
9. Examples on Sg,l

In this chapter we describe Pg (or Pg,1) ) and for some low values of g and any
characteristic p, and use the results to study the structure of the locus 5g ,1 of
principally polarized abelian varieties of dimension g.

9.1. Example, g = 1.

When g = 1, the set
(9.1.1)

is the set of supersingular j-invariants. We write

(9.1.2)

This number equals the class number of B = Qco,p (see (1.2.5)), which is equal to

p - 1 -3 -4
h = - + {1- (-)}/3 + {1- (-)}/4
p 12 p p

(9.1.3)

(d. [9, p. 200] and [29, p. 312]), as was proved by Deuring (using a class number
computation by Eichler), and later proved along different lines by Igusa, see [29, p.
312]. Explicitly: h2 = h3 = 1 and for p 2:: 5,

{

0 p == 1 (mod 12),
p-1

hp = + 1 p == 5 or 7 (mod 12),

2 p == 11 (mod 12).

This can also be expressed by the mass formula:

'" 1 p-1
L....t #(Aut(C)) = 24'

(9.1.4)

(9.1.5)

where the summation is over all isomorphism classes of supersingular elliptic curves
Cover Fp .

9.2. Example, g = 2.

For g = 2, an FTQ over k is of the form

(9.2.1)

Such an FTQ is automatically rigid. For any "I satisfying (3.6.1) (i.e. ker( "I) =
E2[F] 1)9 k), (9.2.1) is automatically a PFTQ with respect to "I, hence

P p' pI
2,1) = 2,1) =
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(see Example 3.8). The number of irreducible components of S2,1 Q9 k is equal
to H 2(1, p) (see [35, Theorem 5.7]). This number was explicitly calculated by
Hashimoto and Ibukiyama (see [25, p.696]). It is equal to 1 when p = 2,3 or 5,
and when p > 5,

H2(1, p) =(p2 - 1)/2880 + (p + 1) (1 _ /64

+5(p-1)(1+

+ (p _ 1) (1 + /36

(9.2.3)

{
2/5

+ 0

{
1/4

+ 0

{
1/6

+ 0

if p == 2 or 3 (mod 5)

if p == 1 or 4 (mod 5)

if p == 3 or 5 (mod 8)

if p == 1 or 7 (mod 8)

if p == 5 (mod 12)

if p == 1, 7 or 11 (mod 12)

where denotes the Legendre symbol.

Let ry be a polarization of E 2 Q9 k such that ker(ry) = E 2[F] Q9 k. Then G"
Aut(E2 Q9 k, ry)/{±l} is isomorphic to one of the following groups:

(9.2.4)

Let W" C S2,1 be the irreducible component corresponding to ry (i.e. the closure of
W(P;,,,), see (4.2.1)). Then the action of G" on P2,,, is generically free, and we have

(9.2.5)

where TV" is the normalization of W" (cf. [35, Section 7, 8.1]). By [32, Theorem 7.1]
we see that those in (9.2.4) are exactly the groups which do appear in this way.

Conclusion. Let A be a set of representatives of equivalence classes of polarizations
ry of E Z Q9 Fp satisfying kerr ry) = E Z [F] Q9 FP' Then there is a one to one correspon-
dence 1/; between A and the set of irreducible components of SZ,I Q9 Fp . Denote by
W'I the irreducible component corresponding to ry under 1/;. The normalization of
W'I is isomorphic to PZ,'I/G", where PZ,'I pI and G'I = Aut(EZ Q9 Fp , ry )/ {±l }.
We have #(A) = Hz(l,p) and

SZ,I Q9 r, = UW".
'lEA
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9.3. Calculation via the truncation morphisrns.

When 9 > 2, we proceed as follows. Let Vm be the fine moduli scheme of the
category 'Um of truncated PFTQs {S;Y;,1]i(m 2= i < g);pi(m < i < g)}. (This
moduli scheme exists by the same argument as that in Lemma 3.7.) Then we can
calculate Vm's inductively. First we note the following two facts:

i) Vg- 2 is easy to calculate: To give a Yg- 2 from Yg- I = Eg x S is equivalent to
giving a flat subgroup scheme G c ag x S of a-rank 9 -1 such that condition ii) in
Definition 3.9 holds. This is then equivalent to choosing a section (Xl, ... , x g ) of the
a-sheaf of a p x S such that the following [(g - 1)/2J equations are satisfied:

when 9 is odd, and

2:: - x g_ i x ; 9- 2
j
) = 0 (0 < j < g/2)

when 9 is even.

