZAA = δZ
F
AA + δZ

B
AA , δZ

F
AA =

αQ2
f

3π

[

−
2

ǫ
+ log

(

m2
f

µ2

)]

, δZ
B
AA =

α

2π

[

3

ǫ
+

1

3
−

3

2
log

(

M2
W

µ2

)]

,

(5.21)

where we have separated the contribution from the fermions from those due to the W±

gauge bosons.

The tensor structure in eq. (5.19), evaluated for on-shell photons, is exactly equal to

φµναβ3 (p1, p2), so that the counterterm only contributes to the UV-singular form factors,

Φ3F and Φ3B, as expected.

The counterterm in eq. (5.19) is sufficient to remove the divergence of the completely

cut graph Σµναβ given in eq. (5.2). Furthermore, the ∆µναβ term in eq. (5.13), containing

the bilinear mixing on the graviton line, is proportional to the SM Higgs/photon/photon

vertex and does not require any renormalization, being finite. In more complicated cases

such as, for instance, the TAZ and the TZZ correlators, ∆µναβ is instead UV divergent,

but its finiteness is always guaranteed by the counterterms of the Lagrangian of the SM.

Notice that in the on-shell renormalization scheme there is no need to add the external

leg corrections, or, equivalently, to consider the residue of the renormalized propagators

on the external lines as prescribed by the LSZ formula. This is fixed to be 1 to all orders

in perturbation theory by the renormalization conditions. Therefore, we can combine the

complete one-loop correction, including the counterterm, in the expression

Γµναβ
(1) (p1, p2) = −i κ

2

(

Σµναβ(p1, p2) + ∆µναβ(p1, p2) + δZAA φ
µναβ
3 (p1, p2)

)

≡ −i κ
2

3
∑

i=1

φµναβi (p1, p2) Φi , (5.22)
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where we have introduced a simplified notation for the UV finite form factors, Φi =

ΦiQED +Φi B, with

Φ1QED =
∑

f

Nf
c

(

Φ1F (t, 0, 0,m
2
f ) + Ψ1 I F (t, 0, 0,m

2
f ,M

2
H)
)

,

Φ2QED =
∑

f

Nf
c Φ2F (t, 0, 0,m

2
f ) ,

Φ3QED =
∑

f

Nf
c

(

Φ3F (t, 0, 0,m
2
f ) + δZF

AA

)

,

Φ1B = Φ1B(t, 0, 0,M
2
W ) + Φ1 I(t, 0, 0,M

2
W ) + Ψ1 I B(t, 0, 0,M

2
W ,M

2
H) ,

Φ2B = Φ2B(t, 0, 0,M
2
W ) ,

Φ3B = Φ3B(t, 0, 0,M
2
W ) + δZB

AA . (5.23)

In the expression above, the sum over f is extended to all the charged fermions, while Nf
c

is a multiplicity factor, which is 1 for the leptons and 3 for the quarks, due to their color.

Notice also that all the form factors are UV finite and independent of the renormal-

ization scale µ, as one would expect in the on-shell renormalization scheme. An explicit

computation shows that the same feature is recovered also in a mass-independent subtrac-

tion scheme such as dimensional regularization with modified minimal subtraction (MS).

In this case one can show that the one-loop corrections to the matrix element would assume

the same form as in the on-shell scheme. In this case, the only difference would be in the

definition of the masses and couplings, which in theMS are defined at the renormalization

scale µ and do not coincide with the physical parameters present in the Lagrangian. Indeed,

the differences in the expressions of the counterterms δZAA, evaluated in the two schemes, is

exactly compensated by the addition of the external leg corrections. This peculiar feature is

due to the intrinsic finiteness of the matrix element (defined as the sum of the vertex and of

the external leg corrections) with a graviton on the external line, which is already manifest

before the inclusion of any counterterm. In other words, if we had computed the TAA ma-

trix element by using the bare couplings, we would have obtained the same result. The on-

shell scheme has been used both in the analysis of the UV finiteness of the cut vertex and in

that of the complete vertex, with the inclusion of the external correction on the graviton leg.

5.3 The cross section at next-to-leading order

We are now going to extend the computation of the cross section and include in our analysis

the contributions coming from the one-loop vertex that we have just illustrated.

The matrix element at one-loop order can be defined as

iS(1)
if = 2π δ(q0)

(

κM

2 |~q|2
)

Sµν

(

V µναβ(p1, p2) + Γµναβ
(1) (p1, p2)

)

Ai
α(p1)A

f
β(p2) . (5.24)

As we are going to show, the contributions proportional to the tensors φ1 and φ2 drop

identically in the unpolarized cross section. Notice that Φ1 is the form factor which carries

the contribution from the conformal anomaly [17].
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Figure 6. Tree-level and one-loop cross sections for three values of the energy of the photon as a

function of the scattering angles in two angular regions.

