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§ 0 Introduction

This article contains some samples from a bigger project which

A. Barlotti and I want to realize. Its aim is to show that classi-

cal principles of projective geometry and of the foundations of

geometry can be applied successfully for the study of loops.

In the second paragraph natural analogues of the classical funda-

mental theorem of projective geometry are proved for loops and

the abelian groups are characterized within the wide class of

loops with the help of the group of projectivities.

In the third paragraph it is shown that the transitivity of the

collineation group on the poi.nts of the 3-net which is associated

to a loop Q is equivalent to the fact that every element of Q

is a companion of a right and of a left pseudoautomorphism. The

stabilizers of the collineation group on the horizontal line 1h,
on the vertical line 1 and on the point (1,1) is determined

v
and the algebraic consequences for loops with transitive auto-

morphism groups are discussed.

In the last paragraph we present a classification for loops ana-

logous to the Lenz-Barlotti-classification for projective planes

and show that this principle which has been propagated by H. Lenz

with great success in the foundations of geometry can also be

applied for other classes of mathematical structures.
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§ 1. Quasigroups, nets and projectivities

Definition (1.1): A k-net is a structure consisting of

a set P of points and a set of lines which is partitioned into

k disjoint families Li(i = 1, •.• k) for which the following

conditions hold:

i) every point is incident with exactly one line of every

Li(i = 1, ... k };

ii) two lines of different families have exactly one point in

common;

iii) there exist 3 lines belonging to 3 different

are not incident with the same point.

L. and which

Lines of the same [different] families are said to have the same

[different] directions.

It is well known that to every quasigroup Q (see e.g. [ 8 ],

p. 16) we can associate a 3-net (see e.g. [ 8 ], p. 251) such

that the three families of parallel lines consist of the following

sets of points:

gh ={(x, g)! g constant, x f Q } horizontal lines;

gv = { (g, x)1 g constant, x f Q } vertical lines;

gt ={(x, y)! x·y = g ; x, Y f Q g constant} transversal
lines.

We shall denote by '0, 10 and ':t the families of horizontal,

vertical and transversal lines respectively.

Conversely every 3-net leads to a class of isotopic quasigroups

(see e.g. [ 6 ], p , 20).

Let N be a k-net, L a line in it, and one of the k fami-

lies of parallel lines such that

a =[L, ;£ ] assigns to a point

through x. The perspectivity

X f X. the point x = X n L •

L $ l: . A perspect i vity

x E L the line X of X
-1

a =[ 3( , L] assigns to
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y of a line onto a line is given by a set of consecutive

ai' or in other words y is the product of these a i:

y =
n
II
i=1

Cl.
l.

The projectivities of a line L onto itself in a k-net N form a group

ITL with respect to the composition of mappings. If H is any 9ther line

in N and a any projectivity from L onto H, then we have IT
H

= a-1IILa.

Therefore all groups of projectivities of a line onto itself in a k-net are

isomorphic as permutation groups, and we can speak of the group of pro-

jectivities of N •

If Q is a quasigroup then we define the group II of projectivities of

Q as the group of projectivities in a 3-net N which naturally arises from

Q • Clearly all the members of the isotopy class of Q as quasigroups

corresponding to N have IT as group of projectivities. The same holds

even for all quasigroups isostrophic to Q ([ 3 J, p. 13).

Therefore IT can be seen as a group of projectivities of an isotrophy

class of quasigroups. In any isotopy class of quasigroups there are loops:

if (Q, .) is a quasigroup and a, b are fixed elements of Q, then it

is well known that (Q,.), with (x·a).(b·y) = x·y, is a loop, with the iden-

tity b·a, and is isotopic to (Q,.). Therefore it is enough to study the

group of projectivities for loops.

Every projectivity a of a line L onto itself in a k-net N can be

represented as

n
a = II [L·_1, X·J L. J

i=1 l. l. l. l.

with L = L = L •
o n

We say that the representation Cl is irreducible (of length n) if

Li # Li +1 and J(i # JE i +1 • To a representation a and to the set of

points c = [ I i = s, ••• , m; E L} we associate the configuration

O( a , c ) consisting of all lines Li (the "generators" of 0 ), of the

points

(k) =a.
l.

k

II [L. -1' x· J [ a.. L. Ji=1 l. l. l. l.
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and of the lines (the non-trivial "projection lines") joining the
d i f'f 0 f 0 (k-l) d (k )1 erent pa1rs 0 p01nts a i an a i

The general problem of determining the group IT of projectivities of

a given loop Q seems to be difficult. If however the loop Q satis-

fies some additional algebraic properties then we can determine the

group IT of projectivities explicitly. Now we will compute IT for

loops Q having the inverse property. We remember that a loop Q has

the inverse property if and only if for every x there exist a and

b in Q such that

af xy ) = y

[6], p. 111.

and (yx Jb = Y for all y E Q

If G is a loop with the inverse property, then we will call P(G)

the group which is generated by the mappings

{x_ (ax Jb and x_ a(xb); G_ G}.

