9. Examples on $\mathcal{S}_{g, 1}$

In this chapter we describe \mathcal{P}_{g} (or $\mathcal{P}_{g, \eta}$) and \mathcal{P}_{g}^{\prime} for some low values of g and any characteristic p, and use the results to study the structure of the locus $\mathcal{S}_{g, 1}$ of principally polarized abelian varieties of dimension g.

9.1. Example, $g=1$.

When $g=1$, the set

$$
\begin{equation*}
\mathcal{S}_{1,1}\left(\bar{F}_{p}\right) \subset \mathcal{A}_{1,1} \otimes \overline{\mathrm{~F}}_{p} \cong \mathrm{~A}^{1} \tag{9.1.1}
\end{equation*}
$$

is the set of supersingular j-invariants. We write

$$
\begin{equation*}
h_{p}:=\#\left(\mathcal{S}_{1,1}\left(\overline{\mathbb{F}}_{p}\right)\right) \tag{9.1.2}
\end{equation*}
$$

This number equals the class number of $B=Q_{\infty, p}$ (see (1.2.5)), which is equal to

$$
\begin{equation*}
h_{p}=\frac{p-1}{12}+\left\{1-\left(\frac{-3}{p}\right)\right\} / 3+\left\{1-\left(\frac{-4}{p}\right)\right\} / 4 \tag{9.1.3}
\end{equation*}
$$

(cf. [9, p. 200] and [29, p. 312]), as was proved by Deuring (using a class number computation by Eichler), and later proved along different lines by Igusa, see [29, p. 312]. Explicitly: $h_{2}=h_{3}=1$ and for $p \geq 5$,

$$
h_{p}=\left[\frac{p-1}{12}\right]+ \begin{cases}0 & p \equiv 1(\bmod 12) \tag{9.1.4}\\ 1 & p \equiv 5 \operatorname{or} 7(\bmod 12) \\ 2 & p \equiv 11(\bmod 12)\end{cases}
$$

This can also be expressed by the mass formula:

$$
\begin{equation*}
\sum \frac{1}{\#(\operatorname{Aut}(C))}=\frac{p-1}{24}, \tag{9.1.5}
\end{equation*}
$$

where the summation is over all isomorphism classes of supersingular elliptic curves C over $\overline{\mathcal{F}}_{p}$.

9.2. Example, $g=2$.

For $g=2$, an FTQ over k is of the form

$$
\begin{equation*}
\rho_{1}: E^{2} \otimes k \cong Y_{1} \rightarrow Y_{0}, \quad \operatorname{ker}\left(\rho_{1}\right) \cong \alpha_{p} \tag{9.2.1}
\end{equation*}
$$

Such an FTQ is automatically rigid. For any η satisfying (3.6.1) (i.e. $\operatorname{ker}(\eta)=$ $\left.E^{2}[F] \otimes k\right),(9.2 .1)$ is automatically a PFTQ with respect to η, hence

$$
\begin{equation*}
\mathcal{P}_{2, \eta} \cong \mathcal{P}_{2, \eta}^{\prime} \cong \mathbf{P}^{1} \tag{9.2.2}
\end{equation*}
$$

(see Example 3.8). The number of irreducible components of $\mathcal{S}_{2,1} \otimes k$ is equal to $H_{2}(1, p)$ (see [35, Theorem 5.7]). This number was explicitly calculated by Hashimoto and Ibukiyama (see [25, p.696]). It is equal to 1 when $p=2,3$ or 5 , and when $p>5$,

$$
\begin{align*}
H_{2}(1, p)= & \left(p^{2}-1\right) / 2880+(p+1)\left(1-\left(\frac{-1}{p}\right)\right) / 64 \\
& +5(p-1)\left(1+\left(\frac{-1}{p}\right)\right) / 192+(p+1)\left(1-\left(\frac{-3}{p}\right)\right) / 72 \tag{9.2.3}\\
& +(p-1)\left(1+\left(\frac{-3}{p}\right)\right) / 36 \\
& + \begin{cases}2 / 5 & \text { if } p \equiv 2 \text { or } 3(\bmod 5) \\
0 & \text { if } p \equiv 1 \text { or } 4(\bmod 5)\end{cases} \\
& + \begin{cases}1 / 4 & \text { if } p \equiv 3 \text { or } 5(\bmod 8) \\
0 & \text { if } p \equiv 1 \text { or } 7(\bmod 8)\end{cases} \\
& + \begin{cases}1 / 6 & \text { if } p \equiv 5(\bmod 12) \\
0 & \text { if } p \equiv 1,7 \operatorname{or} 11(\bmod 12)\end{cases}
\end{align*}
$$

where $\binom{q}{p}$ denotes the Legendre symbol.
Let η be a polarization of $E^{2} \otimes k$ such that $\operatorname{ker}(\eta)=E^{2}[F] \otimes k$. Then $G_{\eta}=$ $\operatorname{Aut}\left(E^{2} \otimes k, \eta\right) /\{ \pm 1\}$ is isomorphic to one of the following groups:

$$
\begin{equation*}
\{1\}, \mathbb{Z} / 2 \mathbb{Z}, \mathbb{Z} / 3 \mathbb{Z}, V_{4} \cong \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}, S_{3}, A_{4}, D_{12}, S_{4}, A_{5} \tag{9.2.4}
\end{equation*}
$$

Let $W_{\eta} \subset \mathcal{S}_{2,1}$ be the irreducible component corresponding to η (i.e. the closure of $\Psi\left(\mathcal{P}_{2, \eta}^{\prime}\right)$, see (4.2.1)). Then the action of G_{η} on $\mathcal{P}_{2, \eta}$ is generically free, and we have

$$
\begin{equation*}
\mathbb{P}^{1} \cong \mathcal{P}_{2, \eta} \rightarrow \mathcal{P}_{2, \eta} / G_{\eta} \cong \tilde{W}_{\eta} \rightarrow W_{\eta}, \tag{9.2.5}
\end{equation*}
$$

where \tilde{W}_{η} is the normalization of W_{η} (cf. [35, Section 7, 8.1]). By [32, Theorem 7.1] we see that those in (9.2.4) are exactly the groups which do appear in this way.

Conclusion. Let Λ be a set of representatives of equivalence classes of polarizations η of $E^{2} \otimes \bar{F}_{p}$ satisfying $\operatorname{ker}(\eta)=E^{2}[F] \otimes \overline{\mathrm{F}}_{p}$. Then there is a one to one correspondence ψ between Λ and the set of irreducible components of $\mathcal{S}_{2,1} \otimes \overline{\mathrm{~F}}_{p}$. Denote by W_{η} the irreducible component corresponding to η under ψ. The normalization of W_{η} is isomorphic to $\mathcal{P}_{2, \eta} / G_{\eta}$, where $\mathcal{P}_{2, \eta} \cong \mathbb{P}^{1}$ and $G_{\eta}=\operatorname{Aut}\left(E^{2} \otimes \overline{\mathbf{F}}_{p}, \eta\right) /\{ \pm 1\}$. We have $\#(\Lambda)=H_{2}(1, p)$ and

$$
\begin{equation*}
\mathcal{S}_{2,1} \otimes \bar{F}_{p}=\bigcup_{\eta \in \Lambda} W_{\eta} \tag{9.2.6}
\end{equation*}
$$

9.3. Calculation via the truncation morphisms.

When $g>2$, we proceed as follows. Let \mathcal{V}_{m} be the fine moduli scheme of the category \mathfrak{V}_{m} of truncated PETQs $\left\{S ; Y_{i}, \eta_{i}(m \leq i<g) ; \rho_{i}(m<i<g)\right\}$. (This moduli scheme exists by the same argument as that in Lemma 3.7.) Then we can calculate \mathcal{V}_{m} 's inductively. First we note the following two facts:
i) \mathcal{V}_{g-2} is easy to calculate: To give a Y_{g-2} from $Y_{g-1}=E^{g} \times S$ is equivalent to giving a flat subgroup scheme $G \subset \alpha_{p}^{g} \times S$ of α-rank $g-1$ such that condition ii) in Definition 3.9 holds. This is then equivalent to choosing a section $\left(x_{1}, \ldots, x_{g}\right)$ of the α-sheaf of $\alpha_{p} \times S$ such that the following $[(g-1) / 2]$ equations are satisfied:

$$
\begin{equation*}
\sum_{i} x_{i}^{p^{g-2 j}+1}=0 \quad(0<j<g / 2) \tag{9.3.1}
\end{equation*}
$$

when g is odd, and

$$
\begin{equation*}
\sum_{i \leq g / 2}\left(x_{i} x_{g-i}^{p^{g-2 j}}-x_{g-i} x_{i}^{p^{g-2 j}}\right)=0 \quad(0<j<g / 2) \tag{9.3.2}
\end{equation*}
$$

when g is even.
ii) It is also easy to determine $\mathcal{V}_{0}=\mathcal{P}_{g, \eta}$ from \mathcal{V}_{1} : Since $G=\operatorname{ker}\left(Y_{1} \rightarrow Y_{1}^{t}\right)$ is a selfdual α-group of α-rank 2, every flat subgroup scheme of G of α-rank 1 is isotropic. Hence to give a Y_{0} is equivalent to giving a flat quotient of rank 1 of the α-sheaf of G. Therefore \mathcal{V}_{0} is a ${ }^{1}$-bundle over \mathcal{V}_{1}.