The expression for the SM one-loop cross section, in terms of the form factors Φ3, is

then given by

dσ

dΩ
= (GM)2 cot4

θ

2

(

1 + 2ReΦ3

)

. (5.25)

In the numerical analysis that will present in the next sections, we will also investigate the

following K-factors

KSM =
dσ
dΩ
dσ
dΩ0

, KQED =

dσ
dΩ0

+ dσ
dΩQED

dσ
dΩ0

, KB =
dσ
dΩ0

+ dσ
dΩB

dσ
dΩ0

, (5.26)

which will allow to quantify the size of the radiative corrections respect to the tree-level

result. In this case, KSM quantifies the complete one-loop effects due to all the SM con-

tributions, while KQED and KB account only for the QED and gauge boson exchanges

respectively.
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Figure 7. Plots of the cross section as a function of the scattering angle for several energy values

and for very strong and weak deflections (top). Zooms of two angular regions (bottom).

In the previous equation, the partial contributions from the QED and the weak boson

(B) sector have been respectively defined as

dσ

dΩQED
= 2(GM)2

(

cot4
θ

2

)

ReΦ3QED , (5.27)

dσ

dΩB
= 2(GM)2

(

cot4
θ

2

)

ReΦ3B . (5.28)

After taking into account the differences in the respective notations, the QED the cross

section in eq. (5.27) is in agreement with the result presented in [1].

6 Photon scattering: numerical results

In this section we will proceed with a numerical analysis of the results of the cross section

and of the corresponding perturbative K-factors, before moving to a discussion of the

differential equation of the impact parameter eq. (1.1). For definiteness, we have chosen

the mass of the gravitational source M to be of the order ot the solar mass (M = 1.4M⊙).

We show in figure 6 the results for the tree-level and one-loop cross sections, for three

values of the energy of the incoming photon, for 1GeV, 100GeV and 1TeV respectively.

The plots show that the impact of these corrections become more sizeable as the energy

increases. In general, they cause a reduction of the cross section, compared to the tree level

result, over the entire angular interval. We have selected two different angular regions in
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Figure 8. Plots of the tree-level and one-loop cross sections as a function of the energy for a fixed

scattering angle θ = 0.01 rad (θ = 0.57◦).

these plots. The intervals concern the small θ region, with angles around 1 degree, and the

region of large θ, which becomes significant only for scatterings very near to the horizon.

It should be clear though, that due to the presence of a horizon, which is not taken into

account by our external metric, the behaviour obtained for this second region should not

be considered predictive. In fact the gravitational field, as we approach the photon sphere,

becomes strong, and the metric fluctuations that we consider in our analysis, described by

eq. (3.9) should be modified. We will come back to a discussion of this important point

in the second part of our work, when we turn to the semiclassical implications of these

results. Notice also the strong suppression - approximately by 7 orders of magnitude - of

the size of the cross section in the two regions.

The complete cross section as a function of θ is shown in figure 7 (top-left panel) for

the same energies (1GeV, 100GeV and 1TeV). We have compared the tree-level and the

one-loop result, with the inclusion both of the QED and of the weak contributions. The

divergence at small θ is obviously due to the 1/θ4 behaviour generated by the prefactor wich

accompanies both the tree-level and the one-loop cross sections. The top-right panel in the

same figure is a zoom of the cross section in the region of small deflections, of the order

of 1 arcsecond. We will see, from the semiclassical analysis of the next sections, that such

deflections are obtained for scatterings with impact parameters about 106 bh. We recall that
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Figure 9. KSM as a function of the scattering angle of the photon for four energy values, from

the high energy to the ultra high energy (UHE) region.

bh is the impact parameter in horizon units, namely bh = b/(2GM). Notice that in this

panel the curves for different photon energies are completely overlapping. In two additional

panels - reported in the same figure - we show the cross section both in the regions of very

large (bottom-left panel, ∼ 50◦) and of smaller angles (bottom-right panel, ∼ 0.2◦).

Additional information on the size of the radiative contributions can be gathered from

figure 8. Here we plot the cross section as a function of the photon energy, for a fixed angle

θ = 10−2 rad (θ = 0.57◦). The results shows that such a dependence is quite mild over

most of the high energy spectrum, from 1GeV to 10GeV (top panel) and from 10GeV

to 100GeV (bottom panel), reaching approximately a correction of 4 % only in region of

extremely high energy.

The impact of the radiative corrections and of the various contributions (QED, weak)

to the scattering process emerges also from the plots of the various K-factors defined in

eq. (5.26). For this purpose, we show in figures 9 and 10 the results for the K-factors both

as a function of the scattering angle (figure 9), and of the energy (figure 10). In figure 9 we

have selected a scattering in an angular region with θ around 0.2◦ and four different values

of the photon energy (top panel). As the energy raises, the impact of the corrections is

enhanced, from about the 4 % value, for scatterings in the range of several GeV’ s, up to
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Figure 10. A global plot of the KSM -factor as a function of the energy for three values of the

scattering angles (top-left). Plot of KSM and KB as functions of the photon energy below 1TeV

(top-right). Comparative plots of three form factors KB , KQED and KSM as a function of energy

up to 100TeV (bottom).

almost 20 % in the extremely high energy TeV region. In the bottom panel we repeat the

analysis for larger scattering angles, using the same setup. It is clear that the radiative

effects are more enhanced in this compared to the previous case, reaching about the value

of 30% at extremely high energy.