(9.3.1 )

(9.3.2)

ii) It is also easy to determine Vo = P9 ,17 from VI: Since G = ker(YI -+ yn is a self-
dual a-group of a-rank 2, every flat subgroup scheme of G of a-rank 1 is isotropic.
Hence to give a Yo is equivalent to giving a flat quotient of rank 1 of the a-sheaf of
G. Therefore Vo is a pI-bundle over VI.

Remark. From (9.3.1) and (9.3.2) we see that Vg - 2 is singular (at a point where all
Xi E F p2) when 9 2:: 5. Hence there is in general no hope to prove the smoothness of
P; over Fr? using the factorization Vo -+ , .. -+ Vg-I. Therefore we will use another
factorization to prove Proposition 4.3.i) (see 11.3 and 9.7).

By the proof of Lemma 7.11, the truncation morphism P; -+ Vg - 2 is an epimor-
phism. Hence we have:

Proposition. The subschcme Tg C pg-l defined by the homogeneous equations in
(9.3.1) (when 9 is odd) or (9.3.2) (when 9 is even) is irreducible of dimension [g/2].
Furthermore, a geometric point (al,"" ag ) E Tg is non-singular iff the Fp2 -linear
space generated by aI, ... , ag has dimension 2:: [(g -1)/2] over Fp 2 .

For the second statement, by taking differentials, it reduces to an application of
Fact 5.8.

9.4. Example, 9 = 3.

Let
E 3 ® k = Yz .!2.. YI -+ Yo

be a PFTQ with respect to 1], where 1] satisfies
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Note that
ker(pz) C E3[F]) E Grassz,3 pz

and that 12J1 is represented by the Fermat curve:

(9.4.3)

(9.4.4)

(see (9.3.2)) and a flat subgroup scheme H C x V1 . The a-sheaf of H1 =
x V1 / H is isomorphic to the subsheaf of consisting of sections (a, b,c) such

that (a: b: c) = (X: Y: Z), hence it is isomorphic to Ov,(-l).
Let

(9.4.5)

Then G is an a-group of a-rank 2. Note that T) induces an isomorphism G G':
Hence we have G/ H 1 Hi, whose a-sheaf is therefore isomorphic to Ov, (1).

Let F be the a-sheaf of G. Then F is an extension of Ov, (-1) by Ov, (1).
Since the structure sheaf E of ker( T)) x V1 is trivial, the a-sheaf of a; x V1 can be
lifted to a subsheaf of E. Hence the a-sheaf of H1 , identified as a subsheaf of the
a-sheaf of x V1 , can also be lifted to a subsheaf of E. Since F WGjV, , we see
that F --+ Ov, (-1) has a section and hence

:F Ov, (-1) EB Ov, (1).

By 9.3.ii), P3,'1 is isomorphic to

Pv,(Ov,(-l)EBOv,(1)) Pv,(Ov, EBOv,(2)).

This is a non-singular surface. Thus we have a pl-fibration

As in [73, Proposition 2.3], we see that there is a section of 7r

(9.4.6)

(9.4.7)

(9.4.8)

+-- V1
t

(9.4.9)

given by

We have

= P3,'1 - T.

Furthermore, if x E P3 ,'1 represents {Yz --+ Y1 --+ Yo}, then

x E T ===? a(Yo) = 3,

7r(x) E V1(Fp2) ¢=} a(Yo) ;::: 2,

x 1- T,7r(x) 1- V1(Fp2) ¢=} a(Yo) = 1.

(9.4.10)

(9.4.11)

(9.4.12)

(9.4.13)

(9.4.14)

Remark. The statement (9.4.12) is correct, while in [73, Proposition 2.3J there is
a misprint.
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Under the morphism
q,

P3 , '1 ---+ W'I C 53,1 12,) k

the curve T C P3 , '1 is contracted to the point

IlI(T) = (E 3
12,) k,Tf/p) E 53,1 12,) k;

(9.4.15)

(9.4.16)

where ry/p is the principal polarization of (E 3
/ E 3[F]) 12,) k :::::: E 3 12,) k induced by ry

(as the polarization of Yo in (9.4.10)). Outside T the morphism III is finite to one,
and generically equals dividing out by the action of G'I = Aut(E3 12,) k,ry)/{±l}
on P3 ,T/ ' Note that IlI(T) E W'I is a singular point of W'I' In fact, if is an

irreducible component of 5g,l,n 12,) k and x = (Eg 12,) k,ry/p,0:) E (where 0: is

a level n-structure), then the tangent space of n) at x has dimension 6 (d. [73,
Corollary 2.9]).