Remark. From (9.3.1) and (9.3.2) we see that \mathcal{V}_{g-2} is singular (at a point where all $x_{i} \in \mathrm{~F}_{p^{2}}$) when $g \geq 5$. Hence there is in general no hope to prove the smoothness of \mathcal{P}_{g}^{\prime} over $F_{p^{2}}$ using the factorization $\mathcal{V}_{0} \rightarrow \ldots \rightarrow \mathcal{V}_{g-1}$. Therefore we will use another factorization to prove Proposition 4.3.i) (see 11.3 and 9.7).

By the proof of Lemma 7.11, the truncation morphism $\mathcal{P}_{g}^{\prime} \rightarrow \mathcal{V}_{g-2}$ is an epimorphism. Hence we have:

Proposition. The subschome $T_{g} \subset \mathbb{P}^{g-1}$ defined by the homogeneous equations in (9.3.1) (when g is odd) or (9.3.2) (when g is even) is irreducible of dimension $[g / 2]$. Furthermore, a geometric point $\left(a_{1}, \ldots, a_{g}\right) \in T_{g}$ is non-singular iff the $\mathcal{F}_{p^{2}}$-linear space generated by a_{1}, \ldots, a_{g} has dimension $\geq[(g-1) / 2]$ over $\mathrm{F}_{p^{2}}$.

For the second statement, by taking differentials, it reduces to an application of Fact 5.8.

9.4. Example, $g=3$.

Let

$$
\begin{equation*}
E^{3} \otimes k=Y_{2} \xrightarrow{\rho_{2}} Y_{1}^{-} \rightarrow Y_{0} \tag{9.4.1}
\end{equation*}
$$

be a PFTQ with respect to η, where η satisfies

$$
\begin{equation*}
\operatorname{ker}\left(\eta: E^{3} \otimes k \rightarrow\left(E^{3} \otimes k\right)^{t}\right)=E^{3}[p] \otimes k \tag{9.4.2}
\end{equation*}
$$

Note that

$$
\begin{equation*}
\left(\alpha_{p}^{2} \cong \operatorname{ker}\left(\rho_{2}\right) \subset E^{3}[F]\right) \in \operatorname{Grass}_{2,3} \cong \mathbb{P}^{2} \tag{9.4.3}
\end{equation*}
$$

and that \mathfrak{V}_{1} is represented by the Fermat curve:

$$
\begin{equation*}
\rho_{2} \in \mathcal{V}_{1}=\mathcal{Z}\left(X^{p+1}+Y^{p+1}+Z^{p+1}\right) \subset \mathbb{P}^{2} \tag{9.4.4}
\end{equation*}
$$

(see (9.3.2)) and a flat subgroup scheme $H \subset \alpha_{p}^{3} \times \mathcal{V}_{1}$. The α-sheaf of $H_{1}=$ $\alpha_{p}^{3} \times \mathcal{V}_{1} / H$ is isomorphic to the subsheaf of $O_{\mathcal{V}_{1}}^{\oplus 3}$ consisting of sections (a, b, c) such that $(a: b: c)=(X: Y: Z)$, hence it is isomorphic to $O_{\mathcal{V}_{1}}(-1)$.

Let

$$
\begin{equation*}
G=\operatorname{ker}\left(Y_{1} \rightarrow Y_{1}^{t}\right)=\operatorname{ker}\left(E^{3} \times \mathcal{V}_{1} / H \rightarrow\left(E^{3} \times \mathcal{V}_{1} / H\right)^{t}\right) \tag{9.4.5}
\end{equation*}
$$

Then G is an α-group of α-rank 2. Note that η induces an isomorphism $G \cong G^{t}$. Hence we have $G / H_{1} \cong H_{1}^{t}$, whose α-sheaf is therefore isomorphic to $O_{\mathcal{V}_{1}}(1)$.

Let \mathcal{F} be the α-sheaf of G. Then \mathcal{F} is an extension of $O_{\mathcal{V}_{1}}(-1)$ by $O_{\mathcal{V}_{1}}(1)$. Since the structure sheaf \mathcal{E} of $\operatorname{ker}(\eta) \times \mathcal{V}_{1}$ is trivial, the α-sheaf of $\alpha_{p}^{3} \times \mathcal{V}_{1}$ can be lifted to a subsheaf of \mathcal{E}. Hence the α-sheaf of H_{1}, identified as a subsheaf of the α-sheaf of $\alpha_{p}^{3} \times \mathcal{V}_{1}$, can also be lifted to a subsheaf of \mathcal{E}. Since $\mathcal{F} \cong \omega_{G / \mathcal{V}_{1}}$, we see that $\mathcal{F} \rightarrow O_{\mathcal{V}_{1}}(-1)$ has a section and hence

$$
\begin{equation*}
\mathcal{F} \cong O_{\mathcal{V}_{1}}(-1) \oplus O_{\mathcal{V}_{1}}(1) . \tag{9.4.6}
\end{equation*}
$$

By 9.3.ii), $\mathcal{P}_{3, \eta}$ is isomorphic to

$$
\begin{equation*}
\mathbb{P}_{\mathcal{V}_{1}}\left(O_{\mathcal{V}_{1}}(-1) \oplus O_{\mathcal{V}_{1}}(1)\right) \cong \mathrm{P}_{\mathcal{V}_{1}}\left(O_{\mathcal{V}_{1}} \oplus O_{\mathcal{V}_{1}}(2)\right) \tag{9.4.7}
\end{equation*}
$$

This is a non-singular surface. Thus we have a P^{1}-fibration

$$
\begin{equation*}
\mathcal{P}_{3, \eta} \xrightarrow{\pi} \mathcal{V}_{1} . \tag{9.4.8}
\end{equation*}
$$

As in [73, Proposition 2.3], we see that there is a section of π

$$
\begin{equation*}
\mathcal{P}_{3, \eta} \supset T \underset{t}{\sim} \mathcal{V}_{1} \tag{9.4.9}
\end{equation*}
$$

given by

$$
\begin{equation*}
t\left(\rho_{2}\right)=\left(E^{3} \otimes k \xrightarrow{\rho_{2}} Y_{1} \rightarrow\left(E^{3} / E^{3}[F]\right) \otimes k=Y_{0}\right) . \tag{9.4.10}
\end{equation*}
$$

We have

$$
\begin{equation*}
\mathcal{P}_{3, \eta}^{\prime}=\mathcal{P}_{3, \eta}-T . \tag{9.4.11}
\end{equation*}
$$

Furthermore, if $x \in \mathcal{P}_{3, \eta}$ represents $\left\{Y_{2} \rightarrow Y_{1} \rightarrow Y_{0}\right\}$, then

$$
\begin{gather*}
x \in T \Longrightarrow a\left(Y_{0}\right)=3, \tag{9.4.12}\\
\pi(x) \in \mathcal{V}_{1}\left(\mathcal{F}_{p^{2}}\right) \Longleftrightarrow a\left(Y_{0}\right) \geq 2, \tag{9.4.13}\\
x \notin T, \pi(x) \notin \mathcal{V}_{1}\left(\mathrm{~F}_{p^{2}}\right) \Longleftrightarrow a\left(Y_{0}\right)=1 . \tag{9.4.14}
\end{gather*}
$$

Remark. The statement (9.4.12) is correct, while in [73, Proposition 2.3] there is a misprint.

Under the morphism

$$
\begin{equation*}
\mathcal{P}_{3, \eta} \xrightarrow{\Psi} W_{\eta} \subset \mathcal{S}_{3,1} \otimes k \tag{9.4.15}
\end{equation*}
$$

the curve $T \subset \mathcal{P}_{3, \eta}$ is contracted to the point

$$
\begin{equation*}
\Psi(T)=\left(E^{3} \otimes k, \eta / p\right) \in \mathcal{S}_{3,1} \otimes k \tag{9.4.16}
\end{equation*}
$$

where η / p is the principal polarization of $\left(E^{3} / E^{3}[F]\right) \otimes k \cong E^{3} \otimes k$ induced by η (as the polarization of Y_{0} in (9.4.10)). Outside T the morphism Ψ is finite to one, and generically equals dividing out by the action of $G_{\eta}=\operatorname{Aut}\left(E^{3} \otimes k, \eta\right) /\{ \pm 1\}$ on $\mathcal{P}_{3, \eta}$. Note that $\Psi(T) \in W_{\eta}$ is a singular point of W_{η}. In fact, if $W_{\eta}^{(n)}$ is an irreducible component of $\mathcal{S}_{g, 1, n} \otimes k$ and $x=\left(E^{g} \otimes k, \eta / p, \alpha\right) \in W_{\eta}^{(n)}$ (where α is a level n-structure), then the tangent space of $W_{\eta}^{(n)}$ at x has dimension 6 (cf. [73, Corollary 2.9]).

