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1. INTRODUCTION

Anick, in [2], describes a resolution of a field k by free modules over an associative

augmented algebra Rover k. The construction involves the use of a special type of

normal form for the elements of R. The theory of such normal forms and, more par­

ticularly, the special form of presentations which lead to them has been expounded by

Bergman in [4] for ring theory and is available more generally as the theory of term

rewriting systems. The theory has largely been developed within computer science but

see, for example, Le Chenadec's book [10] for a more algebraic approach and some

specific group­theoretic examples.

When the ring R is the monoid ring kG of a monoid G, the normal form required

for Anick's proof can be obtained via a complete rewriting system for G (for definitions

see Section 2.1). A very similar idea has been exploited, independently, by Squier [11].

Given a complete rewriting system for a monoid G, Squier constructs an exact complex

of length four

which, in dimension less than or equal to 2, co­incides with the well known relation

sequence (see, for example, Section VI.6 of [9]).

The aim of this paper is to describe an alternative approach to the results of Anick

(in fact a minor generalisation) which generalises the work of Squier. The general

approach is based on that of Squier and retains what I believe is a somewhat more

constructive flavour. The general technique can be described as building a 'cubical

complex' based on directed graphs associated with the rewriting of certain words in the

generators of a complete rewriting system. When, for example, the rewriting system is

the natural one which takes as generating set the elements of a group G and as rules

all pairs ab ­+ c with c = ab in G we obtain the bar resolution for G.

It is hoped that the alternative approach used here will enable some more insight

into the practical aspects of calculating these resolutions. I was unaware of Anick's work

for most of the time I was constructing these arguments and I thank Ken A. Brown

(of Glasgow) for bringing Anick's paper to my attention. My original argument gives

rise to modules which may in some cases be considerably larger than those produced

by Anick's approach. I have included the (relatively minor) alterations necessary to
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yield the Anick resolution but have left in the original arguments which form a natural

generalisation of Squier's proof. Ken S. Brown (of Cornell) has now constructed another

proof [7] which has a strong topological flavour.

We give a brief map of the paper. In Section 2 we deal with some preliminaries.

We describe the basic terminology of rewriting systems and directed graphs naturally

associated with them. We also define the 'cubes' and 'stars' that we use in the proof

and furnish the main technical facts we will require concerning them. In Section 3 we

give the proof of the main result. This is proved inductively and the technical part of

the inductive hypothesis can be found in Section 3.2. There are also two illustrative

examples in Section 3.1. In Section 4 we make some comments regarding the technique

and then give a number of different examples of the resolution in various special cases.

2. PRELIMINARIES

2.1. NOTATION AND REWRITING SYSTEMS

Throughout the paper, will denote a set (of 'generators') and will denote the

free monoid (that is, semigroup with identity) on We will often refer to elements

of as words in and the identity 1 of will correspond to the empty word. A

rewriting system R) on consists of a subset R of x together with

The monoid presented by R) is the monoid with presentation on generators and

relations all equations 1= r with (1,r) E R. If u,v E and if U = alb,v = arb with

(1, r) E R and a, b E , we will write U -+ v. If there is a sequence

of words wi E with Wi -+ Wi+l' or Wi = wi+l' then we write u1 u2 (and say 'u1

R-reduces to U z '). If, for some u, U v implies U = v, we say that u is irreducible.

DEFINITION. A rewriting system R) associated with a monoid G is complete

if the following two conditions hold:

(a) there are no infinite chains U 1 -+ u2 -+ ... -+ Un -+ ... ;

(b) each congruence class of the congruence defining G as a quotient of

contains exactly one irreducible.

Thus, in a complete rewriting system, we can rewrite each word in to a unique

irreducible representing the same element of G and the irreducibles therefore provide a

'normal form' for G. In fact, we shall identify each element of G with its corresponding

irreducible and so regard G as a subset of (but not, of course, as a submonoid). If
W E W will denote the unique irreducible word in which has the same image in

Gas w.
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By a suitable 'tidying' process on (E, R), we can also assume that it is minimal in

the sense that

(a) if (1,1') E R then r is irreducible;

(b) if (11,1'1)' (12,1'2) E R then II is not a subword of 12 •

This minimal rewriting system is uniquely determined by the set of irreducibles. We

refer to Groves and Smith [8] or Squier [11] for details.

Given u, v E E* with u v, there will, in general, be many ways of reducing u

to v. We will choose, for each such pair u, v, a preferred reduction

u = WI ---+ ••. ---+ W n = V.

Further, we do this so that the restriction of this preferred reduction to Wi ---+ ••• ---+ W j

is itself the preferred reduction from Wi to Wj. The well-founded nature of the order

deriving from ---+ shows that this is possible. We could, for example, always choose -

when a choice is required - the left-most occurrence of (the left hand side of) a rule

in each Wi' There will be several occasions in the following when we will invoke this

preferred reduction to resolve possible ambiguities.

For further details on rewriting systems in general, we refer to Le Chenadec's book

[10].

2.2. DIRECTED GRAPHS AND CUBES

In this sub-section we will establish some terminology. The objects are fairly stan-

dard but we have not been able to find a suitable reference.

A directed graph 6 consists of a set V(6.) of vertices and a set E(6.) of edges

together with initial and terminal functions i, t: E(6.) ---+ V(6.). A path in 6 is a

sequence

p = (e1,·.·, ek) with ej E E(6), t(e j ) = i(ej+1)' (1 j k -1).

We extend i, t by defining i(p) = i( e1), t(p) = t(ek). (So if we identify an edge

with a path of length one, the two possible definitions agree). We also allow, for each

v E V(6), an empty path with no edges and initial and terminal points v. The set of

all paths in 6 will be denoted P(6.) .

We will be concerned only with two types of directed graph.

(1) Suppose that (E, R) is a minimal rewriting system for a monoid G. Then

r = r(E, R) is the directed graph with V(r) = E* and E(r) the set of all instances

of a single application of a rewriting rule. More precisely, for each W E E* and each

decomposition W = ulv with (1, r ) E R there is an edge e with i(e) = W = ulv and

t( e) = urv. When necessary we will refer to such an edge as e = (w, u); since we

have chosen the rewriting system to be minimal, this notation is unambiguous. If, for
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example, E = {a} and R = {a2
, I}, then we have three edges with initial vertex a4 ,

namely (a\I), (a4,a) and (a4,a2
) .

(2) For a natural number n, denote the set {I, ... , n} by !1 . Denote the

empty set by Q . In either case, denote the power set of !1 by 2!l . We can give 2:'-' the
structure of a directed graph - which, abusing notation, will also be denoted 2:'-' . Let

V(2!l) = 2!!- and

E(2!!-) = {(S,x):SE2!!-, xE!1\S}.

Also define i( (S, x)) = S, t( (S, x)) = S u {x}. The induced ordering is then just the

inclusion ordering on subsets. We can identify the vertices and edges of 2!!- with the

vertices and edges of a standard n-dimensional cube (with one vertex - Q - 'upper-

most'). The notation simply gives a way of referring to this when technical verification

is required.