The intersection pattern of components of 5 3,1 12,) k seems fairly complicated. For
example, let pz E V1(Fp 2), and let T' := 7r-

1 (pz) C P3 , '1 be the fiber above pz. Then

#{x E T'la(llI(x)) = 3} = pZ+ 1, (9.4.17)

and WT/ is non-singular at every superspecial point x =I- IlI(T) E T'. However, such
an x equals (E 3 12,) k; fl) for some principal polarization fl and is therefore a singular
point in the component WT/' with n' = pu,

The number of irreducible components of 5 3,1 12,) k was shown in [36, Theorem 6.7] to
equal H3 (p, 1). This number was explicitly computed by Hashimoto in [24, Theorem
4]. Note that H3(2,1) = 1, furthermore H3(p, 1) > 1 for P > 2, and H3(p, 1)
p6 / (29 .34 ·5·7) for p large.

For the action of Aut(E3 12,) k;Tf) on P3,T/, see Proposition 9.12 below.

Conclusion. Let A be a set of representatives of equivalence classes of polarizations
ry of E 3 12,) F p satisfying ker( ry) = E 3 [P] I2,)Fv- Then there is a one to one correspondence
1/; between A and the set of irreducible components of 5 3,1 12,) Fp . Again denote by
W'I the irreducible component corresponding to ry under 1/;. Then W'I is birationally
equivalent to P3,'1/G'I' where P3,'1 is a pI-bundle over a Fermat curve and G'I
Aut(E3 12,) F p , ry )/ {±l }. We have #(A) = H 3 (p, 1) and

53,1 12,) Fp = UW'I'
T/EA

(9.4.18)

Note that W'I has a singular point corresponding to (E 3 12,) Fp, ry/p) (see (9.4.16)),
and the tangent space at this point to W'I has dimension 6 (see [73, Proposition
2.3]).

9.5. Some other methods for the calculation.

When g > 3, there are many global equations for Pg ,'1 (i.e. more than the difference
of the number of variables and the dimension), and one can hardly see the structure
of Pg ,'1 from these equations. So we will write down local equations in the sequel.
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For convenience we will also use the language of Dieudonne modules (see 11.3
for an explanation).

9.6. Example, 9 = 4.

When 9 = 4, we first see that V2 is isomorphic to the non-singular surface 5 C p3
defined by (see 9.3.2)

2 2 2 2

aP b - ab" + cP d - cdP = O. (9.6.1)

Let x, y, Z, u be the corresponding generators of the skeleton of M 3 = (satisfying

(x,F4y) = (z,F4 u) = 1). '
We consider an open neighborhood of a point (a, b, c;d) E 5, where a, b, c, d

are linearly independent over F p2. The corresponding Dieudonne module M 2 at

(a, b, c, d) is generated by Fx, Fy, Fz, Fu and v = ax+by+cz + Ju, where a, b, c, J
are liftings of a, b,c, d in W = W( k) respectively. To give an M l is equivalent to
giving a vector w = 1'v+ sF« + iFy (1',s,t E W, not all in pW) such that

or explicitly

(w,Fw) E W (9.6.2)

(9.6.3)

where r, s, t are the images of 1',s, i in W/pW k respectively. Therefore we get
two irreducible components Vll and V12 of VI, where Vll is defined by

(9.6.4)

hence Vll --+ V2 has fiber dimension 1, and V12 is defined by r = 0, hence it is a pl_
bundle over V2 . Therefore dim(Vll ) = dim(V12 ) = 3. (One can compare this with
Remark 6.4. Here r = 0 means ker(Fy 3 / s) C ker(Y3 --+ Yd, in this case condition
iii) in 6.2 automatically holds for i = 1.)

Since Va = P4,Tf is a pI-bundle over VI, we see that Vo also has two irreducible
components VOl and V02 (both of dimension 4), where V0 2 is a pI-bundle over V12

and does not meet It is easy to check that the fiber of Yo over the generic
point of V02 has a-number 2.

In general, if the fiber of Yo over the generic point of an irreducible component
V C Pg,Tf is not supergeneral, then we call V a "garbage component" of Pg,Tf' Note
that V is a garbage component iff it does not map surjectively to a component of
5g,1 ' Note also that the generic point of a garbage component is not in

Thus V02 is a garbage component of P4 ,Tf '
On the other hand, when p > 2, we see that Vll is singular at a point with

r = O. Hence VOl is also singular.
By more calculation one can see that P4 •Tf is reduced.
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9.7. A proof of Proposition 4.3.i) for 9 = 4.

