
7. Planar non-smooth dynamical systems

We provide a survey of some results for the special case of planar non-smooth
dynamical systems.

7.1 Lyapunov constants

Following COLL/GASULL/PROHENS [53] we investigate the number of small
periodic solutions for real-analytic planar systems by means of the so-called
Lyapunov constants. For smooth systems, a main source of motivation to
study the number of periodic solutions of planar equations with polynomial
right-hand sides is that this was stated as an important problem by Hilbert,
as part of "Hilbert's 16th problem".

We consider the system

j; = It(x, y)
iJ = It(x,y)'

y > 0, and
j; = 11 (x , y )
iJ = 12"(x,y)'

y < 0, (7.1)

where I± = (I"t, If) are real-analytic functions defined in a neighborhood
of (z, y) = (0,0). We write their series expansion as

l"t(x,y) = a± + b±x + c±y+ d±x2+ e±xy+ l±y2 + .
If(x, y) = k± + l±x+m±y+ n±x2+ o±xy+ p±y2 + .

(7.2a)

(7.2b)

and since we need (0,0) to be an equilibrium for both component equations,
we will throughout assume that

Definition 7.1.1. A component equation ± is of focus type, if

(7.3)

We call (0,0) a singularity of focus-focus type, if both equations + and - are
of focus type.
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Note that since

(f±)'(0,0) = :±)
are the linearizations at (0,0), condition (7.3) means that the eigenvalues

((b± +m±) + / - J(b± - m±)2+ 4c±[±)

are complex conjugate, and close to the origin the flows locally do rotate
counterclockwise, the latter due to [± > O.

Next we introduce the Poincare return maps

s 1-4 h+(s) 1-4 h-(h+(s))

that are well-defined in a neighborhood of the origin; see Fig. 7.1. Note also
that therefore it is not possible for a solution of (7.1) to stick to the discon-
tinuity line {(x,y) : y = O} for some time, i.e., (7.1) needs not be considered
as a differential inclusion.
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Fig. 7.1. The map s f-t h+(s) f-t h-(h+(s)) and T from Ex. 7.1.1

In this situation one defines the Lyapunov constants to be the non-zero
coefficients in the series expansion of the function s 1-4 h- (h+(s)) - s for s
close to zero; observe that h-(h+(s)) = s corresponds to a periodic solution
of (7.1).
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Definition 7.1.2. If Vk =I- 0 and

h-(h+(s)) - s =Vksk +O(Sk+I)

for s > a close to zero, then Vk is called the kth Lyapunov constant.

Here we implicitly understand that Vk will only be considered in case that
VI = Vz = ... = Vk-I = O. Thus in particular, if e.g. VI = 0, then the
relations resulting from this equality can be used to simplify the expres­
sion for Vz, etc. As we are going to explain below in Ex. 7.1.1, informa­
tion on the Lyapunov constants can be utilized to derive results about the
number of small periodic solutions; see BAUTIN [22], BLOWS/LLOYD [26],
GASULL/GUILLAMON/MANOSA [89], or GASULL/PROHENS [90] for more on
the usage of Lyapunov constants for smooth systems.

Theorem 7.1.1. Let (0, 0) be a singularity of focus-focus type, and

Then the first Lyapunov constant is

Proof: We will first deal with the equation (x, if) = r (x, y) in the up­
per half­plane. It will be convenient to represent the solution starting at
(x(O),y(O)) = (s,O) as

x(t) =R+(O(t)) cosO(t), y(t) =R+(O(t)) sinO(t). (7.4)

Differentiating this w.r. to t, it follows that

dR+ _ Re(zz) R+ I R+(O; s) = s,
-;]j) - Im(zz) z=R+e,9 '

(7.5)

for the function R+ = R+(O; s), with 0 E [0,11"] and s > 0 small; here z =
x + iy. Then h+(s) = R+(1I"; s), and we are going to argue that

To see this, we expand

00

R+(O; s) ­ s = L wt(O)sk, with wt(O) = 0, k E IN, (7.6)
k=1

and derive a differential equation for wi using (7.5). We first write (x, if) =
f+(x,y) in the complex form
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00

i =2:F:(z, s), where F:(z, i) = 2: ct!3Zai!3. (7.7)
k=l o,!'ENo

a+!3=k

For simplicity we henceforth omit the superscript "+". Then

and this shows that

Re(ii) RI _ Sk(B) =e-ioFk(eiO,e-iO).
Im(zz) z=Re i 9 - Im(Sk(B))Rk-l'