In figure 10 we present three additional panels where we show the variation of all the K-

factors as functions of energy and for specific values of the scattering angles. In the top-left

panel we plot the electroweak K-factor up to an energy of 1TeV, for values of the scattering

angles equal to 0.28, 2.8 and 5.7 degrees. The plot follows rather closely the trend already

encountered in figure 9, evidencing the departure of the various K-factors from unity as the

energy grows. In the top right panel we compare the QED KQED, weak KB and KSM fac-

tors, plotted as a function of energy. From these plots it is evident that the weak corrections

are extremely small, being the KB factor completely dominated by the tree-level contribu-

tions, which makes it equal to 1 over the entire range (top-right panel). The overwhelming

part of the corrections, below 1TeV, is therefore of QED origin, as expected. Finally, we

show in the panel at the bottom of the same figure all the K-factors plotted versus the en-

ergy - up to an extremely high scale of 100TeV - for a scattering angle of θ = 2.8◦. It is clear

that both the weak (KB contributions) and the QED sectors (KQED) become significant

at extremely high energy. The weak contributions amount to 10% of the variation of the

SM cross section in the asymptotic limit. The QED part is responsible for approximately

a 20% reduction of the same cross section, with a KSM around 0.7 at 100TeV.
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6.1 Polarization

Radiative corrections of the graviton/photon/photon vertex induce a helicity flip amplitude

which contributes to the change in the polarization of a photon beam and as such requires

a special attention. In this section we proceed with a discussion of these effects.

We assume that the incoming photon carries a momentum p1 oriented along the z axis

and that the scattering takes place in the z − y plane, so that the two momenta can be

parameterized as

pµ1 = E (1, 0, 0, 1) , pµ2 = E (1, 0, sin θ, cos θ) . (6.1)

Correspondingly, the polarization vectors are

ǫµ±(p1) =
1√
2
(0, 1,±i, 0)

ǫµ±(p2) =
1√
2
(0, 1,∓i cos θ,±i sin θ). (6.2)

Starting from the matrix element defined in eq. (5.24), using the definition of the photon

plane waves in eq. (4.3), eq. (6.1) and eq. (6.2), and adopting the notations of eq. (5.22)–

(5.23), we obtain for the helicity amplitudes the expressions

iS++
if = i 8π2 δ(q0)NiNf GM cot2

(

θ

2

) (

1− Φ3

)

,

iS+−
if = i 16π2 δ(q0)NiNf GM E2

(

8Φ2 − Φ1 +
(

Φ1 + 4Φ2

)

cos2
(

θ

2

))

. (6.3)

Notice that the form factor Φ1, which is associated to the trace anomaly in the massless

case, appears in the helicity-flip amplitude but is does not contribute to the unpolarized

cross section. We obtain

dσ

dΩ

++

=
dσ

dΩ

−−

= (GM)2 cot4
(

θ

2

)

(

1− 2ReΦ3

)

, (6.4)

dσ

dΩ

+−

=
dσ

dΩ

−+

= 4(GM)2E4

∣

∣

∣

∣

8Φ2 − Φ1 + (Φ1 + 4Φ2) cos
2

(

θ

2

) ∣

∣

∣

∣

2

. (6.5)

Notice that the (++) contribution coincides with the unpolarized one

dσ

dΩ
=

1

2

(

dσ

dΩ

++

+
dσ

dΩ

−−)

=
dσ

dΩ

++

, (6.6)

being only the (++) cross section of O(α), while the (+−) one is, respectively, of O(α2).

The numerical analysis shows that the helicity-flip (+−) differential cross section for pho-

tons of the CMB is very small and it is equal to 9.6 × 10−42 cm2 over the entire angular

range (M = 1.4M⊙) with variations which are around one per thousands. For a very

massive black hole of a million solar masses the cross section raises to 10−30 cm2, but it is

still far smaller than the corresponding Thomson cross section (10−24 cm2) describing the

scattering of a photon off a single electron.

We show in figure 11 (top-left panel) a plot of the (+−) cross section as a function of

θ, for θ about 1 arcsecond, for several values of the energy. The plot indicates that the
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Figure 11. (dσ/dΩ)+− as a function of the scattering angle for several values of the energy (top-

left). (dσ/dΩ)+− as a function of the photon energy for θ = 2 arcsec and θ = 5 deg (top-right).

(dσ/dΩ)+− as a function of the photon energy up to 104 GeV for θ = 5 deg (bottom-left) and up

to 105 TeV for θ = 2 arcsec (bottom-right).

cross section changes very significantly with the energy. For instance, in the CMB case the

size of this helicity-flip contribution is negligible, as pointed out above, but at 100GeV,

for instance, it grows to 1022 cm2. This growth however, is not sufficient to identify this

contribution as a significant component of the unpolarized cross section, since the helicity-

conserving (++) one is by far the most dominant part, being about 1033 cm2 (see figure 7

top-right panel).

The plots of the (+−) cross section as a function of the photon energy, in the case

of weak (θ = 2 arcsec) and strong lensing (θ = 5 deg), are depicted in the top-right and

bottom (left and right) panels. They show that the cross section starts from zero and grows

with the energy as ∼ E4 for small E (top-right panel). It reaches a maximum at a value of

the energy which depends on the angle, and then stabilizes at higher energies, with a final

plateau. The maximum is obtained for a momentum transfer t of the order of the square

of the top quark mass.

7 Photon lensing: classical and semiclassical results

In this section we start investigating the semiclassical approach to the evaluation of the an-

gular deflection of a photon using the notion of impact parameter, as expressed by eq. (1.1).