Let L respectively R be the set of all left translations x_ ax,

respectively of all right translations x _ xa • Let L(G) respec-

tively R(G) be the group generated by L respectively R. If G

is a group then P(G) is a product of L(G) and R(G); moreover

L(G) and R(G) are then normal subgroups of G

In any case L n R consists of translations x_ ax such that a

is contained in the centre of G; that is ax = xa for all x

This assertion follows from the fact that if a left multiplication

x _ ax belongs to R, then there exists an element

for every x the equation ax = xb holds; therefore

b such that
-1

(ax Ib = x ,

since a loop with the inverse property has a unique inverse element
-1

(see [6], p. 111). For x = 1 it follows ab = 1 and so b=a

Then we have ax = xa for all x E G .

If in particular G is a group R(G) n L(G) consists

of all translations wi th elements out of the centre of G. Moreover

in P(G) every element of L(G) commutes with every element of R(G);

since (glx)g2 = gl(xg2) holds for all x E G we have for the left
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and the right translation the equation

Theorem (1.1). The group IT of projectivities of a G with the

inverse property is isomorphic as permutation group to the group gene­
-1

rated by the group P( G) and the mapping 1: = ( x .. x : G .. G) •

The group P(G) is a normal: subgroup of II •

The mapping 1: operates on L u R P(G)

P
a

= (x xa) and Aa = (x ax) holds

=

in the way. For

TPaT = Aa-l and =

If 1: P(G) and this for instance is the case when G is a group ­

then n is the eemi.direct: product of P(G) and < T>

Proof. If N(G) is the 3-net associated to G then we can describe

the action of the different types of perspectivities within N(G) as

follows.
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Perspectivity Preimage Image

[ gh' 10 ] the point (x , g) the line xv

-1
[10 ,gh ] the line the point ( x, g)[gh'1O ] = xv

[gh ' 1- ] the point (x, g) the line (xg\

[gh' ';J. ] -1 = [ 1- the lines the point (xg
-1 , g), gh] xt

[gv' "9] the point (g, x) the line xh

[gv' i' = [0 ' gv ] the line xh the point (g, x)

[gv' '+ ] the point (g, x) the line (gx\

-1 the point (g,g
-1 x)[gv =[1 ' gv ] the line Xt

[gt ] the point (x, y) the line Yh
(with xy = g)

[gt
-1 the point (gx

-1 , x)'k-.J] , gt ] the line

[gt ,10] the point (x, y) the line xv
(with xy = g)

-1 [10 -1
[gt ,10 ] = , gt ] the line x the point (x,x g)v

We assume now that a is a projectivity of a line gh onto itself.

Then a can be decomposed in projectivities Yi of smallest length

such that the preimage line and the image line of Yi are always in

the set 19 u10 . We discuss now the possibilities for Yi and describe

the action on the points explicitly.
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then (x , g)Y i .. (x , g' ) ;

then (x , g)'(i
-1

[(xg)g' ,g'];

if Yi :: [gv' "J ] ["J

if '(i:: [gv'''4][,?-

]

]

then

then (g. x)y i

(g'. x);

-1
.... [g', g' (g x»);

if Yi :: [gh' ';f, ] [1- g' ]
v

then (x , g)Yi
-1

[ gI. g' (xg)] ; (1)

if Yi :: [gv' 1- ) [ ';{ then
-1

(g. x)Yi _ [(gx)g' • g' ];

if Yi :: [gh' 10] [10 ] [ • ] ]
-1then (x , g)y ... (gil, X g')

if Yi :: [gv'"fv] J [iO.gh ]
h ( ) ( I x-1• gil).t en g, x Y

i
.. g

If one piece of a projectivity is of the form:

(1) (1) (2)
[ gh'1O ] [ 10 • gt ] [gt • ] gt J

(1) (1) (2)
or [ gv' ] [ • gt ] (gt ·10 ] [10 • gt ]

then this 'lan be written in (reducible) form as

or respectively

Since (2) and (3) can be expressed as products of the last two pro-

jectivities given in (1) it is clear that the projectivity a can be

decomposed in projectivities Yi such that every Yi occurs in (1)

Every Yi acts only on the variable coordinate x. The image of x

arises under each Yi by a suitable composition of the following

mappings:

(3)

x _ a x, x .. x b. x
-1

x
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Therefore a has the same property and the theorem follows since for

every two elemente c. d we have (cd)-l = d-1c-1 [6 ]. p. 111.

(1.8)). 0

Let N be a 3-net which is embedded in an affine plane A . It should

be noticed that not every collineation of A leaving N invariant in-

duces a projectivity of N. In the classical cases also if A is des-

argues ian and N is the additive 3-net (cf. [21]. p , 61) besides

the translations of A the only co1lineations which induce projec-

tivities are the reflections on a point.

At the end of this section we give examples of loops G with the in-

verse property such that the map T = (x _ x-1 ; G _ G) is contained in

P (G).

Let Qm be the free loop over a set of generators with the cardinality

m . Let us denote by

fined by x = 1

to the relations

-1
xl •

-1= xxr

respectively x-1 the elements of Q de-r m
. Let N be the normal subloop belonging

= 1 • = 1 •

The factor loop = Qm/N is the free loop with the inverse property

over a set of generators with the cardinality m In holds

-1 -1=x =xr
([ 6 ]. p. 111). Let now M be the normal subloop

of m belonging to the relation
-1

[y (xy)]x=l. It is clear that in

the factor loop = the map T is contained in Since

the loop
m is not power-associative the stabilizer of )

m
on the

point (1.1) of the line 1h contains - besides T many other

elements different from the identity. for instance the maps

-1
Ta = [ x - (a x)a: - ] which are all different from T
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§ 2. The Staudt's Theorems for loops

In this section we give geometric characterizations for the abe­

lian groups in the wide class of loops.

Contrary to the case of projective planes there is no chance of

characterizing the whole class of abelian groups by the condition

that the stabilizer IT of the group of projectivities
x1,···,xn

IT fixing every element of an arbitrary n­tuple consists only

of the identity. In fact let G be an abelian group which is

not an elementary 2­group and which has s involutions. Then
-1x x is a projectivity ¢ 1 having s + 1 fixed points.

However for the class of abelian groups without involutions we

have a direct analogue of the classical Staudt theorem for planes.

Theorem (2.1). A loop G is an abelian group without involutions

if and only if the pointwise stabiZizer of IT on every two

distinct points consists only of the identity.

Before we give the proof of theorem (2.1) we notice the follow­

ing

Proposition (2.2). If an a 3­net N all those Thomsen configu­

rations close for which the three diagonals do not intersect at

the same point then the hexagonal condition holds (i.e. the Thom­

sen condition holds without restrictions).

Proof. If the hexagonal condition with respect

to the point a does not hold then the

l{, Ii point uE; in figure 1 does not belong

to the line aU3 . Then the line e through

u; u6 which belongs to the same family J as

aU3 intersects the two lines through a of

the other two families in two different

U
6

points, and meets the line u2u3 in a point

v
3(

¢ u3, u
2).

Let v4 be the intersection

of u1u4 with the line through v3 belonging to the same family

as au2• The points u6' u1' u2' v3, v4 and the lines u1v4, u2a
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and .e lead to a Thomsen configuration which satisfies our assumption

but which does not close. 0

Proof of theorem (2.1). Let us consider the assumptions of the Thom­

sen condition. Let V1, V2, V3 be three different vertical lines and

H1, H2, H3 be three different horizontal lines and assume that the

points V1 nH1 and V3nH3 are on a transversal line T1 and that

the points H1 n V2 and H2 n V3 are on a transversal line T2. Under

these hypotheses we want to prove that the points H2 n V1 and H3 n V2

are also on a transversal T3 • We can(assume because of proposition

(2.2» that the two points a =H2 n V2 and b = H2 n T1 are differ­

ent. Consider then the following projectivity:

fixes the points a and b ; therefore 02 = 1 •
62then x = x and therefore the transversal

carries the point V2 n H3 . Hence the Thomsen

Q is an abelian group.

x = H2 n V1
through x

holds and

The projectivity

Let be

line T
3

condition

Viceversa if Q is an abelian group then the stabilizer of IT on

one point has order at most two (cf , § 1) and the assert ion follows. 0

In order to characterize the whole class of abelian groups by the group

of projectivities we take a condition on the order of a stabilizer of

IT on a point.