We now show that is smooth over F p2. This is simply an illustration of 11.3 for
9 = 4. By 3.9, it is enough to show that is non-singular for a special choice of

TJ over k = Fp . We choose TJ such that for some decomposition E 4@ k E 1 X E z X

E3 X E 4 , we have TJ = p(TJ" X TJ '), where TJ' (resp. TJ") is a polarization of E z x E 3
(resp. E 1 x E 4 ) such that ker(TJ') = (Ez x E3)[F] (resp. ker(TJ") = (E1 x E4)[F]).

Let {X3 -+ ... -+ X o} be the universal PFTQ over Let u, C be
the largest open subscheme such that E, x U, -+ X o <»: U; is a closed immersion

4,"

(1 < i < 4). Then = Ui u.. By symmetry it is enough to show U1 is non-
singular. For convenience we denote X o Xp' U1 simply by X o.

4,"

Since E1 x U1 -+ X o is a closed immersion, its dual

(9.7.1)

is smooth. Therefore the projections Xi -+ (E4/E4[F3 - i ]) X U1 (0:'::: i :'::: 3) are all
smooth. Let Xi' = HI (C.i+1

) (i = 0,1), where c' is the complex

(9.7.2)

Then one sees that -+ Xb'} is a PFTQ with respect to TJ'. This induces a
morphism

(9.7.3)

It is enough to show 7/; is smooth.
We first decompose 7/;. Let -+ Xb} be the universal PFTQ over PZ,T/' and

G' = -+ Xb). Let 11m (0:'::: m :'::: 3) be the category of sequences of isogenies
{Y3 -+ ... -+ Ym } of polarized abelian schemes (Yi, TJ;) over some PZ,T/,-scheme 5
such that

i) Y3 = E 4
X 5, with TJ3 = TJ x ids;

ii) ker(Yi -+ Yi-d is a flat a-group of a-rank i (m :'::: i :'::: 3);
iii) ker(Y3 -+ Yi) = ker(Y3 -+ Ym ) n Y3[F3

-
i ] (m < i :'::: 3);

iv) ker(TJi) C XdFi] (m :'::: i :'::: 3);
v) E 1 X 5 -+ Ym is a closed immersion, and there are induced isomorphisms

<Pi: H 1(C.
i +1) Xi XP2,"' 5 (m - 1 :':::i :'::: 1), where Ci is the complex

(9.7.4)

vi) (for m < 3 only) letting G C Yz[F] be the inverse image of G' XP2,"' 5 in
Yz[F] under

G' Xp ,5 C Xp 15'-+ Yz [F]/E1 [F] x 5
2,1/ 2,"1

(9.7.5)

induced by <PI in v), we have G(p) C Yz(p)[F] n ker(V : Yz(p) -+ Yz).

Let Um be the fine moduli scheme of Um . Then clearly Uo U1 and U3 Pz,71"
Furthermore, the truncations induce morphisms V'i : Ui -+ Ui+l (0 :'::: i :'::: 2), and
7/; = 1/'z 07/;1 07/;0' Hence it is enough to show eachw, is smooth. By 9.3.ii), we see 7/;0
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is a line bundle (it is not a pI-bundle because of the open condition v)). It remains
to check the smoothness of 7./J1 and 11'2.

First we consider 7./J2. For a given {s; 13} E Ob(U3 ) , let G1 = ker(}3 -+ yn =

Y3[F3] and G2 = Y3[F]. Note that G2 is an a-group, and we denote by F the
a-sheaf of G2 .

To extend {S; Y3 } to an object of U2 , we need to find an a-subgroup G3 C G2

of a-rank 3, or equivalently a nowhere zero section s of F. Condition v) simply says
the sl-coordinate of s is non-zero. Hence we can assume

(9.7.6)

Let G4 = EdF] x S. Then G4 C Y2 = Y3/G3, and the projection Y2 -+ Y3/Y3[F]
gives an exact sequence

(9.7.7)

where Gs = (E2 X E3 x E4 )[F ]{p) x S.

We check condition vi). Let G6 = l;(p)[F] n ker(V : Y2{p) -+ yz). Then G7 =
is a subgroup scheme of G;p) by (9.7.7). It is easy to see that the ideal sheaf

of G7 '----+ G;p) is generated by the section F*s{p) - V* s = S{p2) - s of the a-sheaf of

G;p). On the other hand G' is defined by the section Y1 + Y2 of the a-sheaf
F' of [F], where Y1,Y2 are the homogeneous coordinates of P2,1)' pl. Hence

vi) is equivalent to that the restriction of S{p2) - s to F' @OU3 aS is proportional to

Y1 + Y2 or explicitly

(9.7.8)

Next we check condition iv). Since G!l is a quotient group scheme of Gp G1
and ker(G1 -+ Gf) = G1[F2], we have an induced isomorphism f : G!l -+

which is equivalent to an Os-linear map F{p2) -+ F V
, or equivalently an Os-bilinear

form (,) : F (>905 F{p2) -+ as. Take a generator Si of the a-sheaf of E;[FJ for each
i. Then Sl, S2,S3, S4 can be viewed as a set of generators of F. We can choose
Sl,S2,S3,S4 such that

and we have

( (p2)) ( (p2)) ( (p2)) ( (p2))Sl'S2 = Sl,S3 = S4,S2 = S4'S2 = 0,

=° (1::::: i::::: 4).