For this purpose, we briefly summarize the classical GR result concerning the deflection of

light in a Schwarzschild background, presenting along the way some new numerical results

which we deem necessary in order to proceed with our analysis. In this case the metric is
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given by eq. (3.13) with C = 2GM , and the equations of motion along a null geodesic are

gµν
dxµ

dλ

dxν

dλ
= 0, (7.1)

with λ an affine parameter of the geodesic. The equations of motion can be separated in

the form
(

1− 2M

r

)

dt

dλ
= E r2

dφ

dλ
= J

dθ

dλ
= 0, (7.2)

corresponding to the energy (E) and the angular momentum (J) of the massless particle.

By setting

u ≡ J

E
(7.3)

the geodesic equation becomes

(

1− 2M

r

)

1

r2
+

1

J2

(

dr

dλ

)2

− 1

u2
= 0, (7.4)

with u denoting the impact parameter (u ≡ bh). The angle of deflection is expressed in

the form

θd = 2

∫ ∞

r0

dφ

dr
dr − π, (7.5)

where r0 is the distance of closest approach between the photon beam and the lens. The

subtraction of π allows to remove the angular displacement in the absence of lensing.

Using eq. (7.4) we can re-express the deflection in the simplified form

θd(r0) =

∫ ∞

r0

dr
2

r2

[

1

u2
− 1

r2

(

1− 2M

r

)]−1/2

− π. (7.6)

The condition that r0 is the point of closest radial approach between the source and the

beam implies the extremum condition dr/dλ = 0 which gives, from eq. (7.4),

u = r0

(

1− 2M

r0

)−1/2

(7.7)

and thus

θd(r0) =

∫ ∞

r0

dr
2

r2

[

1

r20

(

1− 2M

r0

)

− 1

r2

(

1− 2M

r

)]−1/2

− π. (7.8)

The integral does not depend explicitly on the mass of the source, as far as we measure

the distances in horizon units, bH ≡ b/RS , with the horizon given by the Schwarzschild

radius RS = 2GM . In fact, a simple rescaling of eq. (7.7) with x0 ≡ r0/(2M) gives

bh ≡ u = x0

(

1− 1

x0

)−1/2

, (7.9)

and

θd(x0) = 2

∫ ∞

x0

dx

x

√

(

x
x0

)2 (

1− 1
x0

)

−
(

1− 1
x

)

− π. (7.10)
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Figure 12. Plot of bh versus x0, showing the singularity at the position of the photon sphere for

x0 = 3/2.

The expression above is not yet in the most appropriate form for a numerical analysis. An

equivalent form is

θd(x0) =

∫ 1/x0

0

2 dx
√

1
x2
0

(1− 1
x0
)− x2(1− x)

− π, (7.11)

which can be used for a brute force numerical integration. The numerical results are as

accurate as those obtained from the explicit expression given in terms of elliptic integrals.

We will also be needing a numerical inversion of the function θd(x0), being monotonic,

thereby determining both x0 and bh as functions of the angle of deflection.

It is also convenient to solve explicitly eq. (7.9), which is important in the case of very

strong lensing. We find that the relation between x0 and bh can be inverted in the form

x0 =

3

√

2
3b

2
h

3

√√
3
√

27b4h − 4b6h − 9b2h

+

3

√√
3
√

27b4h − 4b6h − 9b2h
3
√
232/3

. (7.12)

A plot of this relation is shown in figure 12, with a singularity located at bh = 3/2
√
3 ≡ b0h

(i.e. x0 = 3/2), which is the point at which the angle of deflection in the GR expression

eq. (7.11) diverges.

An explicit evalutation of the integral [5] gives

θd(x0) = −π − 4F (φ(x0), λ(x0)) Σ(x0) (7.13)

with

F(φ, λ) =

∫ φ

0

dθ
√

1− λ2 sin2 θ
(7.14)

being the elliptic integral of first kind, having defined, for simplicity, the auxiliary functions

φ0(x0) = Arcsin(τ(x0)) ,
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τ(x0) =

√

−3 + x0 −
√

−3 + 2x0 + x20
2(−3 + 2x0)

,

Σ(x0) =

√

x0
(

−
√
x02 + 2x0 − 3 + 3x0 − 3

)

(3− 2x0)
(√
x02 + 2x0 − 3− x0 + 1

) , (7.15)

while

λ(x0) =
3− x0 −

√

−3 + 2x0 + x20
3− x0 +

√

−3 + 2x0 + x20
. (7.16)

Notice that in the equation above, both Σ(x0) and τ(x0) are imaginary for x0 > 3/2, with

the product of the elliptic integral F with Σ being real. An alternative formula, in terms

of real factors is

θd(x0) = 4

√

2x0
Y

[

F
(π

2
, κ
)

− F

(

Arcsin

(√
2

√

2x0 − 2

6x0 + Y − 6

)

, κ

)]

− π (7.17)

with

Y =
√

4(x0 − 1)(x0 + 3) , κ =
−2x0 + Y + 6

2Y
. (7.18)

The nature of the singularity around x0 = 3/2 can be easily worked out from eq. (7.17) by

setting x0 = 3/2 + ǫ (ǫ≪ 1) and expanding the resulting expression to O(ǫ). One obtains

θd(3/2 + ǫ) ∼ −4F

(

Arcsin

(

1√
3

)

, 1

)

− π + log(324)− 2 log ǫ

= 0.00523507− 2 log ǫ (7.19)

which proves to be logarithmically divergent as the beam approaches the photon sphere

(ǫ→ 0).