Let be a directed graph (in our applications it will usually be a f(E, R)). An

n -cube /-l in consists of a pair of functions

so that if J-lE takes an edge E to a path P, then /-lv takes the initial and terminal

points of E to the initial and terminal points of P. Thus /-l picks out the I-skeleton of

a geometric cube within the directed graph (For this reason the reader should be

aware that a better but more clumsy name for what I call an n-cube would be 'I-skeleton

of an n-cube'.) Note that 2!!- is an n-cube in itself via the identity mapping. Also a

O-cube in can be identified with a vertex and a I-cube can be identified with a path.

It will be notationally convenient in the following to drop the subscript notation

for the maps associated with /-l. Thus we will refer to /-l(v) or /-l(e) for v E V(2!!-) or

eEE(2!!-).

2.3. FACES OF CUBES

The resolution we build up in Section 3 will attempt to imitate the chain complex

of a cubical complex. Our differential will imitate a genuine boundary map. Since we

can identify our cubes with the J-skeleta of geometric cubes we should clearly define

the faces of our cubes so that they are the I-skeleta of the geometric faces of such

cubes. Thus the ideas made explicit below are straightforward even though there is

some technical detail required.

For each i E !1, let Ti denote the function Ti: n - 1 -+!1 given by

Ti(k) = { k
k+I

if k < i,

if k i.
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DEFINITION. Let i E TI.

(a) An upper (n - I)-face T i+ of is the homomorphism -r 2n
-
1

given by

(Tt)V(S) = Ti(S)

(Tt)E((S,X)) = (Ti(S),Ti(x))

(S E 2n
-
1
) ,

(x E n - 1 \ S).

(b) A lower (n - I)-face T i of is the homomorphism T i- : 2n
-
1

given by

(Ti-)V(S) = Ti(S) U {i}

(Ti-)E((S,X)) = (Ti(S) U {i},Ti(x))

(SE2n
-
1
) ,

(xEn-I\S).

DEFINITION. Let p bean n-cubein a directed graph Then an upper (n-I)-

face p; of p is the (n -I)-cube po Tt. A lower (n - I)-face pi is the (n - I)-cube

po Ti .

(The 'composites' here should be interpreted as the pair of maps obtained by taking

the composites of the vertex maps and the composites of the edge maps.)

It is easy to verify that the faces of will correspond with the l-skeleta of the

faces of a geometric cube. Further, the upper faces will be those which include the point

Q. and the lower faces those which include the point n.. In particular, when n = 1 and a

I-cube is identified with a path, the upper O-face can be identified with the initial point

of this path and the lower O-face with the terminal point. Note that a O-cube has no

faces.

We now have the beginnings of a 'boundary map' on n-cubes. The next three

results will provide some of the technical justification for our final use of this 'boundary

map'. They are routine technical exercises and we omit the proofs.

LEMMA 2.1. Let p be an n-cube in a directed If i E TI, J E n -1,
i j, then

(e,17 E {+,-}).

COROLLARY 2.2. Let ne
,'1 denote {(pDJ : i E II, j E n - 1, e,17 E {+, -} }.

Then

(a)

(b)

ne,e is the union .U .{(p:)j, (pj+l)D of equal pairs;

there is a bijective correspondence, with corresponding elements equal,
between ne ,'1 and nlJ,e given by
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Although the order of the set 11 should not make a significant difference to our

ideas, we cannot ignore it entirely. Thus we need to look at the effect of a change of this

order. If p is an n -cube in Do and 71" is a permutation of 11 (and, by extension, of 2!!.),

then po 71" is also an n-cube. We need to investigate the faces of po 71". Since, however,

the 'adjacent transpositions' of the form (j, j + 1) generate the symmetric group Sn' it
will suffice to do this in case 71" = (j, j + 1).

LEMMA 2.3. Let 71" denote the permutation (j,j +1) of '11 and let p be an n-cube.

Then, for each i E '11 and e E {+, - },

if i = j,

if i = j + 1,

if i i= j, j + 1.

where 71"' is the permutation of n - 1 given by

71"' = { (j, j + 1) if j + 1 < i,

(j - 1, j) if j > i.

The proof is again a straightforward combinatorial exercise and is omitted.

2.4. CUBES IN THE DIRECTED GRAPH OF A REWRITING SYSTEM

Suppose that (L:,R) is a minimal complete rewriting system for a monoid G and

let r = r(L:, R) be the corresponding graph. Observe that an n-cube /1 in I' provides
a description of different R-reductions - with up to n different starting points - of

the word 1t(Q) in L:*. We shall frequently want to study only the beginnings of these

R-reductions - occurring at the 'top layer' of the cube - and so we introduce a notation

for this.

An n -star in I' (n 0) will consist of a vertex wand n edges ej with i(ej) = w.
Within stars we also allow the possibility of an 'empty edge' with initial and terminal

points equal to w. (This is strictly an empty path but the slight abuse of notation is

convenient). If ej = (w, aj), we will suppose the ej ordered so that aj is a prefix of

aj+l' (Empty edges may be placed arbitrarily in the order.) Thus we order from the

left by occurrence of the rules. We then denote the n-star by

If the star contains an empty edge, we shall say it is degenerate.

Thus (l-stars and non-degenerate I-stars can be identified, respectively, with vertices

and edges in I' .

The fact that the vertex set of I' is the monoid L:* means that we have a natural

action of L:* on this vertex set - by multiplication on either the right or the left. It is
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easy to see that this extends to actions of on E(r) and so to actions of on the

directed graph r. From there we can easily define an action of on stars (and also

on cubes). That is, identifying vertices of r with elements of we can define the

product of a O-star with an arbitrary star. The next step is to observe that this can be

generalised into a product of arbitrary stars. Thus define

The product is again a star, with edges in correct order as written. If k = 0 or l = 0

then this product agrees, after suitable identifications, with the action of on stars.

It is an easy technical verification - using the fact that is a free monoid - that any

star decomposes uniquely as a product of indecomposable stars.

When such an indecomposable star has neither empty edges nor repeated edges,

it will be called critical. Thus a criticalO-star is an element of the critical I-stars

are in 1-1 correspondence with rules in R and the critical 2-stars can be identified with

critical pairs (see, for example, [10]).

We can also make a similar definition of product for cubes. In the following, T - k

denotes {t - k : t E T } .

DEFINITION. Let a be a k -cube in rand T an i-cube. Suppose k + l = nand
define the product n-cube a X T as follows:

let U 2!! and write U = S U T with S 1£ and T k + I = {k + 1, ... ,n};

let x E 11 \ U; and

define

(a x T)(U) = a(S)T(T - k),

{
a((S,x))T(T - k)

(a x T)((S,X)) = a(S)T((T _ k,x))
if x E 1£,
if x E k + I.