(7.8)
Next we observe that Im(Sl(B)) > 0 due to (7.3). Indeed, Fl(z,i) = ClOZ +
cOli implies upon decomposing ClO and COl in real and imaginary part, and
by comparing (7.7) to (x,y) = f+(x,y) and (7.2a), (7.2b), that

in particular

b+ =Re(clO + cod,

l+ = Im(clO+ cod,

c+ = Im(COl - ClO),

and m+ =Re(clO - COl),

(7.9a)

(7.9b)

(b+ - m+)2 + 4l+c+ = 4(lcoll 2 - Im(c lO)2) . (7.10)

We have Sl(B) = ClO + COle-2iO, whence Im(Sl(B)) = Im(clO) + (COl,Je20i ) ,

with J =
1
) and the usual inner product (".) in IR2 x IR2

. Assume

Im(clO) < O. Then we get from (7.3), (7.9b), and (7.10) that IIm(clO)I =
-Im(clO) < Im(col) ::; lcoll < IIm(clO)l, a contradiction. Therefore Im(clO) 2::
0, and consequently -(CQ1, Je 20i ) ::; leer] < IIm(clO)1 = Im(clO) implies that
in fact Im(Sl (B)) > O. From this, (7.5), (7.6), and (7.8) we infer that with
R=R+

I (B) k = dR = Re(Sl (B)) R 0(R2)
8 dB Im(Sl(B)) +

Re(Sl(B)) 2
= Im(Sl(B)) (8+WI (B)8) + 0(8 ),

hence

by comparing the coefficients of 8 and recalling the initial condition from
(7.6). After some calculation this may be integrated to yield WI (7f) = v+ -1,
thus indeed
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R+(1T; s) - S= (v+ - l)s + 0(s2)

by evaluating (7.6) at (J = 1T. Similarly it can be verified that

for s < 0 small, where R- is analogous to R+ for the lower half-plane, in
particular h- (s) = R- (1T; s). We therefore get

- s = R-(1T; R+(1T; s)) - S= u" R+(1T; s) + 0(S2) - S

=(v+v- - l)s + 0(S2),

as was to be shown.

More precise information can be obtained if in addition

o

with .x± E IR and F1± as in (7.7), which means that the linear parts are in
Jordan form.

Theorem 7.1.2. If (7.11) holds and (0,0) is a singularity of focus-focus
type, then

VI = e7T(),+ + ),- ) -1, V2=Wt(1T) + w2"(1T)e3),+1T,

V3 = e),+7Twt(1T) - 2Wt(1T)2 + wg(1T)e5),+1T, and

V4 = e2),+7Twt(1T) - 5e),+1Twt (1T)Wt (1T) + 5Wt(1T)3 + e7>'+1Tw4(1T).

Proof: Observe that using (7.9a) and (7.9b) we may alternatively write e.g.

+ { 1T Re(clO) }v =exp .
V1m(ClO)2 -ICOlI2

According to (7.11) we have

Re(clO) = .x+, Im(clO) = 1, and COl = 0,

hence v+ = e1T),+, and similarly i/: = e1T),-. By Thm. 7.1.1 we thus have
VI = e1T(),++), - ) -1. Concerning the higher Lyapunov constants, in principle
their explicit form can be found as we did for VI, although this requires a
lot of calculation and instead of the polar coordinates from (7.4) the using of
so-called generalized polar coordinates

x(t) = R((J(t))qCs ((J(t)), yet) = R((J(t)tSn (B(t)).

Here q,p E IN have to be chosen appropriately, and
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Cs (0) = -Sn (0)2p
- l , :0 Sn (0) = Cs (0)2 q

- 1 ,

Cs(O) = 2i'£, and Sn(O) = OJ

see COLL/GASULL/PROHENS [53] for more details. o

In the formulas for V2 , V3 , and V4 , the wt are the coefficients of R±,
d. (7.6). We recall that V2 is only relevant if VI = 0 and V2 =J. 0, % is
used in case that VI = V2 = 0 and V3 =J. 0, and so on. The reference
COLL/GASULL/PROHENS [53] also contains explicit formulas for the first four
Lyapunov constants in case that one or both of the component equations do
have a parabolic contact point at (x, y) = (0,0) rather than a focus.

The following example illustrates the calculation of Lyapunov constants
and also their relevance for proving the existence of small periodic solutions
in planar systems.

Example 7.1.1. We consider the problem

. {(i+>.)z+Az2+Bzz+cz2z-- iz

in complex form. Here

Im(z) > 0
Im(z) < 0

(7.12)

.( 1 v'6)A = 2 + Z CI + 3c2 - 2c3 - 4"" '

c = i(C2 - 9c3 - 9

Then for>. > 0, CI > 0, C2 < 0, and C3 < 0 small such that 1>'1 « ICII «
IC21 « IC31 there are at least three limit cycles for (7.12).