The weak field expansion,valid for x0 ≫ 3/2, obtained from the elliptic solution, takes

the form

θd(x0) =
2

x0
+

(

−1 +
15

16
π

)

1

x20
+O(1/x30). (7.20)

The first term in the expression above, θd ∼ 4GM/b, is Einstein’s result, obtained in the

case of a weak field, which for a photon skimming the sun is about 1.74 arcseconds.

We show in figure 13 a plot of θd as a function of x0, obtained by a numerical integration

of the deflection formula eq. (7.8). We also show in figure 14 three fits of the GR expression

for the deflection in the various regions using a functional expression of the form

bh(θd) = c0 +
c1
θd

+
c2
θ2d

+ c3 log θd + c4 log θ
2
d, (7.21)

with coefficients ci which depend on the three intervals in θd corresponding to the (3 <

x0 < 102), (102 < x0 < 104) and (104 < x0 < 106) horizon regions. We have performed fits

of the deflections to the same functional expression (7.21), but using different numerical

coefficients, which are in very good agreement with the direct numerical result obtaind

from eq. (7.11), and can be found in the appendix.
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Figure 13. The deflection angle as a function of the impact parameter in the classical GR solution.
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Figure 14. Fits of bh versus the deflection angle θd in the very near ( bh <∼ 20), intermediate

(200 < bh < 103) and distant (20× 103 < bh < 105) horizon regions.
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7.1 The semiclassical relation at Born level

In order to compare the GR and the semiclassical result we turn to the semiclassical relation

eq. (1.1), with the cross section at the right hand side of this equation evaluated at Born

level. The solution of eq. (1.1) takes the form

b2h(θd) = b2h(θ̄) + 2

∫ θ̄

θd

dθ′ sin θ′
dσ̃

dΩ′
, (7.22)

with b2h(θ̄) denoting the constant of integration. We have also denoted with σ̃ the unpo-

larized cross section stripped of the (GM)2 prefactor, which has been removed in order

to rewrite eq. (1.1) in terms of bh rather than b. The integration constant can be fixed

by the condition that b(θd) approaches the classical GR solution as bh goes to infinity. In

this respect one can check by inspection that this condition is equivalent to the boundary

condition

lim
θd→π

b2(θd) = 0 , (7.23)

at zero impact parameter. This clearly shows that the requirement that the semiclassical

equation reproduces the classical Einstein result at large impact parameters, selects a

solution which is inadequate to describe the deflection close to the photon sphere. In fact,

for a localized source surrounded by a horizon, eq. (7.23) is not justified. On the other

hand, even for a distributed homogenous source, if we considered a beam moving towards

the source with b ∼ 0, the field felt by the beam would be almost negligible, due to Gauss’

law, and not strong enough to induce a photon to backscatter with an angle θ = π, after

a turn around the center of the source.

There are few more comments which are in order when dealing with this relation

between the classical and the quantum prediction for the deflection. It is clear that the

notion of impact parameter is not part of the quantum description of a certain scattering

process, but the appearance of θd as one of the extrema of the integration region in eq. (7.22)

carries a rather simple interpretation. In fact, in order to obtain a semiclassical picture of

the angle of deflection we associate, for each given value of θd, all the probabilities for a

photon to scatter with θ′ > θ up to the maximum value, θ′ = π. Starting from this simple

interpretation, the algorithm to be followed in order to link the quantum and the classical

descriptions of the scattering process can be easily stated as follows.

1. We first identify the regions of impact parameter which we are interested in. The

entire range of impact parameters, as we have already mentioned, can be split into several

regions. The first region is the one which is very near to the photon sphere/horizon

(3 < x0 < 20), followed by the near horizon region (20 < x0 < 100), the intermediate

region (100 < x0 < 104) and, finally, by the far/distant region (104 < x0 < 106). The latter

describes the region which has been investigated in previous analysis [1]. The sizes of these

regions may differ, according to the observables that we need to investigate numerically,

but this partition is basically preserved over the entire analysis.

2. We proceed by selecting two values for the closest distance between the source and

the beam x0, (x0 low, x0high), corresponding to the interval of the impact parameter that

we intend to investigate, using eq. (7.9) to relate bh to x0.
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3. We then use the GR relation eq. (7.11) to define the two classical angular val-

ues θlow = θd(x0high) and θhigh = θd(x0 low) within which we want to study the classi-

cal/quantum relation for the angular deflections. The differences between the two classical

impact parameters in the selected angular region or, equivantly, (x0 low, x0high) region, is

then determined by the relation

bh(θlow)− bh(θhigh) = 2

∫ θhigh

θlow

dθ′ sin θ′
dσ

dΩ
, (7.24)

which is then computed numerically. We illustrate the approach starting from Born level.