We omit the routine checks that this does, indeed, define an n-cube. We note that,

for k = 0 or l = 0, this agrees with the action of on the edges of r. If P = a x T

with k, l 1, then we shall say that p is decomposable.

There are no surprises in calculating the faces of a product and we again leave the

following routine technical verification to the reader.

LEMMA 2.4. Let PI be a k -cube and P2 an l-cube with k + l = n. Then, for each

i E 11, e E {+, - },
if i k,

if i > k.

We developed the notion of star by considering the 'top layer' of a cube and so

each cube P has an associated star obtained by taking the edges emanating from p(.Q).
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Of course we must both supply empty edges and re-order, if necessary. If 7r is the

permutation which gives the necessary re-ordering then we shall call sign(7r) the sign of

p. Where there is more than one choice for this sign, we assign it arbitrarily; its value

will then not be important.

We now turn to the converse problem of associating an n-cube p with an n-star.

Suppose, firstly, that p = [Wi e l , ... ,en] is indecomposable. Let the edge ei involve

application of a rule for which the left hand side is the subword of W occupying positions

o(i), ... , t(i). Suppose S = {i l , ... , im } !! with i l .,. im . Now choose kl = 0,

k2 , .,. , k[ = m so that

Thus {k l , ... , k[} mark the largest "overlapping blocks" of subwords of w which cor-

respond to edges ei with i E S. Let

with up occupying positions o(ik +1)'" t(i k ) in w. Define peS) to be the word
p p+l

in r.
If S T there will clearly be at least one path in I' from S to T. Let the path

from w to w{i} consist of just the edge ei and choose all the other paths required to

define the n-cube by taking the preferred path in each case. In this way we define

an n -cube with associated n -star equal to fl. If fl is an arbitrary n -star then it is

a product of indecomposable n-stars and we define the associated n-cube to be the

product of the associated indecomposable n -cubes, We shall refer to cubes obtained in

this way as canonical.

Given any non-degenerate cube we can associate with it a star and then with this

star a canonical cube. Not surprisingly, the upper faces (but only the upper faces) of a

non-degenerate cube and its associated cube are closely related.

LEMMA 2.5. Let a be a non-degenerate n-cube with associated canonical n-cube

p . Then each upper (n - 1) -face at ofaand pt of p is non-degenerate. Further, at
and pt have a common associated (n - I)-cube.

PROOF. The first statement is trivial. Also the (n - 1) -star of at is obtained from

the n-star of a by omitting an edge (and possibly translating). Since a and p then

have a common n-star and the associated canonical cube depends only on the n-star,

the result follows easily.
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2.5. RELATIONSHIP WITH ANICK'S CHAINS

We turn briefly to the question of the relationship of our techniques, and in partic­

ular the n­stars, with the rr­chains of Anick [2J. Let G be the cyclic group of order k

with generator a and one rule ak
-+ 1. It is a simple combinatorial exercise to verify

that the number of critical n­stars for this system is (k _1)(n­l) whereas the number

of Anick's n­chains is one! (This, together with related examples, is, however, the worst

case of which we know.) There is clearly some difference and we now try to explain this.

We shall say that a critical n­star [Wi e1 , ... ,enJ is non-overlapping if for no i do

the subwords involved in the edges ei_l and ei+l overlap. More precisely if ej = (w, aj)
and ej involves an application of the rule (lj,r j) then we require that ai­l1i_l is a

subword of a i +1 . Note that the term 'non­overlapping' refers not to adjacent edges/rules

­ this would be of no interest ­ but to ones separated by a third one.

Ifwe are to use these techniques with non­overlapping n­stars we will need to know

that the cube associated with such a star has faces which, if non­degenerate, are also

associated with non­overlapping stars. For the upper faces of a cube this is clear.

Suppose that p is an n­cube associated with a non­overlapping n­star. Denote

p('Q) by w. Then the non­overlapping property shows that we can decompose w in the

form

where W;UjW;+l is the left hand side of the rule associated with the i­th edge pCQ, {i}).
(Interpret U 1 and Un as 1.) Consider the lower face pi and assume it is non­degenerate.

The 'apex' pi(Q.) is

The edges leading from this apex are the first edges in the paths p({i}, {i,j}) with

i =f. j. Thus the only possible 'overlapping' occurs when the two edges correspond either

to the values for j of {i ­ 2, i + I} or to the values of {i ­ 1, i + 2}. But the rules

applied must be separated in the former case by Ui_l and in the latter case by ui+l'

Hence we can restrict ourselves to non­overlapping critical stars ­ and cubes ­ and

retain most of the previous discussion. This is still not enough, however. In the example

above there are still many non­overlapping critical n­stars. We define a right-minimal

non­overlapping n­star inductively. Suppose that [w; e1 , •.. ,en] is a non­overlapping

n­star. Let be the largest prefix which is not involved in the rule corresponding

to the second edge (this agrees with the notation above) and write W = v and

ei = e;(i > 1). We say that [Wi e1 , ... ,en] is right minimal if

(1) [v; ... , is a right­minimal non­overlapping (n ­ I)­star;

(2) for no proper suffix a of and edge is there a non­overlapping n­star

of the form [av; , ... ,
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An inspection of the definition of Anick's n-chains (but reversing the left-right

order) should now convince the reader that these are in 1-1 correspondence with our

right-minimal non-overlapping critical n-stars. For reasons which are by now becoming

fairly obvious we shall abbreviate 'right-minimal non-overlapping critical' by 'special'.

Observe that the underlying word of a non-overlapping n-star always contains a suffix

which is a special n-star.

3. THE RESOLUTION

3.1. STATEMENT, PRELIMINARIES AND EXAMPLES

We begin with a brief statement of the Theorem although the essential content,

being technical in nature, is in the inductive hypotheses described in Section 3.2. Let

(2::, R) be a minimal complete rewriting system for a monoid G. We continue to identify

elements of G with R-irreducibles in 2::*. Let K be a commutative ring (with 1).

Let be the free K -module with basis the set of all n-stars. Let Qn be the

submodule generated by

(1) all n-stars with an empty path;

(2) all n-stars with a repeated edge;

(3) all n-stars which are the product of a k-star with a I-star with k, I 1;

(4) all expressions of the form [u; ][w;e l , ... , en][v;] - u[w; e l , ... , en]'

(For the latter, note that we are using the product defined for stars.)

Let Pn be the quotient module We shall abuse notation by identifying

stars with their images in Pn • Thus a degenerate star, for example, is identified with

zero. Pn has a natural structure as a KG-module via (4) above and the natural product

of stars. Under this structure it is a free (left) KG-module with basis the critical n­

stars. PI has a basis in bijective correspondence with the rules of R and Po a basis in

bijective correspondence with 2::. Define P­ I to be the monoid ring KG.