We first calculate the corresponding Lyapunov constants. Note that (7.12)
is of the form required in (7.11), with >.+ = >. and >.- = O. Moreover, (0,0) is
a singularity offocus-focus, as, writing Ft(z, s) = ctOZ+C6IZ and FI-(z, z) =
cloz + Ctl - s, we have

+ . \clO = Z+ 1\, C61 = 0, ClO= i, and ciJi =0,

and this in turn yields due to (7.10) and (7.9b)

(b± - m±)2+ 41±c± = -4 and l± = 1.

Hence Thm. 7.1.2 applies to give
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we omitted the explicit evaluation of V2 , V3 , and V4 .

To finally verify the existence of at least three limit cycles, the argument
indicated in BLows/LLOYD [26, p. 220] may be employed. First we consider
(7.12) with X = C1 = C2 = O. Then the first non-zero Lyapunov constant is
V4 < 0, the latter for C3 < 0 small. Hence

(7.13)

for 8 > 0 small implies that the origin is stable. Thus we find a region
encircled by a curve r such that the flow for (7.12) with X = C1 = C2 = 0
strictly points inward across T: rigorously such r can be found as a level set of
an appropriate Lyapunov function that is strictly decreasing along solutions.
One may also imagine constructing r as follows: take some 80 > 0 small and
let 81 = h-(h+(so)) < So. Then draw (in counterclockwise direction) a curve
from Sl to itself which, at each point (x,y), is a little more steepened than
the solution trajectory through (x,y); see Fig. 7.1 on p. 186.

Having determined r, we note that perturbing (7.12) with X=C1 =C2 =
oa little will not affect the property of r that the flow strictly points inward
across r. Hence we next choose IC21 « 1 such that C2 < 0, instead of C2 = 0,
and we keep X= C1 = O. Then V3 > 0 is the first non-zero Lyapunov constant,
and

h-(h+(8)) - 8 =V3 8
3 + 0(84

)

for 8 > 0 in a neighborhood of 8 = 0 that will be smaller than the one where
(7.13) has been valid. Consequently, the origin has become unstable, and
similarly to the foregoing we find r1 inside r such that the flow of (7.12),
with >.. = Cl = 0 and C4 fixed in the previous step, is strictly outward on
rl . Moreover, it is strictly inward on r. Continuing this way, for >.. > 0,
C1 > 0, C2 < 0, and C3 < 0 small such that 1>"1 « IC11 « IC21 « IC31 there are
curves r3 , r2 , r1 , and r, one contained inside the next, such that the flow
of (7.12) is strictly inward on rand n, and strictly outward on nand r3 ·
By the Poincare-Bendixson theorem that is also valid for non-smooth planar
systems, see FILIPPOV [82, Ch. 3.13, Thm. 6], we thus conclude that there
is a limit cycle between r3 and r2 , r2 and r1 , and T, and r, respectively.
Hence we find at least three limit cycles. ()

We remark that this example also highlights a difference between smooth
and non-smooth planar systems concerning Lyapunov constants, since VI =
V2 = ... = Vk- l = 0 and Vk ¥- 0 implies k is odd for smooth systems.
Choosing X= 0 and Cl ¥- 0, we however obtain that VI = 0 and V2 ¥- 0 for
(7.12).

See COLL/GASULL/PROHENS [52] and COLL/PROHENS/GASULL [54] for
further results in the same direction, mainly concerning the special case of a
Lienard type system ff(x,y) = -y+ f±(x) and !i'(x,y) = x in (7.1), where
f± is a polynomial of degree at least two.
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7.2 Hopf bifurcation

Closely related to the preceding section is the subject of Hopf bifurcation of
periodic solutions for planar non-smooth systems. For simplicity we consider
the problem in normal form

(x) ( A -W+(A)) (x) +iJ = W+(A) A y +g (X,y,A),

(x) ( A -W-(A)) (x) _iJ = W-(A) A y +g (X,y,A),

y > 0, and (7.14a)

y < 0, (7.14b)

where g± = (g[, gt) are real-analytic functions defined in a neighborhood
of (x, y) = (0,0) and A =°such that Ig±(x, y, A)I C(x2 + y2) in this
neighborhood. The linearization matrices do have eigenvalues A ± iw+ (A)
and A ± iW-(A), respectively, and we suppose that w+(O) > °as well as
w-(O) > 0; both functions w±(·) are assumed to be real-valued and of class
C1 close to A = o.