(9.7.9)

(9.7.10)

Let Gs = GdG3. Then Gf is a subgroup scheme of G!l. Let ¢> : Gf -+ be

the composition of the inclusion Gf '----+ G!l, f and the projection ---»

Then iv) is equivalent to ¢> = 0, and this is then equivalent to (s, S{p2)) = 0, or
explicitly

(9.7.11)
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Note that we also have G!j GI/G1 [p], which induces another bilinear form
(, h : F 005 F --+ Os. We automatically have (s, sh = 0 since (,h is alternating.
Therefore we have ker(Y2 --+ y;t) C Y2 [P] for any choice of G3 .

We see that U2 --+ U 3 is defined by variables X2, X3, x with defining relations
(9.7.8) and (9.7.11), hence 71'2 is smooth.

Finally we consider lj;1. Assume we are given an object {5; 1:3 --+ Y2 } of il2.
Let Gg = Y2[F] and G10 = ker(Y2 --+ YiJ. Then condition vi) says that we have
an a-group G c Gg of a-rank 2. On the other hand, condition iv) (for i = 2) says
G10 C Y2[F2

], and the above note says G10 c Yi[p], hence coker(Gg --+ GlO ) has
Verschiebung O. Therefore

(9.7.12)

Thus we have an induced homomorphism ¢ : G!? --+ It is easy to see that ¢D
induces a homomorphism 1>. : D' --+ D. of the following two complexes

(9.7.13)

and
(9.7.14)

Note that 1>0 and 1>2 are isomorphisms and HI (1).) = O. Hence ¢D has a flat image
G ll eGg, which is an a-group of a-rank 2.

Note that Gn G ll = EdF] x 5, hence G and G ll together generate an a-group
G12 C Gg of a-rank 3. Let F' be the a-sheaf of G12 . Locally we can lift Sl to a
section of F'. Locally we also take a section s' of F' which lifts a generator of

the a-sheaf of G' XU3 5. Thus F' is locally generated by s', s:P).

To extend {5; Y3 --+ Y2 } to an object of ill, we need to find a subgroup scheme
G l3 C Gg which is an a-group of a-rank 2 (and Y1 = Y2/G13 ) . We first show
it is necessary that G13 C Gl2 . Indeed, since G13 n EdF] x 5 = 0 by condition
v), it is enough to show that the image G14 of G13 in Gg/EdFJ x 5 is equal to
Gl2/E1[FJ x 5. Condition v) requires that G' XU3 5 G/E[F] x 5 C Gl4 . On the
other hand E 1 [F] x 5 C Y1 and the above note gives a subgroup scheme

(9.7.15)

which maps to 0 in YI/E1 x 5 by the dual of iv). Hence we have E4[Fj<p) x 5
Gll/E1[F] x 5 c G14 .

It reduces to finding a section s = + ;C1S' + xs:p ) of F'. It remains to check

condition iv). As in the case of lj;2, we have an induced homomorphism --+

which is equivalent to an Os-bilinear form (, h : F' 005 0P(P) --+ Os, and iv) is
equivalent to

Note that we have

( s ' S(p2)) -(s(p) s'(p)) - 1
l' 4 2 - 4' 1 2 - ,

( s ' S(p2))2 = (,(p) s,(p))? = Is(p) S(p2))2 = (s' S'(P))2 = 0
, 4 ..... 4' - \ 4 , 4 ,
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But e = c' = (s',s;(p»)z and d = may not equal 0 in general.
Thus we can write (9.7.16) explicitly

x" - x + eXl +e'xi +d = O. (9.7.18)

Therefore U1 -+ U2 is locally given by variables Xl, X with the defining relation of
the form (9.7.18). Hence lh is smooth.