The intersection pattern of components of $\mathcal{S}_{3,1} \otimes k$ seems fairly complicated. For example, let $\rho_{2} \in \mathcal{V}_{1}\left(F_{p^{2}}\right)$, and let $T^{\prime}:=\pi^{-1}\left(\rho_{2}\right) \subset \mathcal{P}_{3, \eta}$ be the fiber above ρ_{2}. Then

$$
\begin{equation*}
\#\left\{x \in T^{\prime} \mid a(\Psi(x))=3\right\}=p^{2}+1 \tag{9.4.17}
\end{equation*}
$$

and W_{η} is non-singular at every superspecial point $x \neq \Psi(T) \in T^{\prime}$. However, such an x equals $\left(E^{3} \otimes k, \mu\right)$ for some principal polarization μ and is therefore a singular point in the component $W_{\eta^{\prime}}$ with $\eta^{\prime}=p \mu$.

The number of irreducible components of $\mathcal{S}_{3,1} \otimes k$ was shown in [36, Theorem 6.7] to equal $H_{3}(p, 1)$. This number was explicitly computed by Hashimoto in [24, Theorem 4]. Note that $H_{3}(2,1)=1$, furthermore $H_{3}(p, 1)>1$ for $p>2$, and $H_{3}(p, 1) \approx$ $p^{6} /\left(2^{9} \cdot 3^{4} \cdot 5 \cdot 7\right)$ for p large.

For the action of $\operatorname{Aut}\left(E^{3} \otimes k, \eta\right)$ on $\mathcal{P}_{3, \eta}$, see Proposition 9.12 below.
Conclusion. Let Λ be a set of representatives of equivalence classes of polarizations η of $E^{3} \otimes \overline{\mathbf{F}}_{p}$ satisfying $\operatorname{ker}(\eta)=E^{3}[p] \otimes \overline{\mathbf{F}}_{p}$. Then there is a one to one correspondence ψ between Λ and the set of irreducible components of $\mathcal{S}_{3,1} \otimes \overline{\mathrm{~F}}_{p}$. Again denote by W_{η} the irreducible component corresponding to η under ψ. Then W_{η} is birationally equivalent to $\mathcal{P}_{3, \eta} / G_{\eta}$, where $\mathcal{P}_{3, \eta}$ is a \mathbb{P}^{1}-bundle over a Fermat curve and $G_{\eta}=$ $\operatorname{Aut}\left(E^{\mathbf{3}} \otimes \overline{\mathcal{F}}_{p}, \eta\right) /\{ \pm 1\}$. We have $\#(\Lambda)=H_{3}(p, 1)$ and

$$
\begin{equation*}
\mathcal{S}_{3,1} \otimes \overline{\mathbf{F}}_{p}=\bigcup_{\eta \in \Lambda} W_{\eta} \tag{9.4.18}
\end{equation*}
$$

Note that W_{η} has a singular point corresponding to ($\left.E^{3} \otimes \overline{\mathrm{~F}}_{p}, \eta / p\right)$ (see (9.4.16)), and the tangent space at this point to W_{η} has dimension 6 (see [73, Proposition 2.3]).

9.5. Some other methods for the calculation.

When $g>3$, there are many global equations for $\mathcal{P}_{g, \eta}$ (i.e. more than the difference of the number of variables and the dimension), and one can hardly see the structure of $\mathcal{P}_{g, \eta}$ from these equations. So we will write down local equations in the sequel.

For convenience we will also use the language of Dieudonné modules (see 11.3 for an explanation).

9.6. Example, $g=4$.

When $g=4$, we first see that \mathcal{V}_{2} is isomorphic to the non-singular surface $S \subset \mathrm{P}^{3}$ defined by (see 9.3.2))

$$
\begin{equation*}
a^{p^{2}} b-a b^{p^{2}}+c^{p^{2}} d-c d^{p^{2}}=0 \tag{9.6.1}
\end{equation*}
$$

Let x, y, z, u be the corresponding generators of the skeleton of $M_{3}=A_{1,1}^{\oplus 4}$ (satisfying $\left\langle x, F^{4} y\right\rangle=\left\langle z, F^{4} u\right\rangle=1$).

We consider an open neighborhood of a point $(a, b, c, d) \in S$, where a, b, c, d are linearly independent over $F_{p^{2}}$. The corresponding Dieudonné module M_{2} at (a, b, c, d) is generated by $F x, F y, F z, F u$ and $v=\tilde{a} x+\tilde{b} y+\tilde{c} z+\tilde{d} u$, where $\tilde{a}, \tilde{b}, \tilde{c}, \tilde{d}$ are liftings of a, b, c, d in $W=W(k)$ respectively. To give an M_{1} is equivalent to giving a vector $w=\tilde{r} v+\tilde{s} F x+\tilde{t} F y(\tilde{r}, \tilde{s}, \tilde{t} \in W$, not all in $p W)$ such that

$$
\begin{equation*}
\langle w, F w\rangle \in W \tag{9.6.2}
\end{equation*}
$$

or explicitly

$$
\begin{equation*}
r t^{p} a-r s^{p} b+s r^{p} b^{p}-t r^{p} a^{p}=0 \tag{9.6.3}
\end{equation*}
$$

where r, s, t are the images of $\tilde{r}, \tilde{s}, \tilde{t}$ in $W / p W \cong k$ respectively. Therefore we get two irreducible components \mathcal{V}_{11} and \mathcal{V}_{12} of \mathcal{V}_{1}, where \mathcal{V}_{11} is defined by

$$
\begin{equation*}
t^{p} a-s^{p} b+s r^{p-1} b^{p}-t r^{p-1} a^{p}=0 \tag{9.6.4}
\end{equation*}
$$

hence $\mathcal{V}_{11} \rightarrow \mathcal{V}_{2}$ has fiber dimension 1 , and \mathcal{V}_{12} is defined by $r=0$, hence it is a \boldsymbol{P}^{1} bundle over \mathcal{V}_{2}. Therefore $\operatorname{dim}\left(\mathcal{V}_{11}\right)=\operatorname{dim}\left(\mathcal{V}_{12}\right)=3$. (One can compare this with Remark 6.4. Here $r=0$ means $\operatorname{ker}\left(F_{Y_{3} / S}\right) \subset \operatorname{ker}\left(Y_{3} \rightarrow Y_{1}\right)$, in this case condition iii) in 6.2 automatically holds for $i=1$.)

Since $\mathcal{V}_{0}=\mathcal{P}_{4, \eta}$ is a P^{1}-bundle over \mathcal{V}_{1}, we see that \mathcal{V}_{0} also has two irreducible components \mathcal{V}_{01} and \mathcal{V}_{02} (both of dimension 4), where \mathcal{V}_{02} is a P^{1}-bundle over \mathcal{V}_{12} and does not meet $\mathcal{P}_{4, \eta}^{\prime}$. It is easy to check that the fiber of Y_{0} over the generic point of \mathcal{V}_{02} has a-number 2.

In general, if the fiber of Y_{0} over the generic point of an irreducible component $\mathcal{V} \subset \mathcal{P}_{g, \eta}$ is not supergeneral, then we call \mathcal{V} a "garbage component" of $\mathcal{P}_{g, \eta}$. Note that \mathcal{V} is a garbage component iff it does not map surjectively to a component of $\mathcal{S}_{g, 1}$. Note also that the generic point of a garbage component is not in $\mathcal{P}_{g, \eta}^{\prime}$.

Thus \mathcal{V}_{02} is a garbage component of $\mathcal{P}_{4, \eta}$.
On the other hand, when $p>2$, we see that \mathcal{V}_{11} is singular at a point with $r=0$. Hence \mathcal{V}_{01} is also singular.

By more calculation one can see that $\mathcal{P}_{4, \eta}$ is reduced.