At this level, from eq. (1.1)) we obtain the differential equation

db20
dθ

= −2 (GM)2 cot4
(

θ

2

)

sin θ , (7.25)

with b0 denoting the value of b computed at this order. The equation is separable and

determines b0 as a function of θd, modulo an integration constant. If we set this constant

to zero we obtain the solution

b20(θd) = 4G2M2

(

csc2
(

θd
2

)

+ 4 log sin

(

θd
2

)

− sin2
θd
2

)

. (7.26)

already presented in [1]. In the small θd limit (i.e. for large angles of deflection) the solution

above becomes

b0 ∼ GM

(

4

θd
+
θ

6

(

1 + 12 log
θd
2

))

, (7.27)

which allows us to identify the deflection angle θd as

θd ∼ 4GM

b0
, (7.28)

in agreement with the classical GR result. We will now proceed to investigate numerically

the exact (brute force) solution of eq. (1.1) at one-loop in the electroweak theory, and show

that it agrees very accurately with Einstein’s solution (7.11). The agreement is already

very good at small values of the impact parameter (b ∼ 20RS), and obviously extends

out to infinite distance from the scattering center. As we have already mentioned in the

Introduction, the numerical analysis shows that perturbation theory is significant not only

in the description of the scatterings of photons which approach the scatterer at distances

of the order of the solar radius or larger (b ∼ 0.5× 106RS), but even at much smaller ones.

Furthermore, by expressing the result in terms of bh, the solution bh(θd) shows not to depend

on the size of the source, at least in leading order in GM . Obviously, this result would be

modified by the quantum gravitational corrections, since these will induce a dependence on

GM which would not appear just as an overall factor in front of the one-loop cross section

as in eq. (5.25), and the structure of the semiclassical equation will be much more involved.

The closeness between the classical GR prediction and the semiclassical one is quite ev-

ident from figure 15, where we plot bh versus θd in different regions of the impact parameter

bh. It is quite clear that the two approaches predict similar deflections for 20 < bh < 106,

with differences which start getting relevant only very close to the horizon (top-left panel)

and hence concern situations of very strong lensing.
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Figure 15. Plots of the bh(θd) for the GR and for the semiclassical result relation (Born level)

for various impact parameter regions. Shown are the very near horizon region (top-left), the near

horizon region (top-right) and the intermediate region (bottom).

7.2 The semiclassical relation at one-loop

As we move to one-loop level, the numerical analysis requires particular care, due to the

singular behaviour of the integrand of eq. (7.22). This shows up especially at low energy,

and motivates our choice to discuss separately 1) scatterings involving the incoming photon

energy of high energy, of the order of 1GeV and higher, from 2) those of lower energy, of

the order of 1MeV, down to the CMB case ∼ 10−5 eV. In the latter case we need to

perform an expansion at small momentum transfers of the QED and weak form factors,

which are analytic in the same limit, and perform the integration analytically. We show in

figure 16 three plots of the impact parameter bh against the angle of deflection at one-loop

and we compare them with the classical GR prediction. As in previous plots, we split the

impact parameter regions into the intervals (10− 20)bh, (20− 100)bh and the region with

bh > 100, which illustrates the gradual overlap between the GR formula and the one-loop

result as bh > 20. Again, scatterings with impact parameters values below 20 bh should

not be considered as correctly predicted from the semiclassical approach. The corrections

induced by the radiative contributions to the angle of deflection are clearly rather small

and are slightly more significant as we approach the horizon, towards bh ∼ 20, as shown
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Figure 16. Plots of the function bh(θd) at one-loop in the SM, together with the classical GR

results. Top left panel: the region with bh < 20. Top right panel: the region with 20 < bh < 100.

Bottom panel: the region with bh > 100.

Class.

One-Loop, E=1 GeV
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Figure 17. Plots of the bh(θd) for the GR and for the semiclassical result relation at one-loop level

in the region 20 < bh < 100 from the high energy (1GeV) to the very high energy region (10TeV)

of the gamma ray.
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Figure 18. Comparisons between the prediction for the relation bh(θd) obtained from the GR

formula versus the one-loop result with form factors expanded in the infrared region, with t/m2
e ≪ 1.
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Figure 19. Comparisons between the prediction for the relation bh(θd) obtained from the GR

formula versus the one-loop result with form factors expanded in the infrared region, with t/m2
e ≪ 1

and CMB photons.

by the tail behaviour of the top-right panel. Moving from 1GeV to 10TeV, see figure 17,

also the relation between the angle of deflection and the impact parameter gets slightly

modified. For instance, for an impact parameter of the order of 30 bh the one-loop and

the GR result predict deflections which differ approximately by 10% for a very energetic

gamma in the TeV region. They remain confined, for the rest, at a few percent level at a

lower energy, for incoming photons in the GeV range.
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7.3 Expansions at lower energy

As we have mentioned above, the study of photons characterized by an energy in the MeV

region and below requires a special attention, due to severe numerical problems in the

integration of eq. (7.22). It is convenient, at this stage, to perform a t/m2 expansion of

the electroweak form factors in order to obtain an accurate solution of eq. (1.1). Within

this approximation, it is possible to obtain analytic solutions of the differential equation,

determining the analytic expression of the function bh(θd). Notice that, in this expansion,

m stands for the mass of any of the physical particles (fermions and gauge bosons) in

the expressions of the loop corrections. For this reason, we require that the energy of

the incoming beam is chosen in such a way that t/m2
e ≪ 1, with me being the electron

mass. At leading order in t/m2
e the expressions of the form factor Φ̄3, contributing to the

unpolarized cross section, simplifies considerably as

Φ3QED = −
∑

f

Nf
c

α

π

11Q2
f

90

E2

m2
f

sin2
θ

2
+O(t2/m4

e) ,

Φ3B = −α
π

7

5

E2

M2
W

sin2
θ

2
+O(t2/m4

e) . (7.29)