Theol'em (2.3).

stabi l.iee» IT
a

G has order at

A loop G

Of a point

most two.

is an abelian qroup if and only if the

a in the g!'oup IT of projectivities of

Proof. If G is an abelian group then one part of the theorem follows

from theorem (1.1). Let us consider the other direction. In the iso­

topy class of G there exists a loop Q such that the multiplication

of Q is given by the natural multiplication in N (G) with respect

to the point 0 = 0,1) (which is chosen in an arbitrary way in N (G)

but which gives the 1 of the natural multiplication). Let N (Q)

be the not corresponding to Q, and let lv, lh' lt be the vertical,
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horizontal and transversal lines passing through the point (1,1).

The hexagonal condition for the point (1,1) is equivalent with the

are given by the projectivities

The maps

and

be the stabilizer of IT on (1,1).
-1 -1

and (x, 1) (xl ' 1) (where xr
right and the left inverse of x)

fact that every element in Q has exactly one inverse ([ 21], p. 54).

Let IT(Q) = IT be the group of projectivities of Q and let IT(l,l)

-1
(x, 1) (x r ' 1)

are respectively the

and respectively

Since \IT(l,l) I 2 holds, it follows that in N the hexagonal

cond.i t.Lon holds for the point 0 = 0,1).

Since IITx I 2 for every point x N(G) and every point x can be

chosen as origin for a loop belonging to the isotopy class of G, the

hexagonality condition holds in general and the isotopy class contains

power associative loops only ([ 1 ], thm. 3.5, p. 406).

and in the netfor every

If IITx , = 1

I ITx I = 1

for one point

x

x then IT is sharply transitive , i.e.

the condition of "parallel

diagonals" holds and ([21 ] , p. 60 ) the loop Q is a group such that

every element different from 1 is an involution. Therefore Q is an

elementary abelian 2-group and the theorem holds.

We assume now that for every x

associative loop. Let G1, G2, G3
class X , let a be a point on

classes of lines. Let us consider

is IITxl = 2 , and that Q is a power

be three lines belonging to the same

G1 and 1) , 3 the two remaining

the projectivity:

the two lines (a )c

Let G4 be the line

= [ G1, 19 ][19 ' G2 ][G2' J ][ J ' G3][G3 ' 1f) ] ;

and (a)[G1' JJ have exactly one point s in common.

of X through s •
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The projectivity

is contained in the stabilizer ITa of the point a

Let us first choose a = 0,1}, Gi

G1 = lh' G3 = g'h, G2 = G4 = g 'h and G1 t- G2 F G3 t- G4 t- G1

and if) = '0 , J = ';{ . Then is equivalent to
-1g' = g' gil

Since Q is power associative it follows gil = g,2 • For any point

(x, 1) E GI we have then

6(x, 1) = (w, 1)

with xg' = ng,2 and ng' = w. Since \IT(1,1)f = 2 then for every

x is either w=x or w=x-1. If it is w=x for every x then in Q

holds one Bol condition. Assume that there exists some x E Q with

is an involution then we have

and then it
-1

x = g'

, therefore a contradiction.
-1= nand ng' = x and get

following rule of compu-

xg'

thexand every

-1
g' t- g' we can choose

-1
and g' = w = g'

g'

Now if
-2

n = g'

g'If

x6 = x-I t- x

would follow

for every involution

tation

(xg') g'
-1= x (1)