9.7. A proof of Proposition 4.3.i) for $g=4$.

We now show that \mathcal{P}_{4}^{\prime} is smooth over $F_{p^{2}}$. This is simply an illustration of 11.3 for $g=4$. By 3.9, it is enough to show that $\mathcal{P}_{4, \eta}^{\prime}$ is non-singular for a special choice of η over $k=\bar{F}_{p}$. We choose η such that for some decomposition $E^{4} \otimes k \cong E_{1} \times E_{2} \times$ $E_{3} \times E_{4}$, we have $\eta=p\left(\eta^{\prime \prime} \times \eta^{\prime}\right)$, where $\eta^{\prime}\left(\right.$ resp. $\left.\eta^{\prime \prime}\right)$ is a polarization of $E_{2} \times E_{3}$ $\left(\operatorname{resp} . E_{1} \times E_{4}\right)$ such that $\operatorname{ker}\left(\eta^{\prime}\right)=\left(E_{2} \times E_{3}\right)[F]\left(\operatorname{resp} . \operatorname{ker}\left(\eta^{\prime \prime}\right)=\left(E_{1} \times E_{4}\right)[F]\right)$.

Let $\left\{X_{3} \rightarrow \ldots \rightarrow X_{0}\right\}$ be the universal PFTQ over $\mathcal{P}_{4, \eta}^{\prime}$. Let $U_{i} \subset \mathcal{P}_{4, \eta}^{\prime}$ be the largest open subscheme such that $E_{i} \times U_{i} \rightarrow X_{0} \times_{\mathcal{P}_{4, \eta}^{\prime}} U_{i}$ is a closed immersion $(1 \leq i \leq 4)$. Then $\mathcal{P}_{4, \eta}^{\prime}=\bigcup_{i} U_{i}$. By symmetry it is enough to show U_{1} is nonsingular. For convenience we denote $X_{0} \times{ }_{\mathcal{P}_{4, \eta}^{\prime}} U_{1}$ simply by X_{0}.

Since $E_{1} \times U_{1} \rightarrow X_{0}$ is a closed immersion, its dual

$$
\begin{equation*}
X_{0} \cong X_{0}^{t} \rightarrow E_{1}^{t} \times U_{1} \cong\left(E_{4} / E_{4}\left[F^{3}\right]\right) \times U_{1} \tag{9.7.1}
\end{equation*}
$$

is smooth. Therefore the projections $X_{i} \rightarrow\left(E_{4} / E_{4}\left[F^{3-i}\right]\right) \times U_{1}(0 \leq i \leq 3)$ are all smooth. Let $X_{i}^{\prime \prime}=H_{1}\left(C^{i+1}\right)(i=0,1)$, where C^{i} is the complex

$$
\begin{equation*}
C_{.}^{i}: \quad E_{1} \times U_{1} \rightarrow X_{i} \rightarrow\left(E_{4} / E_{4}\left[F^{3-i}\right]\right) \times U_{1} \tag{9.7.2}
\end{equation*}
$$

Then one sees that $\left\{X_{1}^{\prime \prime} \rightarrow X_{0}^{\prime \prime}\right\}$ is a PFTQ with respect to η^{\prime}. This induces a morphism

$$
\begin{equation*}
\psi: U_{1} \rightarrow \mathcal{P}_{2, \eta^{\prime}} \cong \mathbf{P}^{1} \tag{9.7.3}
\end{equation*}
$$

It is enough to show ψ is smooth.
We first decompose ψ. Let $\left\{X_{1}^{\prime} \rightarrow X_{0}^{\prime}\right\}$ be the universal PFTQ over $\mathcal{P}_{2, \eta^{\prime}}$ and $G^{\prime}=\operatorname{ker}\left(X_{1}^{\prime} \rightarrow X_{0}^{\prime}\right)$. Let $\mathfrak{U}_{m}(0 \leq m \leq 3)$ be the category of sequences of isogenies $\left\{Y_{3} \rightarrow \ldots \rightarrow Y_{m}\right\}$ of polarized abelian schemes $\left(Y_{i}, \eta_{i}\right)$ over some $\mathcal{P}_{2, \eta^{\prime}}$-scheme S such that
i) $Y_{3}=E^{4} \times S$, with $\eta_{3}=\eta \times \mathrm{id}_{S}$;
ii) $\operatorname{ker}\left(Y_{i} \rightarrow Y_{i-1}\right)$ is a flat α-group of α-rank $i(m \leq i \leq 3)$;
iii) $\operatorname{ker}\left(Y_{3} \rightarrow Y_{i}\right)=\operatorname{ker}\left(Y_{3} \rightarrow Y_{m}\right) \cap Y_{3}\left[F^{3-i}\right](m<i \leq 3)$;
iv) $\operatorname{ker}\left(\eta_{i}\right) \subset X_{i}\left[F^{i}\right](m \leq i \leq 3)$;
v) $E_{1} \times S \rightarrow Y_{m}$ is a closed immersion, and there are induced isomorphisms $\phi_{i}: H_{1}\left(C^{i+1}\right) \cong X_{i}^{\prime} \times_{\mathcal{P}_{2, \eta^{\prime}}} S(m-1 \leq i \leq 1)$, where C^{i}. is the complex

$$
\begin{equation*}
C^{i}: \quad E_{1} \times S \rightarrow X_{i} \rightarrow\left(E_{4} / E_{4}\left[F^{3-i}\right]\right) \times S ; \tag{9.7.4}
\end{equation*}
$$

vi) (for $m<3$ only) letting $G \subset Y_{2}[F]$ be the inverse image of $G^{\prime} \times{ }_{\mathcal{P}_{2, \eta^{\prime}}} S$ in $Y_{2}[F]$ under

$$
\begin{equation*}
G^{\prime} \times \mathcal{P}_{2, \eta^{\prime}} S \subset X_{1}^{\prime}[F] \times \mathcal{P}_{2, \eta^{\prime}} S \hookrightarrow Y_{2}[F] / E_{1}[F] \times S \tag{9.7.5}
\end{equation*}
$$

induced by ϕ_{1} in v), we have $G^{(p)} \subset Y_{2}^{(p)}[F] \cap \operatorname{ker}\left(V: Y_{2}^{(p)} \rightarrow Y_{2}\right)$.
Let \mathcal{U}_{m} be the fine moduli scheme of \mathscr{U}_{m}. Then clearly $\mathcal{U}_{0} \cong U_{1}$ and $\mathcal{U}_{3} \cong \mathcal{P}_{2, \eta^{\prime}}$. Furthermore, the truncations induce morphisms $\psi_{i}: \mathcal{U}_{i} \rightarrow \mathcal{U}_{i+1}(0 \leq i \leq 2)$, and $\psi=\psi_{2} \circ \psi_{1} \circ \psi_{0}$. Hence it is enough to show each ψ_{i} is smooth. By 9.3 .ii), we see ψ_{0}
is a line bundle (it is not a P^{1}-bundle because of the open condition v)). It remains to check the smoothness of ψ_{1} and ψ_{2}.

First we consider ψ_{2}. For a given $\left\{S ; Y_{3}\right\} \in \operatorname{Ob}\left(\mathscr{U}_{3}\right)$, let $G_{1}=\operatorname{ker}\left(Y_{3} \rightarrow Y_{3}^{t}\right)=$ $Y_{3}\left[F^{3}\right]$ and $G_{2}=Y_{3}[F]$. Note that G_{2} is an α-group, and we denote by \mathcal{F} the α-sheaf of G_{2}.

To extend $\left\{S ; Y_{3}\right\}$ to an object of \mathfrak{U}_{2}, we need to find an α-subgroup $G_{3} \subset G_{2}$ of α-rank 3 , or equivalently a nowhere zero section s of \mathcal{F}. Condition v) simply says the s_{1}-coordinate of s is non-zero. Hence we can assume

$$
\begin{equation*}
s=s_{1}+x_{1} s_{2}+x_{2} s_{3}+x s_{4} . \tag{9.7.6}
\end{equation*}
$$