Remark. Let V:n C Vm (see Example 9.6) be the open subscheme representing
sequences {Y3 -+ ... -+ Ym } (over a k-scheme 5) satisfying i-iv) above and E I x 5 '-+

Ym . Then we have Vb Uo and V; U1 • On the other hand, we have an induced
morphismU2 -+ V2 X P2 ,TI' which is not an isomorphism because V2 x P2 ,TI' represents
isogenies {Y3 -+ Yd satisfying i-v) but not vi). Condition vi) guarantees that an
extension {Y3 -+ Y2 -+ Yd of {Y3 -+ Yd satisfies v) also.

9.8. Garbage components for large g.

Example. When g = 5, by the same way of calculation we see that Pg,TI has a
garbage component of dimension 6, which is equal to dim(S5,1)' When g > 5, we
even have a garbage component of dimension> [g2/4].

9.9. The subsets defined by a-numbers.

For any n > 0, the points of Sg,d representing abelian varieties with c-number Y n

form a Zariski closed subset, which will be denoted by Sg,d(a :::: n). For example,
Sg,d(a :::: g) is the set of superspecial points, and Sg,l(a :::: 2) is a divisor, as will be
shown in Corollary 10.3.

We now study S4,1 (a :::: n). There are two kinds of irreducible components in
S4,I(a :::: 2):

a) Let j.l be a polarization of E 4 such that ker(j.l) = E 4 [P]. Consider sequences
of isogenies of polarized abelian varieties

(9.9.1 )

where the polarization of E 4 is j.l. Such sequences admit a fine moduli scheme Uf.l
which is isomorphic to a pI-bundle of the hypersurface

(9.9.2)

in p3. The image of Uf.l in S4,l(a :::: 2) is an irreducible component of dimension 3,
and there are H4 (p, 1) irreducible components of this kind.

b) Let j.l be a polarization of E 4 such that ker(j.l) = E 4[F]. Consider isogenies
of polarized abelian varieties

(9.9.3)

where the polarization of E 4 is j.l. Such isogenies admit a fine moduli scheme Tf.l
which is isomorphic to the subscheme of the Grassmannian Grass4,2 consisting of
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points representing isotropic subspaces of {k'N, (. )}. where (,) is a non-degenerate
alternating form. The image of Til in 5u (a 2) is an irreducible component of
dimension 3, and there are H 4 (1. p) irreducible components of this kind.

9.10. Supersingular Dieudorme modules with a-number g - 1.

Next we study 5 g ,l (a g - 1) (in particular 54,1 (a 3)). We make use of the
following result.

Lemma. Let M be a principally quasi-polarized supersingular Dieiulonne module of
genus g over W(k) with a(1\1) = g -1. Then there is a decomposition Iv1 = N ffi N',
where N' is a principally quasi-polarized superspecial Dieudoiuie module, and N
is a principally quasi-polarized Dieudouue module of genus 2r (r ::; g/2) such that
SoN = FSoN.

Proof. By a(M) = g-l we have FSoMe I'd (see [45, p.337]). Hence by Proposition
6.1 we have a decomposition 5°1\11 = No N', where N' is a principally quasi-
polarized superspecial Dieudonne module, and No is a quasi-polarized superspecial
Dieudonne module such that NJ = FNo. Let N = M n No and r = dimk(N/NJ).
Then M = N(fJN' and Nt = N. Finally, since 7' = dimdNo/Nt) = dimk(No/NJ)-
r , we see that g(N) = g(No) = 2r. Q.E.D.

9.11. The structure of 5 g ,l (a g - 1).

Proposition. Let k = Fv- For any 0 < r ::; [g /2] and any polarization f-L of
E" (3) k such that ker(f-L) denote by Til the fine moduli scheme of isogenies
p : Eg 0 k: --+ Y of polarized abelian varieties satisfying

ker(p) a; C ker(f-L), (9.11.1)

where the polarization of Eg Q9 k: is p (hence Y is principally polarized). Denote by
Til C Til the locally closed subset of points whose corresponding Y has a(Y) = g - 1
(with reduced induced scheme structure).

i) The induced morphism Til --+ 5 g ,1 0 l: is generically finite to one, and Til is
irreducible of dimension r .

ii) The induced morphism

Wo : u (9.11.2)

is surjective and gives a one to one correspondence between the set of irre-
ducible components of 5 g ,1 (a g - 1) @ k and the set of equivalence classes

of p such that ker(p)
iii) Every irreducible component of'5 g ,1 (a g - 1) has dimension [g /2]' and the
number of irreducible components of5g ,1 (a g - 1) @ k: is equal to Hg(l, pl.

Proof i) To give an isogeny p : E" k --+ Y satisfying (9.11.1) is equivalent to
giving a totally isotropic subspace of dimension r of the a-sheaf :F of kert rz ), or an
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r x r symmetric matrix C = (Cij) over k: under a choice of standard basis of F.
By an easy calculation of Dieudonne modules, one sees that a(Y) = 9 - 1 iff the
corresponding C satisfies

(*) C - cv': = (Cij - c;;) has rank 1.