Let us choose now on the other hand a = (l,U, G. E 10 ,
l

G1 = lv, G = gil G2 = G4 = g' and G1 t- G2 t- G3 t- G1 and3 v' v

19 3 = 1- , then 6 E ITO , 1) is equivalent with gil = ,2, g

us that we have either a further Bol condition or that

For any point (1, x) E G1
g'x =g,2n and g'n =w

for every x

6we have then (1, x) = (1, w) with

An analogous computation as before shows

w = x-I holdS

and that there exists some x E Q such that x6 t- x-I = x

In the second case we obtain for every involution g' and every x the

following relation

g' (g'x)
-1= x
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We choose now a = 0,1), Gi E , Gl = 1h, G2 =gh , G - gil3 - h
G2 =g'h' in such a way that all the G. are different and it holds

l

19 =1) 5 = ';f . In order to have () E JI(l,l) we must have

g' = 1; gil , 1; gil' = 1 and therefore g' = gil' -1 gil

If (x , 1) E G1 is any

x(gll,-l gil) = T1g" and

spoint, then we have (x, 1) = (w, 1) with
-1

T1g'tI = w • As before, because of (x .. x )EJI(1,1)'

it follows that w = Moreover if we choose g'll involutory we

obtain that for x = gil' holds w = gil' for x = g'" •

Then we have

gil' (gil' gil) = gil

for every involutory element gil' and every element gil • But (3)

contradicts (2).

(3)

Finally we choose a = (1,1), G·E 10l

G4 = in such a way that all the G.
l

are different and it holds

= and j = ';f • In order that () fixes the point (1,1) it is ne-

cessary that g' = gil g"I-1

For (l,g'tI), where gil' is any involution, we obtain by a computation

analogous to the above the relation

(gil gil I )g" I = gil

for every element gil • But (4) contradicts (1).

(4)

Therefore in the loop Q two Bol conditions are fulfilled and so all

three Bol conditions. Then the loop Q is a Moufang loop ([21 ], p. 57-58).

Now it follows (see for instance [1], p. 416) that every loop of the

isotopy class of Q is a Moufang loop. Asa Moufang loop Q is di-asso-

ciative (see [ 6 J, p , 117).

We choose now a = (1,1), G E , G1 = Ih' G2 =gh ' G3 =gh ' G4 = gh'

in such a way that all the G. are different and = 10 , 3 = 1-
l -1

In order that Ii fixes the point (1,1) must have g' = gil' gil If

in Q the Reidemeister condition is not fulfilled then three follows
Ii -1 -1

(x,1) = (x , 1) for every x and there exist x with x t x •
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Now we have -1x( g'" g") = ng" and ng'"
-1= x

With x = g" it follows from these that -1 g") ng"g"(g'" = and

then [ (g"
; -1 Jg,,-l -1 and therefore g" g",-lgil' )g" =(ng" )g" n =

and then (g" -1 g"-l and so g" g,,-l This givesgil' )g"l = =
us a contradiction since we have assumed that there is an element in

Q different from its inverse.

Hence in Q the Reidemeister condition holds and Q is a group. From

for every

ois abelian.

since ITO,l)
automorphism

the theorem (1.1) we know that the stabilizer 1) of the group of
-1 •projectivities consists of the mappings x .. a x a

-1a E Q and of the mapping x .. x which in our case is different

from the identity. If G would not be abelian then the only inner auto-
-1

morphism different from the identity should be the inversion x .. x
-1

has the order two; but a group for which x .. x is an

A further very easy characterization of the abelian groups is given by the

following

Corollary (2.4). A loop Q is an abelian group if and only if the

group IT of projectivities of Q contains a sharply point transitive

subgroup of index at most two.

Proof. The stabilizer of a point has order at most two. Hence the re-

sult follows from theorem (2.3).

At the end of this section we want to exhibit a theorem which is

analogous to the theorems which characterize the pappian planes as planes

in which every projectivity can be represented by a chain of length

less or equal 4 (c f , [ 21]. p , 139).

Theorem (2.5) A Loop Q is an abelian group if and onLy if the group

IT of projeativities aontains a subgroup N of index 2 in

every p1'Ojeativity can be represented by a ahain the Length 0

01' 4 •

Proof. If Q is an abelian group then the group of projectivities
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is known (see § 1). For N we can take the group of all maps x ax.

-1
Let Q be a loop satisfying our conditions. The map ae :x x-t

where 1 = is a projectivity such that (if at t 1) its shortest

representation has length six. If at is the identity then ele-

ment of Q'[I} is an involution and the net N(Q) satisfies the con-

dition of the parallel diagonals. From [ 21 J p . 50 follows that Q is

an elementary abelian 2-group. Hence we may assume that a t 1 holds.