THEOREM 3.1. Tbere is a KG-resolution of K:

There is, of course, a dimension shift, by 1, in the naming of these modules. It

is very convenient for the terminology of the proof, however, to have Pn generated by

n-stars rather than (n - I)-stars.

The proof of Theorem 3.1 will occupy the remainder of Section 3.

REMARK. We will also consider the case that Pn is generated by all special n-
stars. We will generally not give the full proof in this case but will indicate the points

at which there is substantial divergence from the main argument.
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EXAMPLES

There is sufficient technical detail in the proof that it may be helpful to give

some simple examples of the ideas we will use. Let = {aI' a2, a3' a4} and let

R j i (1 ::::;; i < j ::::;; 4) be the rule ajai -t aiaj' Let R = {Rjd. Then R) presents

the free commutative monoid of rank 4 with basis the image of

One critical 2-star for R) is represented by

./

and we can thus produce a (unique) associated 2-cube fl as follows

a3a 2a I

./ -,
a2a3a I a3a Ia2

1 1
a2a Ia3 a Ia3a Z

-, ./

a Ia2 a3

where, for example, the left-hand lower face is given by the unique path from a2a3aI

to a l a2a3 . This cube has an evident boundary obtained by dividing the faces into

single edges. Since, for example, the topmost right-hand edge involves a reduction

a3a2a I -t a 3aI a2 we can say that this edge is 'covered' by the element of PI corre-

sponding to a3R21 • We then have the following expression, in PI' for the boundary:

a3R2I + R 3I + a l R 32

-aR32 - a2R3I - R 2I

(right edge),

(left edge).

Note that we have used the left action of on G but regard the right action as trivial.

The only indecomposable 3-star p for R) is the one with underlying word

a4a3aZa I and edges corresponding to the three possible applications of rules. The

vertices of the associated cube are as below and the edges between these vertices can

be completed in more than one way.

p(Q) = a4a3 aZaI
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(The reader is advised to try drawing the full section of the directed graph - it has 24

vertices - below a4a3a2a1 and seeing what choices are possible).

The way to 'cover' faces with critical 2-cubes is to match up the boundary of the

face with the boundary of critical 2-cubes. For the upper faces it is clear how to do

this; for the lower faces a little more work is needed. For example, the complete graph

below the vertex p({l}) is as follows.

1 ,/ ,/

,/

Thus it is reasonable to define a covering for the first lowerface to be a3[a4a2al]+[a3a2al]

where [a;ajak] denotes the 2-star corresponding to the word aiajak'

We are still using the left action of and regarding the right action as trivial and

we are ignoring the 'square' headed by a3a2a4a I since it corresponds to a decomposable

cube (or star). It is not difficult to verify that, repeating this for all the 6 faces we obtain

face covering

pi a4[a3 a2al]

pt 0

pi [a4a3a2]

PI a3[a4a2a l] + [a3a2a l]

P2 a2[a4a3a l] + [a4a2ad

P3 [a4a3a l] + al [a4a3a2]·

We will therefore define the boundary of the 3-star P to be the (signed) sum
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The reader familiar with the usual (Koszul complex) resolution for free abelian groups

or monoids will recognise this as the expression appropriate to that complex. Full details

for this example are given in Section 4.

ORDERINGS

We require some discussion of orderings. There is a natural partial order on L;* (or

r ) which defines u to be less than or equal to v if there is a directed path in T from

v to u or equivalently if v u. Because (L;, R) is complete, this is a well founded

partial order (that is, a partial order with no infinite descending chains). We extend

this slightly, by defining, for u, v E L;* ,

u v if u is a prefix of an R-reduction of v.

Clearly is still a well-founded partial order on L;* and satisfies

u v implies au. av for a E I;*.

We can further extend firstly to stars and secondly to G-translates of stars

(within UnPn) by defining

g[v;el, ... ... ,fnJ if

Note that, in this case, need not be antisymmetric and so is a pre-order rather than

an order. It is still, however, well founded. Finally, we can extend to the whole of UnPn
by defining, for Q, (3 E UnPn, Q (3 if each element in the support of Q is less than

or equal to some element in the support of (3. This relation is again a well-founded

pre-order.

3.2. THE INDUCTIVE HYPOTHESIS

We fix n ;;;: 1 and suppose that, for each .k n, we have the following:

(a) a KG-module homomorphism Pk -+ Pk- 1;

(b) for each k-cube P, an element Ck(p) of Pk .

These two functions Sk and Ck should satisfy, for 1 k n,

(Ih 0 s, = 0;

(IIh for each Q E ker( there exists (3 E Pk with (3 Q and = Q;

(IIIh given any k-cube p,

(i) if p is non-degenerate and is associated with a k-star Q then

Ck(p) - sign(p)Q < p(Q.); in any case, Ck(p) p(Q.);

(ii)

L e(_l)i+l Ck-1(pD
iE!.

<E{+,-}

(= Dk-1(P), say).
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We comment briefly on the significance of these requirements. Firstly (!)k requires

that ok be a differential whereas (IIh requires that the complex be exact with the extra

technical requirement that f3 a. The functions Ck ('C' is for covering) are intended

to mimic the idea of a cubical decomposition. So part (i) of (IIIh gives the stars ­

and their associated cubes ­ as the basic building blocks of the decomposition. Clearly

part (ii) requires that ok should imitate the face map on cubes.

We need to begin the induction by defining the maps Ok' Ck for k = 0,1. The

ideas are standard and the material is also well covered in Squier's paper [11]; so we

will be brief. The map P-1 ­+ K is, of course, the augmentation map. Recall that a

critical O­star [a; ] corresponds to an element a of and a D­cube to an element of

rr. If a E l:, define 0o([a; ]) =a-I E KG. If w = a1' .. al E E* with ai define

I

Co(w) = L a l ... ai_Ifai; ].
i=l

Thus Co is essentially the Fox differential.

If [Wi e1] is a critical I­star, then w is the left hand side of a rewriting rule. Define

If p is a I­cube, then it corresponds to a path (e1 , ... , en) in r. Suppose that

ei = (wi,ai) and that ei involves the application of a rule (li,ri). Define

m

C1(p) =
i=l

where ei = It is easily verified that (II!)l is also satisfied. After suitable trans­

lation of notation, these definitions agree with the standard ones related to the relation

sequence (see, again, the discussion in Squier [11] ).

REMARK. In the case that Pn is generated by all special n­stars the requirements

are similar. We cover only cubes with non­overlapping stars and we cover them with

special n­stars. Note that for n = 0,1 there is no difference between 'special' and
'critical'.

3.3. THE INDUCTIVE STEP

INDUCTIVE HYPOTHESIS I

Let a E Pn+1 be a critical (n + l j­star and let p be the associated canonical
(n + I)­cube. Define

The verification that onOOn+l = 0, and so that (I)n+l is satisfied, is now straight­

forward. In fact, 0k(Dk(p)) = 0 for any k­cube p and any k n ; use part (ii) of
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(III)k to express I5k(Dk(p)) in terms of elements of Pk- 1 and Corollary 2.2 to show

that the resulting expression is zero. We will use this fact later.