Let $G_{4}=E_{1}[F] \times S$. Then $G_{4} \subset Y_{2}=Y_{3} / G_{3}$, and the projection $Y_{2} \rightarrow Y_{3} / Y_{3}[F]$ gives an exact sequence

$$
\begin{equation*}
0 \rightarrow G_{4} \rightarrow Y_{2}[F] \rightarrow G_{5} \rightarrow 0 \tag{9.7.7}
\end{equation*}
$$

where $G_{5}=\left(E_{2} \times E_{3} \times E_{4}\right)[F]^{(p)} \times S$.
We check condition vi). Let $G_{6}=Y_{2}^{(p)}[F] \cap \operatorname{ker}\left(V: Y_{2}^{(p)} \rightarrow Y_{2}\right)$. Then $G_{7}=$ $G_{6} / G_{4}^{(p)}$ is a subgroup scheme of $G_{5}^{(p)}$ by (9.7.7). It is easy to see that the ideal sheaf of $G_{7} \hookrightarrow G_{5}^{(p)}$ is generated by the section $F^{*} s^{(p)}-V^{*} s=s^{\left(p^{2}\right)}-s$ of the α-sheaf of $G_{5}^{(p)}$. On the other hand G^{\prime} is defined by the section $y_{1} s_{2}^{(p)}+y_{2} s_{3}^{(p)}$ of the α-sheaf \mathcal{F}^{\prime} of $X_{1}^{\prime}[F]$, where y_{1}, y_{2} are the homogeneous coordinates of $\mathcal{P}_{2, \eta^{\prime}} \cong \mathrm{P}^{1}$. Hence vi) is equivalent to that the restriction of $s^{\left(p^{2}\right)}-s$ to $\mathcal{F}^{\prime} \otimes O_{u_{3}} O_{S}$ is proportional to $y_{1} s_{2}^{(p)}+y_{2} s_{3}^{(p)}$, or explicitly

$$
\begin{equation*}
\left(x_{1}^{p^{2}}-x_{1}\right) y_{2}=\left(x_{2}^{p^{2}}-x_{2}\right) y_{1} . \tag{9.7.8}
\end{equation*}
$$

Next we check condition iv). Since G_{2}^{D} is a quotient group scheme of $G_{1}^{D} \cong G_{1}$ and $\operatorname{ker}\left(G_{1} \rightarrow G_{2}^{D}\right)=G_{1}\left[F^{2}\right]$, we have an induced isomorphism $f: G_{2}^{D} \rightarrow G_{2}^{\left(p^{2}\right)}$, which is equivalent to an O_{S}-linear map $\mathcal{F}^{\left(p^{2}\right)} \rightarrow \mathcal{F}^{\vee}$, or equivalently an O_{S}-bilinear form $\langle\rangle:, \mathcal{F} \otimes O_{s} \mathcal{F}^{\left(p^{2}\right)} \rightarrow O_{S}$. Take a generator s_{i} of the α-sheaf of $E_{i}[F]$ for each i. Then $s_{1}, s_{2}, s_{3}, s_{4}$ can be viewed as a set of generators of \mathcal{F}. We can choose $s_{1}, s_{2}, s_{3}, s_{4}$ such that

$$
\begin{equation*}
\left\langle s_{1}, s_{4}^{\left(p^{2}\right)}\right\rangle=-\left\langle s_{4}, s_{1}^{\left(p^{2}\right)}\right\rangle=\left\langle s_{2}, s_{3}^{\left(p^{2}\right)}\right\rangle=\left\langle s_{3}, s_{2}^{\left(p^{2}\right)}\right\rangle=1, \tag{9.7.9}
\end{equation*}
$$

and we have

$$
\begin{align*}
& \left\langle s_{1}, s_{2}^{\left(p^{2}\right)}\right\rangle=\left\langle s_{1}, s_{3}^{\left(p^{2}\right)}\right\rangle=\left\langle s_{4}, s_{2}^{\left(p^{2}\right)}\right\rangle=\left\langle s_{4}, s_{2}^{\left(p^{2}\right)}\right\rangle=0, \\
& \left\langle s_{i}, s_{i}^{\left(p^{2}\right)}\right\rangle=0(1 \leq i \leq 4) . \tag{9.7.10}
\end{align*}
$$

Let $G_{8}=G_{2} / G_{3}$. Then G_{8}^{D} is a subgroup scheme of G_{2}^{D}. Let $\phi: G_{8}^{D} \rightarrow G_{8}^{\left(p^{2}\right)}$ be the composition of the inclusion $G_{8}^{D} \hookrightarrow G_{2}^{D}, f$ and the projection $G_{2}^{\left(p^{2}\right)} \rightarrow G_{8}^{\left(p^{2}\right)}$. Then iv) is equivalent to $\phi=0$, and this is then equivalent to $\left\langle s, s^{\left(p^{2}\right)}\right\rangle=0$, or explicitly

$$
\begin{equation*}
x^{p^{2}}-x+x_{1} x_{2}^{p^{2}}-x_{2} x_{1}^{p^{2}}=0 . \tag{9.7.11}
\end{equation*}
$$

Note that we also have $G_{2}^{D} \cong G_{1} / G_{1}[p]$, which induces another bilinear form $\langle,\rangle_{1}: \mathcal{F} \otimes O_{s} \mathcal{F} \rightarrow O_{S}$. We automatically have $\langle s, s\rangle_{1}=0$ since \langle,\rangle_{1} is alternating. Therefore we have $\operatorname{ker}\left(Y_{2} \rightarrow Y_{2}^{t}\right) \subset Y_{2}[p]$ for any choice of G_{3}.

We see that $\mathcal{U}_{2} \rightarrow \mathcal{U}_{3}$ is defined by variables x_{2}, x_{3}, x with defining relations (9.7.8) and (9.7.11), hence ψ_{2} is smooth.

Finally we consider ψ_{1}. Assume we are given an object $\left\{S ; Y_{3} \rightarrow Y_{2}\right\}$ of \mathfrak{U}_{2}. Let $G_{9}=Y_{2}[F]$ and $G_{10}=\operatorname{ker}\left(Y_{2} \rightarrow Y_{2}^{t}\right)$. Then condition vi) says that we have an α-group $G \subset G_{9}$ of α-rank 2. On the other hand, condition iv) (for $i=2$) says $G_{10} \subset Y_{2}\left[F^{2}\right]$, and the above note says $G_{10} \subset Y_{2}[p]$, hence $\operatorname{coker}\left(G_{9} \rightarrow G_{10}\right)$ has Verschiebung 0 . Therefore

$$
\begin{equation*}
\operatorname{ker}\left(G_{10} \cong G_{10}^{D} \rightarrow G_{9}^{D}\right) \subset G_{10}[F]=G_{9} \tag{9.7.12}
\end{equation*}
$$

Thus we have an induced homomorphism $\phi: G_{9}^{D} \rightarrow G_{9}^{(p)}$. It is easy to see that ϕ^{D} induces a homomorphism Φ : $D^{\prime} \rightarrow D$. of the following two complexes

$$
\begin{equation*}
D^{\prime}: \quad E_{1}[F] \times S \hookrightarrow\left(G_{9}^{D}\right)^{(p)} \rightarrow E_{4}[F]^{(p)} \times S \tag{9.7.13}
\end{equation*}
$$

and

$$
\begin{equation*}
\text { D. : } \quad E_{1}[F] \times S \hookrightarrow G_{9} \rightarrow E_{4}[F]^{(p)} \times S . \tag{9.7.14}
\end{equation*}
$$

Note that Φ_{0} and Φ_{2} are isomorphisms and $H_{1}(\Phi)=$.0 . Hence ϕ^{D} has a flat image $G_{11} \subset G_{9}$, which is an α-group of α-rank 2 .

Note that $G \cap G_{11}=E_{1}[F] \times S$, hence G and G_{11} together generate an α-group $G_{12} \subset G_{9}$ of α-rank 3 . Let \mathcal{F}^{\prime} be the α-sheaf of G_{12}. Locally we can lift s_{1} to a section s_{1}^{\prime} of \mathcal{F}^{\prime}. Locally we also take a section s^{\prime} of \mathcal{F}^{\prime} which lifts a generator of the α-sheaf of $G^{\prime} \times{ }_{\mathcal{U}_{3}} S$. Thus \mathcal{F}^{\prime} is locally generated by $s_{1}^{\prime}, s^{\prime}, s_{4}^{(p)}$.

To extend $\left\{S ; Y_{3} \rightarrow Y_{2}\right\}$ to an object of \mathfrak{U}_{1}, we need to find a subgroup scheme $G_{13} \subset G_{9}$ which is an α-group of α-rank 2 (and $Y_{1}=Y_{2} / G_{13}$). We first show it is necessary that $G_{13} \subset G_{12}$. Indeed, since $G_{13} \cap E_{1}[F] \times S=0$ by condition v), it is enough to show that the image G_{14} of G_{13} in $G_{9} / E_{1}[F] \times S$ is equal to $G_{12} / E_{1}[F] \times S$. Condition v) requires that $G^{\prime} \times \mathcal{U}_{3} S \cong G / E[F] \times S \subset G_{14}$. On the other hand $E_{1}[F] \times S \subset Y_{1}$ and the above note gives a subgroup scheme

$$
\begin{equation*}
E_{1}^{t}[F]^{(p)} \times S \cong E_{4}[F]^{(p)} \times S \hookrightarrow G_{9} / E_{1}[F] \times S \tag{9.7.15}
\end{equation*}
$$

which maps to 0 in $Y_{1} / E_{1} \times S$ by the dual of iv). Hence we have $E_{4}[F]^{(p)} \times S \cong$ $G_{11} / E_{1}[F] \times S \subset G_{14}$.