Every projectivity of the line lh of lenght 4 is either

x _ xa a t 1

-1or Pa • Therefore N operates fixed point free on lh' i.e. only the

identity of N has fixed points. If N would not operate transitively

on lh then N would have (since IT is transitive) two distinct domains

D1 and D2 of transitivity. Assume for instance (1,I)ED1• One has

IT = N<:at > . Now (1,I)ae = (1,1) and hence = D1 = which is

a contradiction to the transitivity of IT • Therefore N is a sharply

transitive normal subgroup of IT • Now corollary (2.4) gives the

result. 0
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§ 3. The collineation group of a loop.

The collineation group E of a quasigroup Q is the (full)

collineation group of the 3-net N(Q) belonging to Q (*). There-

fore E is the same for every quasigroup out of the same isotopy

class, and we can assume that Q is a loop. The group E has a

normal subgroup f of index 6 in E which maps into itself

every class of parallel lines; this subgroup will sometimes be

called the group of collineations of N(Q) which preserves the

directions. If the group f contains a subgroup which leaves

every line out of one given class invariant and operates transi-

tively on the line as a point set, then Q is a group and vice-

versa ([ 4 ] p. 189). For non-associative loops then E cannot

contain such a transitive "glide group" and the determination

of L is difficult (cf , [ 3], chap. V ).

On the other hand the determination of the stabilizers f l ' f l
v 11

and on the lines I
h

and the point (1,1) is easy.

A permutation of a loop Q is called a right respectively

pseudoautomorphism if there exists at least one element c of

Q , called a companion of such that for every x , y

respectively

holds.

If is such a one-sided pseudo-automorphism then we have 1
n = 1 •

:a it is clear which class of one-sided pseudo-automorphism

is considered or if it does not matter whether a pseudo-automorphism

is one-sided or two-sided. we sometimes only use the term pseudo-

automorphism and its companions • If Q is a loop with the inverse

property then everyone-sided pseudo-automorphism is two-sided

([ 6 ], p. 113); the same holds naturally for commutative loops.

(* )
A collineation is defined to be a permutation of this points

of N(Q) such that a line is always mapped on a line.
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We have the following

Theorem (3.1). Let Q be a and N(Q) the net to Q

Let us denote by r the group of al.L col.l-ineat-ione of N(Q) which

the set of horizontal lines and the set of lines invar-

iant. Then the stabilizer r
1

on the Iv consists of

the set of mappings (x, y) (x aV, yah ) where a is a right pseudo-
v

automorphism of Q and a
h
= a T denoting by T the right trans-vee

Zation by a companion c of av Likewise the stabilizer r
1

sists of the set of mappings (x , y) (xaV , yah) where ah
pseudo-automorphism of Q and a

v
= ah A

C
' denoting by A

C

left translation by a companion c of a
h

The stabilizer r
lv

(respectively r
l

) is exactly then transitive

on Iv ( reep; I
h)

if every elemenB c"# 1 is a companion of a right

(respectively pseudo-automorphism of Q

If Q

r 1 )
h

if

has the inverse property then the stabilizer r
1

(respectively

operates exactly then on Iv (respectively I
h)

Q is a MOlA,fang loop.

If Q is a group then r consists of the maps (x , y) (c x
a , ya d )

where c, d E Q and a is an automorphism of Q •

Proof. Let a be a collineation out of r 1 and (x, y)o =
(xaV, yah ). The point (x , y) lies on theVline (xY)t; this

also contains the point (1, x Y ). Since a leaves invariant also the

set of the transversal lines it follows

since With x = g and y = 1 we have

Therefore if we put = c we have

and av is a right pseudo-automorphism with companion c
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Conversely let av be a right pseudo-automorphism of Q with com-

panion c • We shall prove that the mapping

is a collineation of N(Q) • It is clear that the image of a vertical

(respectively horizontal) line is a vertical (respectively horizontal)

line. Let now (x, y) be such that xy = d where d is a fixed ele­

ment. Then xav (yaV c) = (x y )aVc = davc and so the image of a

transversal line is a transversal line and (.) is a collineation be-

longing to r
1
v

since av is a right pseudo-automorphism.