Consequently, in the same limit the cross section becomes

dσ

dΩ
= G2M2 cot4

(

θ

2

) [

1− α

π
E2

(

∑

f

Nf
c

11Q2
f

45m2
f

+
14

5M2
W

)

sin2
θ

2

]

+O(t2/m4
e). (7.30)

Denoting with bh IR(θd) the impact parameter in the infrared limit and integrating

eq. (7.22), we obtain for this function at leading order in E/me the expression

bh IR(θd) =
1

2

(

cos(θd) + 2 csc2
(

θd

2

)

+ 8 log

(

sin

(

θd

2

))

− 1

)

+
α

π
E

2





∑

f

11Nf
c Q2

f

720mf
2
+

7

40πMW
2





(

12 cos(θd)+cos(2θd)+32 log

(

sin

(

θd

2

))

+11

)

.(7.31)

We show in figure 18 a comparison between the prediction for bh IR(θd) and the GR formula.

In this case we have expanded the form factors in the infrared region bh(θd), with t/m
2
e ≪ 1,

assuming an energy of the incoming beam of 100 KeV. Also in this case, as in the previous

ones, the semiclassical and the classical result start to overlap from values of the impact

parameter of the order of 20 bh (top-right panel). Clearly there are significant differences

between the two predictions very close to the photon sphere, with 10 < bh < 20 (top-left

panel). On the other hand, the two results match completely as soon as we reach 100 bh,

showing that the radiative corrections become negligible already at such distances from the

scattering center (figure 18, bottom panel).

A similar behaviour is found also for the photons of the CMB. The cosmic background

radiation pervades the universe and interacts gravitationally like any other form of radi-

ation with the curved spacetime background. The typical wavelength at the peak of the

distribution of the CMB is about 6 cm−1, corresponding to a photon of 10−5 eV. Also in this

case we can investigate the correspondence between the GR and the semiclassical prediction
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using an expansion of the semiclassical formula at O(t/m2
e). A direct numerical analysis

shows that eq. (7.31) can be applied also to this case and predicts gravitational scattering

and lensing of the photons at these wavelengths which is in agreement with the analysis of

the previous sections. This is shown in figure 19, where we have investigated the relation

between the classical GR deflection and the quantum prediction obtained from the SM. The

two curves deviates for impact parameters below the 20 bh limit (left panel) but they basi-

cally overlap above 60 bh. In the region between 20 bh and 60 bh the two curves present small

differences (right panel), and are superimposed for larger values of the impact parameter.

7.4 Massless fermion limit and the conformal anomaly form factor

Before coming to our conclusions, we turn to a brief discussion of the contribution of the

conformal anomaly to the deflection of a photon beam, working out the case of QED in the

massless fermion limit. In this limit QED is conformally invariant and developes a confor-

mal (trace) anomaly, which is present in those diagrams containing one or more insertions of

the EMT, such as the TAA vertex. As discussed in [18, 24], the anomaly is associated to the

apperance of a massless pole in a specific form factor, which in our notations is denoted by

Φ1,F (see (5.23)), the anomaly form factor. This is characterized by a massless pole and by a

typical sum rule [24] which has been recently studied also in the context of supersymmetric

theories [25]. The massless exchange is viewed, at the level of the effective action, as describ-

ing a scalar composite interpolating field, triggered by the gravitational interaction. The

goal of this section is to investigate at a phenomenological level the possible implications of

the anomaly contribution to the deflection of light. We are going to show that the effect of

this interaction is to induce a helicity flip of the incoming photon beam. We will see that the

contribution of the anomaly to the (+−) cross section appears atO(α2), and differs from the

Born level (++) cross section just by an overall factor. For this purpose we recall that the

(++) cross section coincides with the unpolarized cross section, as shown in (6.6), and hence

the anomaly contribution can be viewed as a renormalization of the unpolarized result.

To better clarify these points, for simplicity we consider the case of a single massless

fermion running in the loop and coupled to the incoming and outgoing photons. A direct

computation shows that in this limit the form factors are given by

Φ1,F (0, 0, 0, 0) = −
2αQ2

f

9π t
, Φ2,F (0, 0, 0, 0) = −

αQ2
f

36π t
. (7.32)

The expressions above, inserted into eq. (6.5) give

dσ

dΩ

+−

=
α2(GM)2Qf

4

36π2
cot4

(

θ

2

)

= A2 dσ

dΩ0
(7.33)

with

A ≡ α
Q2

f

6π
= 3.87× 10−4Q2

f , (7.34)

and is proportional to the unpolarized tree-level cross section given in eq. (4.9).