Theorem 7.2.1. At A = 0, system (7.14a), (7.14b) undergoes a Hopf bi-
furcation. More precisely, there exist 8 > °and a unique continuous func-
tion A* :]- 8,8[-+ IR such that A*(O) = 0, and if s E]- 8,8[ and s f. 0,
then there is a periodic orbit of (7.14a), (7.14b) with A = A*(S) that passes
through (s,O). The corresponding period is T(s) > °for a continuous func-
tion T :] - 8,8[-+]0, oo[ satisfying T(O) = w4o) + w!"(O). In a neighborhood

of (x,y) = (0,0) and A = 0, all periodic solutions of (7.14a), (7.14b) are
obtained this way.

Proof: The proof runs more or less analogously to the smooth case, see
MARSDEN/McCRACKEN [138]. Defining the return maps h± as in Sect. 7.1
and observing that both maps here do additionally depend on A,we need to
find a zero of S f-7 h-(h+(S,A),A) - s. To exclude the trivial solution s = °
one introduces

sf.o

s=O

with VJ. (A) the first Lyapunov constant. Observe that in the notation of (7.2a),
(7.2b) we have

b± = A, c± = -W±(A), l± = W±(A), and m± = A,

whence (0,0) is a singularity of focus-focus type for Aclose to zero, since (b±-
m±)2 + 4l±c± = -4W±(A)2; recall Definition 7.1.1. Thus v± = exp(3(A))'
and Thm. 7.1.1 implies the explicit form



7.2 Hopf bifurcation 193

(7.15)

for the first Lyapunov constant.
We wish to apply the implicit function theorem to solve H(s,).) = 0

w.r. to ). = ).*(s) in a neighborhood of s = O. By definition of the first
Lyapunov constant, it may be shown that (s,).) 1-+ H(s,).) is continuous
close to (s,).) = (0,0). Moreover, with HI (s,).) = h-(h+(s, ).),).) - s we note
that HI(O,).) == 0, whence == 0, and also VI().) = This
shows that

).) = - fj2HI (0 ).) = 8
2
HI (0 >') =V/(>')

s 8 ---+ 888>" 8)'8s' I

as s -+ O. Thus H is found to be continuously differentiable w.r. to >.. Next,
H(O,O) = 0 due to (7.15), and (0, 0) = V{(O) = wlCO) + w-1rCO) > O.
Hence a unique continuous function >'* :] - 6,6[-+ IR with >'*(0) = 0 and
such that H(s, ).*(s)) == 0 in ] - 6,6[ can be found; see DEIMLING [62,
Thm. 15.1]. By definition of H this means that h-(h+(8,).*(S)),>.*(s)) == s,
i.e., for each s E] - 6,6[ the system (7.14a), (7.14b) with), = >.*(s) has a
(small) periodic orbit. The fact that T(O) = wlco) + w-1rCO) follows by ex-
plicitly writing down the return maps. An alternative argument is that the
corresponding periodic solution is pieced together by "half" a periodic so-
lution of (7.14a) and "half" a periodic solution of (7.14b), both for). = O.
From the (smooth) Hopf bifurcation theorem we know that those periodic
solutions do have periods wf'[o) and w:'[O)' respectively, whence we find

T(O) = + = w+(O) + w-1rCO); see also Ex. 7.2.1 below. The
uniqueness assertion is a consequence of the uniqueness of the function).* (.);
see MORITZ [146] for more details of the proof. 0

Note that ).*(.) cannot be expected to be a CI-function, since this would
require that also H were C I w.r. to both sand >.. For the same reason, in
general also T will only be continuous rather than differentiable. One may,
however, formulate compatibility conditions on the coefficients of the real-
analytic nonlinearities g+ and g- that will guarantee higher regularity of
those functions.

Example 7.2.1. For illustration we investigate the simple system

y > 0, and (7.16a)

y < 0, (7.16b)

with w± > O. Introducing polar coordinates x(t) = r(t) cosO(t), y(t) =
r(t) sinO(t), this becomes
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( rO
·' ) __ (rA

w-+r

3
) , sin 0 > 0, and

(7.17)
From Thm. 7.2.1 we know that (7.16a), (7.16b) undergoes a Hopf bifurca­
tion at A = 0, and we will use (7.17) to obtain more precise information in
this special case. Starting the "+"­system at (r+(O),O+(O» = (8,0), we find
O+(t) = w+t for t E [O,;:';'J, and the solution for r = r+ is