We can now obtain a more explicit expression for 15k , Suppose that 2 k n + 1

and that a = [Wi e1 , ... , ek] is a critical k-star. Let [Wi e1 , ... , ei"'" ek] be the star

obtained from a by omitting edge ei' If i f:. 1 or k this will be either critical or

decomposable and in the latter case it corresponds to the zero element of Pk . In case

i = 1 we can write

where w = aw' and ei = ae; .

LEMMA 3.2. With the notation above,

k-1

bk([W; ell'''' ek]) = a[w'; ... , +I) -l)i[w; ell"" ei , · .. , ek] + fJ
i=l

where fJ < w.

PROOF. Let p be the k-cube associated with [Wi e1 , ... , ek]' Then we must have

bk([W; e1 , · · · , ek]) = Dk- 1(p).

Let fJ denote _l)i Ck-1(pi). Then, by (IIIh_1'

(recall that p is non-degenerate). Hence fJ < w.

Also, by Lemma 2.5, p; will have an associated cube which is associated with the

relevant (k - 1)-star (i.e. a[w'; ... if i = 1 and [Wi ell' .. ,ei , ... , ek] otherwise).

The result now follows easily using (IIIh_1'

REMARK. In the case that Pn is generated by all special n-stars the lemma be-

comes simpler because the terms of the alternating sum will always be zero.

INDUCTIVE HYPOTHESIS I I

Consider the following condition on an element a of Pn .

(3-1)
If u[w; e1 , ..• ,en] is in the I-support of a and e1 is associated

with the rule (1, r), then every proper prefix of ul is reduced.

LEMMA 3.3. If a satisfies (3-1) and bn(a) = a then a = O.

PROOF. Suppose that 0: f:. O. Choose x = u[w; e1 , ... ,en] in the support of 0: in

such a way that uw is -maximal amongst all such elements and that, amongst all

elements with the same value of uw, the term u has maximal length.
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Retaining the notation of Lemma 3.2, we know that the term Xl = ua[w'; ... ,

occurs in the support of <5n_ l (x) (it cannot cancel because of the description given in

Lemma 3.2). By (3-1), ua is reduced and because <5n (a ' ) = 0, Xl must also occur in

the support of <5n(y) for some y =V[Wli/l"" ,In] in Pn which is distinct from x.

Using Lemma 3.2, it follows that we can express <5n (y) in the form

n-l

<5n(y) = i +2:)-1)iv [w l ; 11"'" ii"" ,In] +,
i=l

where , < VWl. Recalling the choice of x, it is clear from the maximality of the term

uw of X that uw = vW l and so that Xl does not occur in ,. Also, if Xl were to be

a term in the alternating sum above then we would have v = ua, contradicting the

maximality of u , Thus Xl is the 'leading' term above; that is

ua[w'; ... ,-; = ... ,

Hence ua = vb, w' = and = II (i = 2, ... , n) .

Suppose that e l applies the rule with left-hand-side 1 and 11 the rule with left-

hand-side m. Because of (3-1), every proper prefix of '111 and of vm is reduced. But

one of '111 and vm is a prefix of the other as uw = VWl• Thus '111 = vm.

Therefore every proper suffix of 1 and m is reduced and one must be a suffix of

the other. Thus 1= m. Now it is easy to see that X = y, contrary to supposition. The
proof of Lemma 3.3 is complete.

It remains to reduce to the case of the previous lemma. We do the bulk of this in
the following lemma.

LEMMA 3.4. Any a E Pn can be written in the form

where a' satisfies (3-1) and ;3 a.

PROOF. It clearly suffices to prove this when a IS a Z-generating element of Pn :

say, a = u[w; el , ... , en].

Suppose that a fails to satisfy (3-1). Amongst all such a choose it so that uw IS

least under the ordering i s;" and amongst all such elements with this least value of uw

choose it so that '11 has minimal length.

Retaining the notation above, there must be decompositions '11 = '11 0'111 and 1= loll

so that '11 110 is the left hand side of a rule in R. Let eo be the corresponding edge.

Then [Ulw; eo, '111 e l , · · · , '11 1en] is a critical (n + I)-star. Further, by Lemma 3.2, we can
write
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where I u1w and the terms of the form a[v; ... ] in the support of I which have

av = U 1W must also have a = 1.

Thus, multiplying by U o, we obtain

Note that, writing fJ = uO[u1w; eo,u1ell"" u 1en])' we have that fJ is bounded by some

element in the support of a (in fact a itself) and so fJ a. Also, each term uoa[v; ... ]

in the support of U 01 has either uoav uoav < uw or else has a = 1 and in this case

uoa is a proper prefix of u.

Using the minimality of a, it follows that each element in the Z-support of U 01
must satisfy (3-1). The proof of the lemma follows.

lt is clear that the required result follows from the two lemmas. If a lies in the

kernel of I5n , then write a = a' + I5n+1(fJ) as in Lemma 3,4. Then, as I5n+1 (fJ) also

lies in the kernel of I5n by the inductive hypothesis (I)n+l' it follows that I5n (a' ) = O.
Hence a' = 0 by Lemma 3.3 and the result follows.

REMARK. In the case that Pn is generated by all special n-stars the proof is again

somewhat simpler. The condition (3-1) should be altered to replace "every proper suffix

of ul" with "the word (using the notation of Section 2.5). In Lemma 3.3 we do

not need to worry about the terms in the alternating sum in applying Lemma 3.2 and

the arguments of Anick in Lemma 1.3 of [2] can be used to replace the last paragraph

of the proof. Lemma 3,4 goes through much as before except that we must decompose

in such a way as to ensure that the ensuing critical (n + 1) -star is right-minimal

(and so special).

INDUCTIVE HYPOTHESIS III

We will begin by showing that, for any non-degenerate (n + I)-cube p and any

permutation 7r of ll, we have

(3-2) (=w, say).

Observe that, if this is true for two permutations 7r then it is also true for their

product. Hence it will suffice to prove it for tt an 'adjacent transposition' of the form

(j, j + 1) - since such transpositions generate the symmetric group. We therefore

suppose that 7r = (j, j + 1).

Note that

Thus we can, in the expression for Dn , ignore the lower faces of the relevant cubes.
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We can now apply Lemma 2.3. Let ai be the star of pi. If i :/ i, j + 1, then by
Lemma 2.3 we have that (p 0 1r)i = (pi) 0 1r'. By part (i) of the inductive assumption

(III)n we also have that

and

Cn(pi) - sign(pi)ai < w.

Noting that sign(1r') = sign(1r), we therefore have that

whenever i :/ j, j + 1.

It is easy to deduce from Lemma 2.3 that the terms for i = j or i = j + 1 in (3-2)

will cancel. Thus the proof of (3-2) follows in the case that p is non-degenerate.