The second statement of the theorem is a trivial consequence of the

first since r
1

is exactly then transitive to the points of
v

(1,1) can be mapped by r 1 on every point (1, x) with x E Q
v

1
v

if

any point of the line 1 (c f , [ 21 t- p. 50 ) Fromv
thm. 2.3 , follows now that b is a Moufang element.

is a Moufang element and Q is then a Moufang loop

lemma 2.2) • 0

If Q has the inverse property then the group r 1 is transitive on

1v exactly then when every element is a companionvof a pseudo-auto-

morphism. Then the loop Q is isomorphic to the isotopic loop defined
-1

by x. (b y) = x'y since there is a collineation moving 0,1) to

[ 6 J, p , 115 ,

Then every element

([ 6 J, p , 113,

It is interesting to notice that the pseudo-automorphisms and their

companions have a deep geometrical meaning and appear in such a natural

way in the study of the collineation group of a loop as the above theo-

rem shows. Also the automorphism group A(Q) of a loop Q has a natu-

ral geometric interpretation. It is clear that we have a natural in-

jection from A(Q) into the stabilizer r(l,l) of the direction

preserving group r, namely

q> : a

The following theorem shows that q> is even a bijection.
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Theorem (3.2) • In every Loop Q the injection gives an isomor­

phism between the automorphisms group A(Q) and the stabiLizer r(l,l)

of the direction preserving collineation group r on the point (1,1).

One has f O , l )

and

=
CI a{(x.y) _ (x , y c)}

where CI is a right pseudo-automorphism of Q and c is a companion

of CI If then we have

A CI a
0,1) = (1 , 1 c) = 0, c) = 0,1)

i.e., c = 1 and CI is an automorphism. o

The full stabilizer of the collineation group r on the point (1,1)

can be computed for more special classes of loops, namely for loops

having the inverse property or - expressing the same property geometri-

cally - if in the corresponding net of Q bothBol condition

hold for the point (1,1).

Theorem (3, 3). Let Q be a loop having the inverse property. Then the

stabilize:" E
O,l)

of the fuUcoUineation group E of Q is the direct

product of r(l, 1) Aut Q with a group 8 isomorphic to the syrtmetric

group 53' of order 6; the grou.p e can be generated by the two

following invoZutory ool/l.ineatione:

-1= [(x,y) _ (xy,y )] -1
'J :: [( x,y) _ (It , xy ) ] •

The mappings and v centralize every element out of r(l,l)

and are collineations since the inverse property holds.

Since in Q holds (xy)-1 = y-l x-I ([ 6 J, p , 111) one has uv '¢ 1 and

(IlV) 3 = 1 • therefore e has order 6 and acts on the three sets

of horizontal, vertical and transversal lines as the symmetric group 53' 0
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We are going now to study under which circumstances the direction pre­

serving group r of collineations of a loop Q has some transitivity

properties. The next theorem shows that the class of loops for which

the collineation group r is transitive is very large.

Theorem (3.4). If Q is a loop such that every element is a companion

of a right and of a left pseudo-automorphism then the gpoup r of colli-

neations of Q which presepves the directions is point tPanSitive, and

irioeoerea .

Proof. From the theorem(3.l) we know

a a= [(x.y) (x • y a)}

= [(x.y) (b Sx •

where a is a right and

b are companions of a

S is a left pseudo­automorphism

and respectively of S

and a and

The complex = r 1
v

as a(x. y) (b'x • (y

r 1 b r consists of the mappings
h

sa) ).

Therefore we have =[(b. as)} where b and a are freely

chosen in Q. and so the result follows. D

Theopem (3.5). Fop a loop Q the foUowing tihree conditions are

equivalent:

1) The direction preeervinq coUineation group is point transitive

on the net N(Q).

2) Every element Of Q is a companion of a right and of a left pseudo-

automorphism Of Q •

3) Every loop which is isotopic to Q is isomorphic to Q.

Proof. The equivalence of 1) and 2) is given by theorem (3.4). If

Q' (with the identity 1') is isotopic to Q then Q' belongs to

N(Q) (but (1,1) t (1'.1'». If there is a collineation e.
mapping (1,1) into (1'.1') then Q is isomorphic to Q' and vice­

versa every isomorphism between Q and Q' induces a collineation
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o

The theorem (3.5) is a solution of the problem presented in [ 6 ],

p. 57 as an unsolved problem: Find necessary and sufficient conditions

for the loop Q in order that every loop isotopic to Q be isomorphic

to Q. An algebraic expression for the required condition is that every

element of Q is a companion of a right and"of a left pseudo-automorphism.

Remark (3.6): Let Q be a loop such that every element of Q is a

companion of a right (respectivelY left) pseudo-automorphism. If the

collineation group of Q contains an element which interchanges the

set of the horizontal lines and the set of the vertical lines then every

element of Q is a companion of a left (respectively right) pseudo-

automorphism and the collineation group r of Q which preserves the

directions is point transitive.