It reduces to finding a section $s=s_{1}^{\prime}+x_{1} s^{\prime}+x s_{4}^{(p)}$ of \mathcal{F}^{\prime}. It remains to check condition iv). As in the case of ψ_{2}, we have an induced homomorphism $G_{12}^{D} \rightarrow G_{12}^{(p)}$ which is equivalent to an O_{S}-bilinear form $\langle,\rangle_{2}: \mathcal{F}^{\prime} \otimes O_{S} \otimes \mathcal{F}^{\prime(p)} \rightarrow O_{S}$, and iv) is equivalent to

$$
\begin{equation*}
\left\langle s, s^{(p)}\right\rangle_{2}=0 \tag{9.7.16}
\end{equation*}
$$

Note that we have

$$
\begin{align*}
& \left\langle s_{1}^{\prime}, s_{4}^{\left(p^{2}\right)}\right\rangle_{2}=-\left\langle s_{4}^{(p)}, s_{1}^{\prime(p)}\right\rangle_{2}=1 \tag{9.7.17}\\
& \left\langle s^{\prime}, s_{4}^{\left(p^{2}\right)}\right\rangle_{2}=\left\langle s_{4}^{(p)}, s^{(p)}\right\rangle_{2}=\left\langle s_{4}^{(p)}, s_{4}^{\left(p^{2}\right)}\right\rangle_{2}=\left\langle s^{\prime}, s^{\prime(p)}\right\rangle_{2}=0
\end{align*}
$$

But $c=\left\langle s_{1}^{\prime}, s^{\prime(p)}\right\rangle_{2}, c^{\prime}=\left\langle s^{\prime}, s_{1}^{\prime(p)}\right\rangle_{2}$ and $d=\left\langle s_{1}^{\prime}, s_{1}^{\prime(p)}\right\rangle_{2}$ may not equal 0 in general. Thus we can write (9.7.16) explicitly

$$
\begin{equation*}
x^{p}-x+c x_{1}+c^{\prime} x_{1}^{p}+d=0 . \tag{9.7.18}
\end{equation*}
$$

Therefore $\mathcal{U}_{1} \rightarrow \mathcal{U}_{2}$ is locally given by variables x_{1}, x with the defining relation of the form (9.7.18). Hence ψ_{1} is smooth.

Remark. Let $\mathcal{V}_{m}^{\prime} \subset \mathcal{V}_{m}$ (see Example 9.6) be the open subscheme representing sequences $\left\{Y_{3} \rightarrow \ldots \rightarrow Y_{m}\right\}$ (over a k-scheme S) satisfying i-iv) above and $E_{1} \times S \hookrightarrow$ Y_{m}. Then we have $\mathcal{V}_{0}^{\prime} \cong \mathcal{U}_{0}$ and $\mathcal{V}_{1}^{\prime} \cong \mathcal{U}_{1}$. On the other hand, we have an induced morphism $\mathcal{U}_{2} \rightarrow \mathcal{V}_{2} \times \mathcal{P}_{2, \eta^{\prime}}$ which is not an isomorphism because $\mathcal{V}_{2} \times \mathcal{P}_{2, \eta^{\prime}}$ represents isogenies $\left\{Y_{3} \rightarrow Y_{2}\right\}$ satisfying i-v) but not vi). Condition vi) guarantees that an extension $\left\{Y_{3} \rightarrow Y_{2} \rightarrow Y_{1}\right\}$ of $\left\{Y_{3} \rightarrow Y_{2}\right\}$ satisfies v) also.

9.8. Garbage components for large g.

Example. When $g=5$, by the same way of calculation we see that $\mathcal{P}_{g, \eta}$ has a garbage component of dimension 6 , which is equal to $\operatorname{dim}\left(\mathcal{S}_{5,1}\right)$. When $g>5$, we even have a garbage component of dimension $>\left[g^{2} / 4\right]$.

9.9. The subsets defined by a-numbers.

For any $n>0$, the points of $\mathcal{S}_{g, d}$ representing abelian varieties with a-number $\geq n$ form a Zariski closed subset, which will be denoted by $\mathcal{S}_{g, d}(a \geq n)$. For example, $\mathcal{S}_{g, d}(a \geq g)$ is the set of superspecial points, and $\mathcal{S}_{g, 1}(a \geq 2)$ is a divisor, as will be shown in Corollary 10.3.

We now study $\mathcal{S}_{4,1}(a \geq n)$. There are two kinds of irreducible components in $\mathcal{S}_{4,1}(a \geq 2)$:
a) Let μ be a polarization of E^{4} such that $\operatorname{ker}(\mu)=E^{4}[p]$. Consider sequences of isogenies of polarized abelian varieties

$$
\begin{equation*}
E^{4} \rightarrow Y_{1} \rightarrow Y_{0} \quad\left(\operatorname{ker}\left(E^{4} \rightarrow Y_{1}\right) \cong \alpha_{p}^{3}, \operatorname{ker}\left(Y_{1} \rightarrow Y_{0}\right) \cong \alpha_{p}\right) \tag{9.9.1}
\end{equation*}
$$

where the polarization of E^{4} is μ. Such sequences admit a fine moduli scheme U_{μ} which is isomorphic to a P^{1}-bundle of the hypersurface

$$
\begin{equation*}
X_{1}^{p+1}+X_{2}^{p+1}+X_{3}^{p+1}+X_{4}^{p+1}=0 \tag{9.9.2}
\end{equation*}
$$

in P^{3}. The image of U_{μ} in $S_{4,1}(a \geq 2)$ is an irreducible component of dimension 3, and there are $H_{4}(p, 1)$ irreducible components of this kind.
b) Let μ be a polarization of E^{4} such that $\operatorname{ker}(\mu)=E^{4}[F]$. Consider isogenies of polarized abelian varieties

$$
\begin{equation*}
E^{4} \rightarrow Y_{0} \quad\left(\operatorname{ker}\left(E^{4} \rightarrow Y_{1}\right) \cong \alpha_{p}^{2}\right) \tag{9.9.3}
\end{equation*}
$$

where the polarization of E^{4} is μ. Such isogenies admit a fine moduli scheme \mathcal{T}_{μ} which is isomorphic to the subscheme of the Grassmannian Grass ${ }_{4,2}$ consisting of
points representing isotropic subspaces of $\left\{k^{\oplus 4},\langle\rangle,\right\}$. where \langle,$\rangle is a non-degenerate$ alternating form. The image of \mathcal{T}_{μ} in $\mathcal{S}_{4,1}(a \geq 2)$ is an irreducible component of dimension 3 , and there are $H_{4}(1 . p)$ irreducible components of this kind.

9.10. Supersingular Dieudonné modules with a-number $g-1$.

Next we study $\mathcal{S}_{g, 1}(a \geq g-1)$ (in particular $\mathcal{S}_{4,1}(a \geq 3)$). We make use of the following result.

Lemma. Let M be a principally quasi-polarized supersingular Dieudonné module of genus g over $W(k)$ with $a(M)=g-1$. Then there is a decomposition $M=N \oplus N^{\prime}$, where N^{\prime} is a principally quasi-polarized superspecial Dieudonné module, and N is a principally quasi-polarized Dieudonné module of genus $2 r(r \leq g / 2)$ such that $S_{0} N=F S^{0} N$.

Proof. By $a(M)=g-1$ we have $F S^{0} M \subset M$ (see [45, p.337]). Hence by Proposition 6.1 we have a decomposition $S^{0} M=N_{0} \oplus N^{\prime}$, where N^{\prime} is a principally quasipolarized superspecial Dieudonné module, and N_{0} is a quasi-polarized superspecial Dieudonné module such that $N_{0}^{t}=F N_{0}$. Let $N=M \cap N_{0}$ and $r=\operatorname{dim}_{k}\left(N / N_{0}^{t}\right)$. Then $M=N \oplus N^{\prime}$ and $N^{t}=N$. Finally, since $r=\operatorname{dim}_{k}\left(N_{0} / N^{t}\right)=\operatorname{dim}_{k}\left(N_{0} / N_{0}^{t}\right)-$ r, we see that $g(N)=g\left(N_{0}\right)=2 r$. Q.E.D.