We will now show that, if fl is a non-degenerate canonical (n + I)-cube which has

a star a with zero image in Pn+l' then

(3-3)

If a has a repeated edge then the fact that we can have flO1r = fl for an odd permutation

1r, together with (3-2), gives the required result.

So we need to consider (3-3) when a is a product of two stars of strictly smaller

size - k and 1, say, with k + 1 = n + 1 and k, 1 1. In this case, fl is also such a

product. If k,l > 1, then Lemma 2.3 shows that each face of fl is a product of this

type and so Cn(fli) < w for all i,e, by part (i) of (III)n' So (3-3) is true in this case.

Suppose that fl = v X K with val-star (or element of E*) and K a n -star. Then

the faces of fl are again decomposable as a product of factors of non-zero dimension

except for the pair of faces vi X K and v; X K. But, using part (i) of (III)n and

denoting the star of K by " we have that

(vi X K) - v(.Qh < w

and

(v; X K) - v({I}), < w.

Since v(.Q) = v({I}) it follows easily that (3-3) is true in this case also.

Let a be the (image in Pn+1 of the) star of a (n+ 1) -cube p, let 1r be a permutation

that orders the initial edges of p into the same order as a and let fl be the cube

associated with a.

Suppose that p is non-degenerate. We claim that

(3-4)
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If a is zero this follows from the above discussion. Otherwise, we can use (3-2) to

assume that the leading edges of P are ordered in the order in which they occur in a.

We can then use Lemma 2.5 to show that Dn(p) - Dn(lt) < p(Q) = w.

Finally, we can write a = uj3v with u, v E E* and j3 critical. There is then a

corresponding decomposition It = Ul/V of canonical cubes. Since, by construction, we

have bn+1( j3 ) = l/ we also have bn+1(a ) = Dn(It). Thus (3-4) follows in this case and

so now in all cases.

We are now ready to define the 'covering map' Cn+1 . If p is degenerate then

observe that bn(Dn(p)) = 0 and so, by (II)n+l of the inductive hypothesis, we can

find / with bn+1(, ) = Dn(p) and / Dn(p) p(Q). Define Cn+1(p) = /. The

requirements of (II I)n+l are then satisfied.

Suppose now that p is non-degenerate. By (3-4) we know that

But we also know that

Hence, by the inductive hypothesis (II)n+l (which has already been proved), we can

find / E Pn+l with

and

Define

The two requirements for hypothesis I I I follow easily. Firstly,

Cn+1(p) - sign(p)a = / < p(Q);

and secondly,

This completes the inductive step III and with it the proof of Theorem 3.1.
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4.1. MONOIDS WITH A FINITE REWRITING SYSTEM

There is an immediate application of the resolution to groups (more generally

monoids) with a finite complete rewriting system. If and R are finite, there can

clearly be only finitely many critical n-stars because each one is formed from n occur-

rences of rules in R. It follows that each Pn is a finitely generated KG-module. When

there is such a finitely generated resolution of K, we say that G is of type F P(X) over

K. (In fact F P(X) over Z implies F P(X) over any other K.) Thus we have the following

theorem.

THEOREM 4.1 (ANICK, SQUIER). If G is a monoid (group) with a finite complete

rewriting system then G is of type FP(X) •

The theorem is easily deducible from Anick's work in [2] (although Anick's definition

of normal form corresponding to a rewriting system is unnecessarily restrictive). It was

made explicit by Squier [11] in the special case where F P3 replaces F P(X) •

In Groves and Smith [8] it is shown that all soluble groups which are constructible

in the sense of Bieri and Baumslag [3] have a finite complete rewriting system. The

classes of soluble constructible groups and soluble groups of type F P(X) are not currently

known to differ and, in particular, are known to co-incide for metabelian (2-step soluble)

groups. Thus the theorem comes close to yielding a group-theoretical characterisation

of soluble groups with a finite complete rewriting system.

It may well be, however, that another productive approach is to consider regular

rather than finite rewriting systems. (This should probably require that the set of left

hand sides of rules should form a regular language). It is far from clear and possibly

of some interest to establish what effect this has on the homological properties of the

group or monoid. It is not even clear for example whether the homology groups of such

monoids, taken with integer coefficients, are restricted in any way.

4.2. INVERSES

A significant drawback, from the point of group theorists, of both rewriting systems

and of this resolution is that it concerns monoids and not groups. Groups can, of course,

be considered as a special case of monoids in which elements have inverses but most

group theorists, including this author, would prefer to think of them as a separate

algebraic type with two operations - of inversion as well as multiplication.

The practical consequences here are that rewriting systems for groups must contain

rules of the form aa-1 -+ 1 and a-I a -+ 1 for each generator a of the group whereas

in a group presentation this would be taken care of automatically. (These rules can be

avoided, of course, when a has finite order.) It would be very useful to have a form of
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rewriting for groups in which provision of inverses and their cancellation in rewriting

was provided automatically.

The effect on the resolution is that it must usually contain many more generators

than seems ideally necessary. Consider the submodules generated by stars all edges of

which involve rules which cancel a generator with its inverse. It is a simple matter to

check that these form a subcomplex and that the quotient by this subcomplex is exact.

Thus we can effectively ignore such stars and will usually do so in the following. This

does not seem to solve the problem completely, however, as we have not excluded stars

which consist largely, but not entirely, of such edges. It would be good to have some

way of removing the redundancies that appear to be still present.

There is one case in which we can solve most of these problems.

LEMMA 4.2. Let G be a group with a submonoid M having the property that

M.M-1 = e. Then

(1) Z ®ZM ta Z;
(2) ze is a flat ZM-module;

(3) if P - Z is a ZM-free resolution of Z then!: ®ZM ze - Z is a ze -free

resolution of Z.

The proof is straightforward and is omitted.

4.3. CALCULATION - AND THE BAR RESOLUTION

In the remainder of this section, it will be convenient to adopt a new terminology. If

a = [Wi e1 , ... ,ek] is a critical n-star then we say that w is n-critical. The terminology

is not ideal because w does not necessarily determine a but it will save a lot of space.

It is generally straightforward to list all of the generators of the resolution but it

is not so straightforward to practically describe the boundary maps. This is not too

surprising in that we can not expect the problem of calculating homology to become

suddenly easy. We can use the 'cubical' structure to make some progress, however. In

the language of this paper the problem is one of determining a covering for the faces of

a canonical n-cube associated with a critical n-star. The upper faces are easily dealt

with; each such face is either itself associated with a critical (n -I)-star or is a product

with factors of non-zero dimension and so has zero covering.