By the symmetricity of C, (*) is equivalent to r(r - 1)/2 local equations on Ci j

(1 ::; i,j ::; r). Hence every irreducible component of TJl has dimension j> r(r +
1)/2 - r(r - 1)/2 = r .

Let C T2r (in Proposition 9.3) be the set of points whose coordinates are
linearly independent over Fp" Then is open dense in T2r by Proposition 9.3,
hence has dimension r . For any (aI, ...,a2r) E under a choice of standard basis
of F, the subspace of F generated by

(9.11.3)

is totally isotropic of dimension r by (9.3.2), hence gives a minimal isogeny p as
in (9.11.1). This gives a morphism rPJl : -+ TJl which is easily seen to be set-
theoretically injective. Conversely, if the isogeny p in (9.11.1) is minimal, then pis
represented by a point in im( rPJl)' Combining this with the fact that every irreducible
component of TJl has dimension > r (as shown above), we see that rPJl is generically
surjective and TJl is irreducible of dimension r .

Furthermore, if p is minimal, then f-l is uniquely determined by the polarization
of Y. Hence TJl -+ Sg,l Q9 k is generically finite to one.

ii) By Lemma 9.10, the morphism 'iTo in (9.11.2) is surjective. We have also
seen that 'iTo(TJl) determines the equivalence class of f-l, hence 'iTo gives a one to one
correspondence between the irreducible components of Sg,l (a :::: 9 - 1) Q9 k: and the
equivalence eIasses of f-l.

iii) By i) and ii) we see that every irreducible component of Sg,l (a :::: 9 - 1) Q9 k:
has dimension [g /2]' and the number of irreducible components of Sg,l (a :::: 9 -1) Q9 k

is equal to the number of equivalence classes of f-l such that ker(f-l) a;[g/2], which
is equal to Hg (1,p) by Corollary 4.8.iii). Q.E.D.

9.12. The action of the automorphism group of a polarization TJ on Pg ,1/ '

We study the action of Aut(Eg Q9 k,TJ) on Pg,1/ for any 9 > 1.

Proposition. Let 9 > 1 and TJ be a polarization of Eg Q9 k: such that ker( TJ) =
Eg[Fg-1j Q9 k.

i) If 9 is odd and TJ = p(g-l) /2 f-lg for some principal polarization f-l of (a choice
of) E, then the group Aut(Eg Q9 k. TJ) is isomorphic to the subgroup of
GL g (0) consisting of matrices T such that each row of T has one entry in
Ox with the other entries= 0, hence we have

(9.12.1)

ii) If 9 =I- 3 or p > 2, then the action of Aut(Eg Q9 k,TJ)/{±l} on is
generically free.
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iii) When g = 3 and p = 2, (9.12.1) holds since there is only one equivalence
class of 1]. The stabilizer of the generic point of P3,ry under the action of
Aut(E3 0 k,T)) is isomorphic to {±1}3 C (OX)3 under (9.12.1), and the
degree ofP3,Tf --+ S3,1 is 2734

.

Proof From [31, Proposition 2.8] we see that for any choice of a principal polariza
tion flo of Eg 0 k, there is an isomorphism

(9.12.2)

via Aut(Eg 0 i, T)) C Aut(Eg 0 k) GLg(O), where A = OT) and t is the Rosati
involution of T with respect to flo. When g is odd, we can take flo = T)/p(g-1)/2,
hence

(9.12.3)

Write T = (aij) E GLg(O). When flo = flg, we have t i = (aji), where aji is the
conjugate of aji E 0 (i.e. the Rosati involution with respect to fl). Note that aijaij
is a positive integer unless aij = O. Hence tiT = I g is equivalent to that each row
of T has one entry in Ox with the other entries=O. Therefore we have an exact
sequence

(9.12.4)

This proves i).
Next we prove ii). We have already seen the case g = 2 in 9.2, hence we assume

g > 2 in the following. Note that Aut(Eg 0 k, T)) is a finite group.
Let To C be the Zariski open subset of points representing PFTQs with

supergeneral end. Let x E To represent a PFTQ {Xg - l --+ ... --+ X o} with respect to
I] a(Xo) = 1). Then 7) a quasipolarizat!on (,! on 1'.1g  l = D(Xg - I )

All and we have (1\1o, Mo) C w, where Mo = D(Xo). Since a(IVlo) = 1, by Fact
5.6.ii) we have Mo = Au for some v E 1\10, Choose generators Xl, ... ,X g of the
skeleton of jlllg-l (see 5.7). Then we can write

(9.12.5)

where ai,bi E W (1 i g).
Let <jJ E Aut(Eg 0 k,T)). Then <jJ induces an automorphism D(<jJ) of Mg- l

which preserves (,). Thus D( <jJ) can be expressed as an Hmatrix (aij + f3ijF)
(aij,f3ij E W(Fp 2)) with respect to the generators Xl, ... ,Xg (see (5.7.1) for the
definition of H).