9.11. The structure of $\mathcal{S}_{g, 1}(a \geq g-1)$.

Proposition. Let $k=\overline{\mathbb{F}}_{p}$. For any $0<r \leq[g / 2]$ and any polarization μ of $E^{g} \otimes k$ such that $\operatorname{ker}(\mu) \cong \alpha_{p}^{2 r}$, denote by \mathcal{T}_{μ} the fine moduli scheme of isogenies $\rho: E^{g} \otimes k \rightarrow Y$ of polarized abelian varieties satisfying

$$
\begin{equation*}
\operatorname{ker}(\rho) \cong \alpha_{p}^{r} \subset \operatorname{ker}(\mu), \tag{9.11.1}
\end{equation*}
$$

where the polarization of $E^{g} \otimes k$ is μ (hence Y is principally polarized). Denote by $T_{\mu} \subset \mathcal{T}_{\mu}$ the locally closed subset of points whose corresponding Y has $a(Y)=g-1$ (with reduced induced scheme structure).
i) The induced morphism $T_{\mu} \rightarrow \mathcal{S}_{g, 1} Q k$ is generically finite to one, and T_{μ} is irreducible of dimension r.
ii) The induced morphism

$$
\begin{equation*}
\Psi_{0}: \coprod_{\operatorname{ker}(t) \geq \alpha_{p}^{2[g / 2]}} T_{\mu} \rightarrow \mathcal{S}_{g .1}(a \geq g-1) \otimes k \tag{9.11.2}
\end{equation*}
$$

is surjective and gives a one to one correspondence between the set of irreducible components of $\mathcal{S}_{g, 1}(a \geq g-1) \otimes k$ and the set of equivalence classes of μ such that $\operatorname{ker}(\mu) \cong \alpha_{p}^{2[g / 2]}$.
iii) Every irreducible component of $\mathcal{S}_{g, 1}(a \geq g-1)$ has dimension [$g / 2$], and the number of irreducible components of $\mathcal{S}_{g, 1}(a \geq g-1) \otimes k$ is equal to $H_{g}(1, p)$.

Proof. i) To give an isogeny $\rho: E^{g} \otimes k \rightarrow Y$ satisfying (9.11.1) is equivalent to giving a totally isotropic subspace of dimension r of the α-sheaf \mathcal{F} of $\operatorname{ker}(\mu)$, or an
$r \times r$ symmetric matrix $C=\left(c_{i j}\right)$ over k under a choice of standard basis of \mathcal{F}. By an easy calculation of Dieudonné modules, one sees that $a(Y)=g-1$ iff the corresponding C satisfies
(*) $C-C^{\left(p^{2}\right)}=\left(c_{i j}-c_{i j}^{p^{2}}\right)$ has rank 1.
By the symmetricity of $C,(*)$ is equivalent to $r(r-1) / 2$ local equations on $c_{i j}$ ($1 \leq i, j \leq r$). Hence every irreducible component of T_{μ} has dimension $\geq r(r+$ 1) $/ 2-r(r-1) / 2=r$.

Let $T_{2 r}^{\prime} \subset T_{2 r}$ (in Proposition 9.3) be the set of points whose coordinates are linearly independent over $\mathrm{F}_{p^{2}}$. Then $T_{2 r}^{\prime}$ is open dense in $T_{2 r}$ by Proposition 9.3, hence has dimension r. For any $\left(a_{1}, \ldots, a_{2 r}\right) \in T_{2 r}^{\prime}$, under a choice of standard basis of \mathcal{F}, the subspace of \mathcal{F} generated by

$$
\begin{equation*}
\left(a_{1}^{p^{2 n}}, \ldots, a_{2 r}^{p^{2 n}}\right)(0 \leq n<r) \tag{9.11.3}
\end{equation*}
$$

is totally isotropic of dimension r by (9.3.2), hence gives a minimal isogeny ρ as in (9.11.1). This gives a morphism $\phi_{\mu}: T_{2 r}^{\prime} \rightarrow T_{\mu}$ which is easily seen to be settheoretically injective. Conversely, if the isogeny ρ in (9.11.1) is minimal, then ρ is represented by a point in $\operatorname{im}\left(\phi_{\mu}\right)$. Combining this with the fact that every irreducible component of T_{μ} has dimension $\geq r$ (as shown above), we see that ϕ_{μ} is generically surjective and T_{μ} is irreducible of dimension r.

Furthermore, if ρ is minimal, then μ is uniquely determined by the polarization of Y. Hence $T_{\mu} \rightarrow \mathcal{S}_{g, 1} \otimes k$ is generically finite to one.
ii) By Lemma 9.10, the morphism Ψ_{0} in (9.11.2) is surjective. We have also seen that $\Psi_{0}\left(T_{\mu}\right)$ determines the equivalence class of μ, hence Ψ_{0} gives a one to one correspondence between the irreducible components of $\mathcal{S}_{g, 1}(a \geq g-1) \otimes k$ and the equivalence elasses of μ.
iii) By i) and ii) we see that every irreducible component of $\mathcal{S}_{g, 1}(a \geq g-1) \otimes k$ has dimension $[g / 2]$, and the number of irreducible components of $\mathcal{S}_{g, 1}(a \geq g-1) \otimes k$ is equal to the number of equivalence classes of μ such that $\operatorname{ker}(\mu) \cong \alpha_{p}^{2[g / 2]}$, which is equal to $H_{g}(1, p)$ by Corollary 4.8.iii). Q.E.D.

9.12. The action of the automorphism group of a polarization η on $\mathcal{P}_{g, \eta}$.

We study the action of $\operatorname{Aut}\left(E^{g} \otimes k, \eta\right)$ on $\mathcal{P}_{g, \eta}$ for any $g>1$.
Proposition. Let $g>1$ and η be a polarization of $E^{g} \otimes k$ such that $\operatorname{ker}(\eta)=$ $E^{g}\left[F^{g-1}\right] \otimes k$.
i) If g is odd and $\eta=p^{(g-1) / 2} \mu^{g}$ for some principal polarization μ of (a choice of) E, then the group $\operatorname{Aut}\left(E^{g} \otimes k, \eta\right)$ is isomorphic to the subgroup of $G L_{g}(\mathcal{O})$ consisting of matrices T such that each row of T has one entry in \mathcal{O}^{\times}with the other entries $=0$, hence we have

$$
\begin{equation*}
\operatorname{Aut}\left(E^{g} \otimes k, \eta\right) \cong\left(\mathcal{O}^{\times}\right)^{g} \rtimes S_{g} . \tag{9.12.1}
\end{equation*}
$$

ii) If $g \neq 3$ or $p>2$, then the action of $\operatorname{Aut}\left(E^{g} \otimes k, \eta\right) /\{ \pm 1\}$ on $\mathcal{P}_{g, \eta}^{\prime}$ is generically free.
iii) When $g=3$ and $p=2$, (9.12.1) holds since there is only one equivalence class of η. The stabilizer of the generic point of $\mathcal{P}_{3, \eta}$ under the action of $\operatorname{Aut}\left(E^{3} \otimes k, \eta\right)$ is isomorphic to $\{ \pm 1\}^{3} \subset\left(\mathcal{O}^{\times}\right)^{3}$ under (9.12.1), and the degree of $\mathcal{P}_{3, \eta} \rightarrow \mathcal{S}_{3,1}$ is $2^{7} 3^{4}$.

Proof. From [31, Proposition 2.8] we see that for any choice of a principal polarization μ_{0} of $E^{g} \otimes k$, there is an isomorphism

$$
\begin{equation*}
\operatorname{Aut}\left(E^{g} \otimes k, \eta\right) \cong\left\{T \in G L_{g}(\mathcal{O}) \mid \bar{T}^{t} A T=A\right\} \tag{9.12.2}
\end{equation*}
$$

via $\operatorname{Aut}\left(E^{g} \otimes k, \eta\right) \subset \operatorname{Aut}\left(E^{g} \otimes k\right) \cong G L_{g}(\mathcal{O})$, where $A=\mu_{0}^{-1} \circ \eta$ and \bar{T} is the Rosati involution of T with respect to μ_{0}. When g is odd, we can take $\mu_{0}=\eta / p^{(g-1) / 2}$, hence

$$
\begin{equation*}
\operatorname{Aut}\left(E^{g} \otimes k, \eta\right) \cong\left\{T \in G L_{g}(\mathcal{O}) \mid \bar{T}^{t} T=I_{g}\right\} \tag{9.12.3}
\end{equation*}
$$

Write $T=\left(a_{i j}\right) \in G L_{g}(\mathcal{O})$. When $\mu_{0}=\mu^{g}$, we have $\bar{T}^{t}=\left(\bar{a}_{j i}\right)$, where $\bar{a}_{j i}$ is the conjugate of $a_{j i} \in \mathcal{O}$ (i.e. the Rosati involution with respect to μ). Note that $\bar{a}_{i j} a_{i j}$ is a positive integer unless $a_{i j}=0$. Hence $\bar{T}^{t} T=I_{g}$ is equivalent to that each row of T has one entry in \mathcal{O}^{\times}with the other entries $=0$. Therefore we have an exact sequence

$$
\begin{equation*}
\left(\mathcal{O}^{\times}\right)^{g} \hookrightarrow \operatorname{Aut}\left(E^{g} \otimes k, \eta\right) \rightarrow S_{g} \tag{9.12.4}
\end{equation*}
$$

This proves i).
Next we prove ii). We have already seen the case $g=2$ in 9.2 , hence we assume $g>2$ in the following. Note that $\operatorname{Aut}\left(E^{g} \otimes k, \eta\right)$ is a finite group.