We are left with the problem of covering the lower faces of the n-cube. Let p be a

non-degenerate (n - I)-cube and let w = pCQ). We are going to cover p with critical

(n - I)-stars and so we need to 'decompose' p into the associated (n - I)-cubes. For

each such cube its 'apex' will include a (n -I)-critical word. Thus, in seeking to find a

covering of this cube we should look among those words which both include subwords

underlying critical (n - 1) -stars and which are R-reductions of w.
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It is not, of course, sufficient to simply add the (appropriately weighted) critical

(n - I) -stars whose underlying words are R-reductions of w. Consider, for example,

the (complete) rewriting system R) with

= {a, b,c, d, e, f },

R = { ba -+ ob], ca -", ace, cb -+ bcd,

da -+ ad, ea -+ ae, fa -+ af, db -+ bd, eb -+ be, fb -+ bf,

de -+ cd, ec -+ ce, fc -+ cf, ed -+ de, fd -+ df, fe -+ ef}

(derived from a subsemigroup of a free nilpotent group of rank three and class two).

Let n = 2. There is a 2-eritical word cba. Drawing the ordered graph of all

reductions of cba it can be seen that there is more than one choice for a covering

for the lower face (path) below bcda but the choice is available because there is a

word abcfed which contains a 2-critical subword fed. (There are also two words

underlying decomposable stars.) The lower face (path) below cabf has no such words

and consequently a unique choice of covering.

If there were no 2-critical subwords in the R-reductions of cba we would know that

any covering for a lower face is unique - for otherwise the two alternative choices of

I-critical words would bound 2-cubes corresponding to 2-critical words. This is general.

LEMMA 4.3. Let J1 be a (n - I)-cube with J1(Q) = w. Suppose that, among

the subwords of reductions of w, there is no n -critical subword. Suppose also that, the

(n-I) -criiicel subwords ofreductions occur in the form bl , ... ,bk with u l = a l bl cl , ... ,

uk = akbkck reductions of w. Then the covering Cn - I (J1 ) of J1 is unique and is an

expression of the form cIalCl: I + ... + cnanCl:n with ci E {-I,O, I} and Cl:i the critical

star corresponding to bi .

PROOF. The latter statement is clear - and covered in the preceding discussion.

For the uniqueness, suppose that d l and d2 are two distinct possibilities for Cn - I (J1 ) .
Then bn_l(d1 - d2 ) = 0 (by III of Section 3.2) and so d l - d2 is in the image of bn .

Thus dl - d2 = bn(e) with e :::;;; d1 - d2 by II of Section 3.2.

Now take a n-critical word u underlying a n-critical star in the support of e.

Then u is bounded by some n-critical word corresponding to a n-critical star in the

support of d1 - d2 . Thus u :::;;; w. Since this contradicts the initial assumptions we have

completed the proof.

In using this result, we need to make two choices. Firstly we must choose which

(n - I) -stars to include in the covering and secondly we must then assign them a sign.

It will, in fact, frequently suffice to take the (positive) sum of all such stars but this is

not necessarily the case and the choice needs to be checked in each case. We will omit

these checks as they involve largely routine computation.
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In what follows we will calculate a number of resolutions using these techniques. We

will frequently use what is often known as the standard rewriting system for a monoid

M; that is, we take L: = M \ {I} and R = {ab -t ab : a, bEL:} where ab denotes

either the empty word or the element of L: representing the product of a and b. We

begin with the (very familiar) resolution arising from this.

The n-stars have underlying words m1 .,. mn+1 and the i-th edge involves an

application of the rule mimi+1 -t mimi+1' Let {l be such a star with associated cube

p. Observe that the lower faces of p have apex of word length n. As the rules are

length reducing, no n-critical words, and only the apex itself among (n - I)-critical

words can occur amongst the reductions of these apices. Hence the i-th lower face, with

apex m1 ... m;mi+1 ... mn+1 is covered by the (n -I)-star with the same underlying

word.

The star corresponding to the word m1 ... m n+1 will be written as [m11··· Imn+1].
(It will be convenient to extend this so that we allow the possibilty that mi = 1 in

which case the corresponding star is zero.) Then we have

bn([m11·· ·lmn+1)) = m1[m21·· ·lmn+1]

+ (-It+1[m11·· . [m n ]

n

+ 2)-Iy[m11.•. mimi+1·· ·lmn+1]
;=1

(from the first upper face)

(from the n-th upper face)

(from the lower faces).

We thus recover the (normalised) bar resolution for a group or monoid. Had we allowed

M, rather than M\ {I} , as the generating set, we would have obtained the unnormalised

resolution.

4.4. FREE AND DIRECT PRODUCTS

If G and H are groups with complete rewriting systems, we can form a complete

rewriting system for their free product G *H by combining the generating sets - L:c
and L:H say - and combining the sets of rules. Thus a rule of the combined system

involves generators from one only of L:c and L:H' The same therefore follows for critical

n-stars and, of course, their boundaries. Thus the resolution P - Z is the direct sum

of two resolutions !:o - Z and !:H - Z. Here Pc - Z - for example - is the tensor

product, over ZG and with Z(G *H), of the ZG -free resolution corresponding to the

rewriting system for G. The usual facts on the homology of G * H (see, for example

p.220 of Hilton and Stammbach [9)) can be recovered easily.

The direct product G X H is dealt with similarly. This time, however, we must

add a set of rules

R' = {hg -t gh : g E G, hE H}.
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The n-critical words are thus the juxtapositions of I-critical words in H (on the left)

with m-critical words in where I + m + 1 = n. (The extra 1 in the sum comes, of

course from the rule which interchanges the right-most letter of the H -word with the

left-most letter of the G-word.)

The complex obtained is just the tensor product of the complexes obtained from

the individual rewriting systems for G and H.

4.5. FREE PRODUCTS WITH AMALGAMATION

The question of rewriting systems for free products with amalgamation (or for

HNN-extensions) given rewriting systems for the factors is rather complicated (see [8]

for a special case) and we shall not attempt to discuss anything approaching the general

case. There is a simple case, however, which we describe briefly.

Let K = G *A H be the free product of G and H amalgamating A; we shall

regard A as a subgroup of G and H. Let Sand T be transversals for A in G and

H respectively. Let be the standard rewriting system for A. Then there is a

natural rewriting system for K of the form

ab --+ ab

t1t2 --+ a(t1,t2)t12
sa --+ b(s, a)u(s, a)

ta --+ b(t, a)u(t, a)

(a, b E

(s1,s2,s12 E S,a(s1,s2) E

(t1,t2,t 12 E T,a(t1,t2) E

(u(s,a) E S,b(s,a) E

(u(t,a) E T,b(t,a) E

This leads to a resolution which we leave the reader to make explicit but which can

be easily described. Let f::' and and be the complexes obtained by taking the

rewriting systems for G, H and A obtained from the above. Thus (f::')n, for example,

will be generated by all n -stars with underlying words of the form s 1 ... S k ak+ 1 ... an+ 1 .