Suppose <jJ(x) = x. Then D(<jJ)(Mo) = Mo, i.e. D(<jJ)(v) E Av. Hence there
exists c E k such that

s..: = ca· (1 < J' < g)IJ I J. - - , (9.12.6)

where (iij, a, are respectively the images of aij, a, in k under the projection W --+

W/pW k. If v is general enough, we have (iij = CDij. Since D(<jJ) preserves (,),
we have c2 = 1 (hence c = ±1) when g is even, and cp+ l = 1 when g is odd. Take a
lifting eE W of c.

By D(<jJ)(v) E Av we get

+ biF)(eDij + f3ijF)x) == ev + clFu + C2VV (mod F 21'.1g_rl
it)
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for some Cl,C2 E "VV, By writing down the explicit equations one sees (9,12,7) is a
non-trivial algebraic condition unless c = ± 1 and 3i] E pn' for all i, i. Therefore
either

D(o) == ±id (mod pH), (9,12,8)

or there is a non-empty Zariski open subset C To such that o( x) i= x for any
x E

Repeating the above argument inductively we can show that either

D( (j)) == ±id (mod p-lH), (9.12.9)

(9.12.10)

or there is a non-empty Zariski open subset UqJ C To such that rP( x) i= x for any
x E U¢.

Now we use [46, Lemma 2.5 and Remark 2.6], which in particular gives:

(*) Let rP E Aut(E9 (8) k,'7). Ifp > 2 and E9[p] (8) k c ker(rP - id), or ifp = 2
and E9[F3

] (8) k C ker(qJ - id ), then rP = id.

Note that (9.12.9) is equivalent to

E9 [F9- l] (2) k C kerr qJ =f id),

hence implies qJ = ±id if 9 > 3 or p > 2.
When 9 > 3 or p > 2, let U = U¢. Then the stabilizer of any x E U in

Aut(E9 (8) k, '7) is {±id}. This proves ii).
Finally we consider the case 9 = 3, p = 2. In this case there is only one

equivalence class of '7 because H3(2, 1) = 1 (see [24. Theorem 4]). Hence we may
assume '7 = 2J-l3, where J-l is a principal polarization of Eez;k. Therefore Aut(E3(8)k. '7)
is isomorphic to the group of 3 x 3-matrices each row of which has an entry in Ox
with other entries = O. Note that Ox is a non-commutative group of order 24
(isomorphic to a semi-direct product of the quaternion group with 7L/37L). Since
P3,ry P3 (8) k which only depends on E 3[2] :& k (see 3.9), if if; acts trivially on
E 3[2] (8) k ; then it acts trivially on P3 , 1/ ' The converse also holds by the argument
of ii).

If qJ acts trivially on E 3[2]ZJ k. then we can write ¢ = id + 21jJ, hence qJ corre-
sponds to a diagonal matrix diag(O'l, 0'2, 0'3) E CL9(O) and we can write 0'; = 1+28;
(1 :::; i :::; 3). Since the order of 0'; divides 12, it is easy to check that 0'; = ±l. Hence
rP acts trivially on P3 ,ry iff it corresponds to a diagonal matrix with ±1 as its diagonal
entries. This shows the first assertion of iii), and hence the degree of P3 ,ry ---> 53,1 is
2734 . Q.E.D.

9.13. Different automorphism groups of polarizations.

Remark. When 9 is even, the structure of Aut(E'' (8) k ,,/) (as a group) depends
on '7, as we have seen for 9 = 2 in 9.2 above. This is also the case when 9 is odd.
For example, when p = 17, there are two supersingular elliptic curves Ei: E 2 over
k with j(EI) = 8 and j(E2 ) = O. We have Aut(El) 7L/27L and Aut(E2 ) 7L/47L.
Take principal polarizations J-ll of E, and J-l2 of E2 respectively, and let '71 = Pfl{,
'72 = which are polarizations of E{ Ei- Then by Proposition 9.12.i) we have
Aut(E{,'/d '1- Aut(E?,'/2) (hence 7)1 f '/2).
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