Let $T_{0} \subset \mathcal{P}_{g, \eta}^{\prime}$ be the Zariski open subset of points representing PFTQs with supergeneral end. Let $x \in T_{0}$ represent a PFTQ $\left\{X_{g-1} \rightarrow \ldots \rightarrow X_{0}\right\}$ with respect to η (with $a\left(X_{0}\right)=1$). Then η induces a quasi-polarization \langle,$\rangle on M_{g-1}=D\left(X_{g-1}\right) \cong$ $A_{1,1}^{\oplus g}$ and we have $\left\langle M_{0}, M_{0}\right\rangle \subset W$, where $M_{0}=D\left(X_{0}\right)$. Since $a\left(M_{0}\right)=1$, by Fact 5.6.ii) we have $M_{0}=A v$ for some $v \in M_{0}$. Choose generators x_{1}, \ldots, x_{g} of the skeleton of M_{g-1} (see 5.7). Then we can write

$$
\begin{equation*}
v=\left(a_{1}+b_{1} F\right) x_{1}+\ldots+\left(a_{g}+b_{g} F\right) x_{g} \tag{9.12.5}
\end{equation*}
$$

where $a_{i}, b_{i} \in W(1 \leq i \leq g)$.
Let $\phi \in \operatorname{Aut}\left(E^{g} \otimes k, \eta\right)$. Then ϕ induces an automorphism $D(\phi)$ of M_{g-1} which preserves \langle,$\rangle . Thus D(\phi)$ can be expressed as an H-matrix $\left(\alpha_{i j}+\beta_{i j} F\right)$ $\left(\alpha_{i j}, \beta_{i j} \in W\left(\mathcal{F}_{p^{2}}\right)\right)$ with respect to the generators x_{1}, \ldots, x_{g} (see (5.7.1) for the definition of H).

Suppose $\phi(x)=x$. Then $D(\phi)\left(M_{0}\right)=M_{0}$, i.e. $D(\phi)(v) \in A v$. Hence there exists $c \in k$ such that

$$
\begin{equation*}
\sum_{i} \bar{\alpha}_{i j} \bar{a}_{i}=c \bar{a}_{j} \quad(1 \leq j \leq g) \tag{9.12.6}
\end{equation*}
$$

where $\bar{\alpha}_{i j}, \bar{a}_{i}$ are respectively the images of $\alpha_{i j}, a_{i}$ in k under the projection $W \rightarrow$ $W / p W \cong k$. If v is general enough, we have $\bar{\alpha}_{i j}=c \delta_{i j}$. Since $D(\phi)$ preserves \langle,$\rangle ,$ we have $c^{2}=1$ (hence $c= \pm 1$) when g is even, and $c^{p+1}=1$ when g is odd. Take a lifting $\tilde{c} \in W$ of c.

By $D(\phi)(v) \in A v$ we get

$$
\begin{equation*}
\sum_{i, j}\left(a_{i}+b_{i} F\right)\left(\tilde{c} \delta_{i j}+\beta_{i j} F\right) x_{j} \equiv \tilde{c} v+c_{1} F v+c_{2} V v\left(\bmod F^{2} M_{g-1}\right) \tag{9.12.7}
\end{equation*}
$$

for some $c_{1}, c_{2} \in W$. By writing down the explicit equations one sees (9.12.7) is a non-trivial algebraic condition unless $c= \pm 1$ and $\beta_{i j} \in p W$ for all i, j. Therefore either

$$
\begin{equation*}
D(\phi) \equiv \pm \mathrm{id}(\bmod p H) \tag{9.12.8}
\end{equation*}
$$

or there is a non-empty Zariski open subset $C_{\phi}^{\prime \prime} \subset T_{0}$ such that $\phi(x) \neq x$ for any $x \in U_{\phi}^{\prime}$.

Repeating the above argument inductively we can show that either

$$
\begin{equation*}
D(\phi) \equiv \pm \mathrm{id}\left(\bmod F^{g-1} H\right), \tag{9.12.9}
\end{equation*}
$$

or there is a non-empty Zariski open subset $U_{\phi} \subset T_{0}$ such that $\phi(x) \neq x$ for any $x \in U_{\phi}$.

Now we use [46, Lemma 2.5 and Remark 2.6], which in particular gives:
(*) Let $\phi \in \operatorname{Aut}\left(E^{g} \otimes k, \eta\right)$. If $p>2$ and $E^{g}[p] \otimes k \subset \operatorname{ker}(\phi-\mathrm{id})$, or if $p=2$ and $E^{g}\left[F^{3}\right] \otimes k \subset \operatorname{ker}(\phi-\mathrm{id})$, then $\phi=\mathrm{id}$.

Note that (9.12.9) is equivalent to

$$
\begin{equation*}
E^{g}\left[F^{g-1}\right] \otimes k \subset \operatorname{ker}(\phi \mp \mathrm{id}), \tag{9.12.10}
\end{equation*}
$$

hence implies $\phi= \pm$ id if $g>3$ or $p>2$.
When $g>3$ or $p>2$, let $U=\bigcap_{\phi \neq \pm i d} U_{\phi}$. Then the stabilizer of any $x \in U$ in $\operatorname{Aut}\left(E^{g} \otimes k, \eta\right)$ is $\{ \pm \mathrm{id}\}$. This proves ii).

Finally we consider the case $g=3, p=2$. In this case there is only one equivalence class of η because $H_{3}(2,1)=1$ (see [24, Theorem 4]). Hence we may assume $\eta=2 \mu^{3}$, where μ is a principal polarization of $E \otimes k$. Therefore $\operatorname{Aut}\left(E^{3} \otimes k, \eta\right)$ is isomorphic to the group of 3×3-matrices each row of which has an entry in \mathcal{O}^{\times} with other entries $=0$. Note that \mathcal{O}^{\times}is a non-commutative group of order 24 (isomorphic to a semi-direct product of the quaternion group with $\mathbb{Z} / 3 \mathbb{Z}$). Since $\mathcal{P}_{3, \eta} \cong \mathcal{P}_{3} \otimes k$ which only depends on $E^{3}[2] \otimes k$ (see 3.9), if ϕ acts trivially on $E^{3}[2] \otimes k$, then it acts trivially on $\mathcal{P}_{3, \eta}$. The converse also holds by the argument of ii).

If ϕ acts trivially on $E^{3}[2] Q k$, then we can write $\phi=\mathrm{id}+2 \psi$, hence ϕ corresponds to a diagonal matrix $\operatorname{diag}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right) \in G L_{g}(\mathcal{O})$ and we can write $\alpha_{i}=1+2 \beta_{i}$ ($1 \leq i \leq 3$). Since the order of α_{i} divides 12 , it is easy to check that $\alpha_{i}= \pm 1$. Hence ϕ acts trivially on $\mathcal{P}_{3, \eta}$ iff it corresponds to a diagonal matrix with ± 1 as its diagonal entries. This shows the first assertion of iii), and hence the degree of $\mathcal{P}_{3, \eta} \rightarrow \mathcal{S}_{3,1}$ is $2^{7} 3^{4}$. Q.E.D.

9.13. Different automorphism groups of polarizations.

Remark. When g is even, the structure of $\operatorname{Aut}\left(E^{g} \otimes k, \eta\right)$ (as a group) depends on η, as we have seen for $g=2$ in 9.2 above. This is also the case when g is odd. For example, when $p=17$, there are two supersingular elliptic curves E_{1}, E_{2} over k with $j\left(E_{1}\right)=8$ and $j\left(E_{2}\right)=0$. We have $\operatorname{Aut}\left(E_{1}\right) \cong \mathbb{Z} / 2 \mathbb{Z}$ and $\operatorname{Aut}\left(E_{2}\right) \cong \mathbb{Z} / 4 \mathbb{Z}$. Take principal polarizations μ_{1} of E_{1} and μ_{2} of E_{2} respectively, and let $\eta_{1}=p \mu_{1}^{3}$, $\eta_{2}=p \mu_{2}^{3}$ which are polarizations of $E_{1}^{3} \cong E_{2}^{3}$. Then by Proposition 9.12.i) we have $\operatorname{Aut}\left(E_{1}^{3}, \eta_{1}\right) \neq \operatorname{Aut}\left(E_{2}^{3}, \eta_{2}\right)$ (hence $\left.\eta_{1} \nsim \eta_{2}\right)$.