A
r+(t) = 8 (A :j:. 0), and

82 + (A - 8 2 )e- 2At

r+(t) ­ 8 (A=0);
­ v'282t + 1

this can be shown by deriving an ODE for .;.x, and also note that the
denominator has the sign of A. Then we start the "­"­system with data
(r-(O),O-(O» = (r+(;:';'),11") to get O-(t) = w-t + 11" for t E [0, w11"_]. Since
the differential equation for r: is the same as the one for r+, we hence can
directly consider the latter up to time T = ;:,;. + w11"_ to obtain

A
h-(h+(8,A),A) = 8 2 2AT (A:j:.O), and

8 2 + (A - S )e-

- (h+( ) ) ­ S h T _ 11" 11"h s,°,0 ­ , were ­ -+ + ­.
v'2s2T + 1 w w-

Note that this is well­defined for all S E IR. To find the non­trivial zeroes
of HI (s, A) = h-(h+(s, A),A) ­ s, we observe that there is no such zero,
hence no periodic solutions, in case that A = O. For A :j:. 0 the equation
HI (s, A) = 0 simplifies to A = 82, whence A < 0 is impossible, and 8 = y). for
A > O. Therefore periodic solutions do exist exactly for A > 0, all with equal
period T = ;:,;. + w11"_, and the function A*(') from Thm. 7.2.1 which solves
HI(s,A*(S» =0 is found to be A*(S) = 82• From the 1D phase portrait of
r = Ar ­ r3 , or else by calculating = e- 2AT < 1, it
moreover follows that the periodic orbits are asymptotically stable. 0

In MORITZ [146] some further results related to Hopf bifurcations are
obtained, also on stability and for the case of real parts with opposite signs,

i.e., when the linearizations in (7.14a) and (7.14b) are -W:(A») and

(
- A -W-(A»)

W-(A) -A ' respectively.
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7.3 Piecewise linear planar systems

A particularly accessible special case of planar systems are piecewise linear
systems of the form

Ii= Aq + sgn(w . q)v, (7.18)

with q = (x,y) E IR2, A areal (2 x 2)-matrix, and given vectors v, wE IR2with
W # O. Such systems playa role in electrical circuits with a twin triode, AN-
DRONOV/VITT/KHAIKIN [9, p. 344], or in control systems with a two-point
relay characteristic, LEFSCHETZ [127, p. 82]. Equation (7.18) has a disconti-
nuity line {q E IRz : w· q =O}, and the problem is to classify the dynamical
behaviour of the system in dependence of the 8 parameters (4 for A, and 2
for wand v, respectively). Following GIANNAKOPOULOS/KAUL/PLIETE [92]
or PLIETE [179], we make the following assumptions:

trace(A) # 0, trace(A)z < 4 det(A). (7.19)

It is then possible to determine the number of periodic solutions of (7.18) and
their stability. Some of those solutions may stick to the discontinuity for some
time (sliding motion), whence sgn has to be considered as the corresponding
multi-valued Sgn, i.e., Sgn(O) = [-1,1] as before.

As a first step, the number of parameters can be reduced to three, since
by means of a suitable transformation (7.18) is seen to be equivalent to

2a = det(A)/trace(A) > 1/4,

(7.20)
where

bi = -[(Awl..) . vl..]/trace(A)2, bz = -(w· v)/trace(A),

with wl.. = (-W2, wd. In addition, this transformation rotates the disconti-
nuity line to {(x, y) E IRz : y = O}. In (7.20) there are only three parameters
left, a, bl , and bz.

Then an analysis can be carried out for the resulting semiflow to find the
critical points, i.e., such qo = (xo, Yo) with (0,0) E A"qo + Sgn(yo)b, in all
the different possible cases; see GIANNAKOPOULOS/KAUL/PLIETE [92]. Con-
cerning the existence of periodic solutions, bz 0 is a necessary condition, as
may be seen from the phase portraits. For oz > 0 the closed orbits that cross
the discontinuity line transversely (no sticking) can be found as fixed points
of the return map h = ti: 0 h+, where e.g. h+ maps a point (xQ,O) along
a trajectory that is contained in {(x, y) : y > O} to the first return point
(XI,O) to the x-axis. Under certain circumstances, it may be verified that h,
considered as a map on the x-axis, is strictly increasing and concave, and
hence has at most two fixed points. Thus there are at most two closed orbits
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that do not stick to the discontinuity line. With some more effort, the precise
number of periodic solutions can be detected, and also their stability. More­
over, the existence of periodic solutions with sliding motion and of homoclinic
orbits can be studied in detail; cf. GIANNAKOPOULOSjKAULjPLIETE [92] for
the complete results. In particular, it turns out that there are at most three
periodic solutions for (7.20).