To quantify the size of the contribution of the (+−) amplitude - and hence of the

conformal anomaly - to the unpolarized cross section, we start by recalling that this cross
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section is of the form given by eq. (6.6) at O(α), while its complete expression at O(α2)

remains unknown. We denote with dσ
dΩ

++
∣

∣

∣

2
the unknown contribution to the (++) sector

of the unpolarized dσ
dΩ at O(α2), so that this can be re-expressed in the form

dσ

dΩ
=

(

dσ

dΩ

++

+
dσ

dΩ

++
∣

∣

∣

∣

2

+
dσ

dΩ

+−)

, (7.35)

In the equation above, we have denoted with (dσ/dΩ)++ the (known) O(α) result of the

previous sections, while (dσ/dΩ)+− is given by eq. (7.33). To investigate the contribution

to the lensing of photons of (7.35) we rewrite the semiclassical relation eq. (1.1) at O(α2)

split in the following form

b2++(θd) = 2

∫ π

θd

dθ′ sin θ′
dσ

dΩ

++

,

b2++2(θd) = 2

∫ π

θd

dθ′ sin θ′
dσ

dΩ

++
∣

∣

∣

∣

2

,

b2+−(θd) = 2

∫ π

θd

dθ′ sin θ′
dσ

dΩ

+−

. (7.36)

with

b2 = b2++ + b2++2 + b2+−. (7.37)

Neglecting for the moment the contribution to the deflection coming from b2++2, we focus

on the related b2+− value, which is proportional to the tree-level contribution, as clear from

eq. (7.33). Therefore, by combining this result with the tree-level one, given by the same

equation, the change in the formula of deflection amounts to a renormalization by a factor

(1 +A2)

b2h,0(θd) → (1 +A2)

(

csc2
(

θd
2

)

+ 4 log sin

(

θd
2

)

− sin2
θd
2

)

. (7.38)

The asymptotic deflection, using the fact that A≪ 1, takes the new form

b ∼ GM

(

1 +
A2

2

) (

4

θd
+
θd
6

(

1 + 12 log
θd
2

))

. (7.39)

It is clear that the classical Einstein relation eq. (7.28) is given by

θd =
4GM

b

(

1 +
A2

2

)

+ . . . (7.40)

where the ellipses refer to the additional (unknown) O(α) contributions. These are terms

obtained from the interference between the tree-level and the one-loop Feynman graphs,

together with the remaining unknown O(α2) corrections coming from (dσ/dΩ)++|2.
Notice that A ∼ 10−4 for a single fermion, and therefore the anomaly form factor modifies

the angular deflection by few parts per thousands, compared to the Einstein prediction.

Notice also that this result remains valid both for weak and for very strong lensings, as

clear from (7.38).
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8 Conclusions

We have presented the explicit expression of the radiative corrections to the cross section

describing the scattering of a high energy photon over a spherically symmetric gravitational

background, in the SM. We have shown that these corrections become quite sizeable in the

very high energy region. We have also performed a comparative analysis of the classical and

of the quantum approaches to the lensing of a photon. This comparison has been performed

by equating the classical cross section - defined in terms of the impact parameter of the

photon - and the ordinary perturbative cross section computed using the Lagrangian of the

SM. This semiclassical approach allows, in general, to derive a relation between the impact

parameter b and the deflection angle θd, by solving a differential equation.

Our numerical analysis shows that the weak field expansion for gravity is extremely

effective in the description of the lensing of a photon from the far distant down to the near

horizon region, with no need to include extra corrections proportional to the curvature of

the background. The remarkable agreement between the classical (GR) and the semiclas-

sical approaches holds down to distances of about 20 horizon units (20 bh), in conditions of

strong lensing, proving that pertubation theory is remarkably effective in the description

of strong lensing. Our analysis extends considerably previous studies of the quantum cor-

rections to the deflection of photons, which have been limited, in the past, only to regions

of very large impact parameters (bh ∼ 106).

We have then studied the helicity-flip cross section, which is radiatively induced, and

plays an important role in the determination of a change in the polarization of a photon

beam in background gravity. In the case of the CMB these effects are extremely small for a

black hole of the order 1.4 solar masses, but grow significantly with the mass of the source

and with the energy of the photons. However, the helicity conserving amplitude remains

the dominant part of the unpolarized cross section.

We have also investigated the same de-polarizing amplitude and related cross section

in the massless fermion limit, for QED. This theory is affected by the conformal anomaly.

Both for strong and weak deflections, the contribution of the anomaly form factor is at the

level of ∼ 3 × 10−4 in all the angular regions, for each massless fermions included in the

virtual corrections. It is proportional to the tree-level result, which is energy-independent.

Our analysis can be extended in various directions, one of the most significant being

the possible implications of our results in the neutrino sector. We hope to return in the

near future with a discussion of this and of other related issues not addressed in this work.
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A Numerical fits for the GR angular deflections

The coefficients corresponding to the fit in eq. (7.21) are given by

b
1
h(θd) =

0.000043695

θ2d
+

1.99202

θd
+ 0.0454744 log2(θd) + 0.16025 log(θd) + 1.69987 ,
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b
2
h(θd) =

9.93100299967969× 10−11

θ2d
+

2.

θd
+ 0.000740459 log2(θd) + 0.00896133 log(θd) + 1.50095 ,

b
3
h(θd) =

2.006051361087774× 10−11

θ2d
+

1.99998

θd
+ 0.28887 log2(θd) + 5.34226 log(θd) + 26.3238 .(A.1)

The regions covered by the fits correspond to the intervals (expressed in radians)

(0.0201967, 1.01488), (0.000200019, 0.0201967) and (2.00001 × 10−6, 0.000200019) respec-

tively.
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