Let P G = P::' Q9ZG ZK and define PH and P A similarly. Then P G and PH
== == = == == ==

are complexes of ZK-modules which each have a sub-complex isomorphic to fA' The

lK -module complex we obtain from the rewriting system above is the direct sum of

P G and PH amalgamating the sub-complex PA'
== == ==

This yields a direct, although not particularly elegant, method of deriving the

Mayer-Vietoris formula for the homology of an amalgamated free product (cf. Section

II.7 of [6].) (Note that it is not easy to give explicit values for the differentials in this

discussion - but compare with Section 4.8).
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4.6. FREE ABELIAN GROUPS

We will, in fact, deal with free abelian monoids. A free abelian group G clearly

contains a free abelian monoid M with MM- 1 = G. So we can apply Lemma 4.2 to

recover the group case.

Let A be a free abelian monoid with basis We shall assume to be a totally

ordered set. The set of rules R will be the obvious set

R = {ba --t ab : a, b E < b}.

The n-critical words are then the set of all expressions

with

Denoting by Wi the effect of applying the j -th rule to W we have

Note that the rules do not alter the length of a word; using this and a simple combinato-

rial argument, it is easy to see that no n-critical word lies among the proper reductions

of w. Thus there is a unique form for the covering of the lower faces which we can

find by inspecting the (n - 1)-critical subwords amongst the reductions of the wi' It is

again easy to see that the only such reductions of Wi are

where the (n - 1) -critical words have been put in parentheses.

Denote the (unique) star underlying the critical word W by [w]. We obtain (after

the necessary further checks)

b'n([a1 ..• an+1])

= a1 [a2 .,. an+1]

+ (-It+ 1[a1 ... an]

(from the first upper face)

(from the n-th upper face)
n

+ 2:)-l)i (ai+da1 ... ai-1 ai ai+2 ... an+1]+[a1 ... ai-1 ai+1ai+2 ... an+1J)
i=l

(from the lower faces)
n+1

= '2) -1)i+1(ai - 1)[a1 ... a; ... an+1]·
i=l

We have obtained the usual complex - often referred to as the Koszul complex - for

free abelian monoids. (See, for example, Section 6.1 of [3].)
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The cyclic group case seems the least satisfactory application of this approach.

The approach via 'special stars' (equivalent to that of Anick) yields a complex !:
which has one generator in each dimension. More precisely let G = (x : xk = 1) and let

if k = 21- 1,

if k = 21.

Then wn is the unique word underlying a special (see Section 2.5) n-star and the

subwords involved in the n edges W n start at positions 1, n, n + 1, 2n, .... The usual

formula for the differential (see for example [6]) can then be deduced.

If, however, we take the 'full' approach using all critical n-stars, then we have

many more generators. In fact, we have one critical n-star for each (n - I)-tuple

(II' ... , In-l) with 0 < Ii < k. Here the corresponding edges will involve subwords

which start in positions 1,1 + 11,1 + II +12 " ••• A little checking will confirm that we

have the normalised bar resolution - but shifted by two dimensions.

It seems likely that this problem - of having an excessive number of generators -

will recur for any rewriting system which involves elements of finite order.

4.8. EXTENSIONS

Suppose that

is an extension of groups and that (EK,RK) and (EQ,RQ) are complete rewriting

systems for K and Q respectively. Then there is a complete rewriting system (E a ,Ra )
for G with Ea = EK U EQ • Choose a transversal 7: Q -+ G to 7r - so that 7r 0 7 is

the identity on Q. It will be convenient to regard EQ as a subset of both Q and G so

that 7 is the identity on EQ .

The rules Ra are then formed from three types:

(1) RK ;

(2) rules of the form 1-+ rk where 1-+ r is in RQ and 7(r)-1 7 (l ) = k E
(3) rules ks -+ sk' where s E EQ, k E EK, and k' is the RK-reduced form

of the element s-1 ks E K.

(See, for example, Groves and Smith [8].)
There is then a corresponding resolution.

We shall elaborate only in the case that (EK, RK) and (EQ,RQ) are the standard

rewriting systems. We denote the term 7(SIS2)-17(SIS2) occurring in rules of type (2)

by u(sl,s2)'
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The n-critical words are then the words of the form w = kl ... kp 5 1 ... 5 q with

p + q - 1 = n. The word obtained by applying the i -th rule is

if i < p,

if z = p,

if i > p, j = i - p.

(Here 5j5j+l denotes TO 7r(5j5j+l)' As usual we shall denote the star corresponding

to a word by enclosing the word in brackets).

It is easy to check that no n-critical word occurs in the proper reductions of w.

(Note that the length of w is never increased by the application of a rule and is decreased

unless i = p.) In order to find the diferential we would need to find the (n - 1) -critical

words which occur. The problem seems much harder than in previous examples perhaps

because there are two problems that have not occurred previously. Firstly, there is a

possibility of an (n - 1) -critical word occurring in two distinct lower faces and secondly

such words may also occur in the cover with a negative sign.

It seems likely, however, that this resolution co-incides with one given by Andre in

[1] and this enables us to make an intelligent guess at the appropriate coverings. The

covering of the upper faces is, as usual, immediate and the covering of the i'th lower

face when i < p can easily be seen to be [kl ... k;k;+1 ... kp 5 1 ... 5 q] .

To describe our guess for the coverings of the other lower faces we turn to Andre's

notation in [1]. To understand the next two paragraphs the reader should refer to [1]

and the notation described there. We will cover the faces by stars which correspond to

the summands of on([kl •.. kp 5 1 ••• 5 q ]) with i 1. (These stars will also need to be

assigned appropriate signs which we will not make explicit but which can be deduced

from [1]).

Each such summand contains an entry which is a conjugate of kp and we will assign

the entry to a face according to the precise nature of this conjugate. If the entry is kp
itself, then the star also contains a unique subword 5 j5 j+lu(5 j' 5 j+l); we assign the star
to the covering of the (p + j) 'th lower face. In general the entry is of the form

51" .. ,5k)-1 5 11 ... ,5k)'

Assign the corresponding star to the p'th face if f3 = A and otherwise assign it to the

p + j A-I 'th face.

CONJECTURE. The above assignment, together with a suitable choice of signs,

yields a covering for the faces of the canonical cube associated with [kl ... »,», ... 5 q].

We can be more explicit in the case that the extension splits. For then the transver-

sal T can be assumed to be a homomorphism and u(51,52) is always trivial. In this
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case the covering of the faces is easily expressed. Let a = [k1 ... kps 1 ... Sq} be a critical

n-star. Then

k1 [k2 kps 1 ... Sq]

[k1 kps 1 •.. Sq_1]

[k1 ••• k;ki+l kps 1 ... Sq}

Sl ... k;l S2 Sq] + [k1 .•• kp_1Sl ... Sq]

[k1 ... kps 1 ... s;_ps;+l_p ... Sq]

covers upper face 1,

covers upper face n,

covers lower face i when i < p,

covers lower face p,

covers lower face i when i > p.

It is now straightforward to write down an explicit differential for the resolution. This

agrees, after suitable translation of notation, with the split extension case of the reso-

lution given by Andre.
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