The geometrical theorems (3.1) and (3.4) can be applied to obtain

algebraic results on loops with transitive automorphism group (cf. for

definition [ 6 J, p. 88).

Theorem (3.7). If Q is a loop with a transitive automorphism group

then exaatly one of the three following properties oaaur:

1) Only the identity is a companion of a pseudo-automorphism, i.,«, every

pseudo-automorphism is an automorphism,

2) Every element is a aompanion of a right (respeatively left) pseudo-

automorphism, but no element I 1 is a aompanion of a left (respea-

tively right) pseudo-automorphism.

3) Every element of Q is a aompanion of a right and of a lef't: pseudo-

automorphism.

Since every element different from 1 can be mapped by an auto-

morphism on every other element different from 1 the stabilizer r1
respectively r

1
is exactly then transitive on 1v respectively

when there an element different from 1 which is a companion.

But if r
1

respectively r
1

is transitive then every element of Q
v h

is a companion. 0
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Theorem (3.8). If Q is a loop

then either the right nucleus or

identity or every element of Q

pseudo-automorphism.

with a transitive automorphism group

the left nucleus consists only of the

is a companion of a right and of a left

Proof. The assertion follows from the previous theorem if we remember

that for every element c contained in the right nucleus respectively left

nucleus the equation (x'y)c = x(y·c) respectively c(x'y) = (c.x)y

holds. 0

Theorem (3.9). If Q is a proper commutative Moufang loop then the

full collineation group of Q is not point transitive.

cannot operate transitively on

Q which is

Q ( [ 6 ], p. 115, thm 2.2) r
1
v

since the companions of automorphisms lie in the nucleus of

Proof. We consider the stabilizer r
1

of the group r of all collinea­

tions which leave the set of verticalvand the set of horizontal lines

invariant. Since every pseudo­automorphism of Q is an automorphism of

1
v

a proper subgroup of Q ( [ 6 J, p. 114, thm. 2.1). o

From (3.9) and (3.5) follows

Proposition (3.10) (c f , [1 ], [2 J and [6] , r­ 58).

A necessary and sufficient condition that every loop isotopic to a Mou­

fang loop Q be commutative is that Q be an abelian group.

Theorem (3.11). Let Q be a loop which possesses the inverse proper-

ty and has a transitive automorphism group. Then either the left nucleus,

the right nucleus and the middle nucleus consist only of the identity

which is the only Moufang element of Q or Q is a proper non commu-

tative Moufang loop in which every element i ea compani.on of a pseudo-

automorphism or Q is a group. If the nucleus of Q consists only of

the identity then the collineation group of Q which preserves the di-

rections consists exactly of the maps:

(x, y) (xa, ya)

where a is an automorphism of Q ; also the full collineation group

of Q leaves the point (1,1) invariant.
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Proof. Since Q has the inverse property, the left, middle, and the

right nucleus coincide (cf. [ 6 ], thm. 2.1, p. 114). Now if the right

nucleus is not equal 1 then the stabilizer r 1 operates point transi­

tively and every element of Q is a companion of X pseudo­automorphism of

Q • Therefore Q is a Moufang loop ([ 6 ], lemma 2.2, p. 113). If

Q is not a group then the first part of the assertions follows from

theorems (3.8) and (3.9).

If 6 is a collineation of N(Q) which maps (1,1) on (m, n) then

Q is isomorphic to the isotopic loop (Q, +) where the composition +

is given by

(x • m) + (n • y) = x • y

with the identity n-m ([ 21 ], p. 48). Therefore the isotopic loop

has also the inverse property and it follows that m and n are

Moufang elements ([ 6 ], thm. 2.3, p , 115). But the only Moufang

element of Q is the identity and the last assertion follows with

(3.3). o

Corollary (3.12). Let Q be a connected topological loop which possesses

the inverse property and which is realized on a 1­dimensional manifold.

If Q has a transitive automorphism group then either the left nucleus,

the right nucleus and the middle nucleus consist only of the identity

which is the only Moufang element of Q or Q is a group (which is iso­

morphic to OR. +) or to S02) •

Proof. From theorem (3.9) we have to exclude that Q is a proper non­

commutative Moufang loop. This follows from [ 10 ], thm. (6.4) c) since

Q is power associative. o

Theopem (3.13). If (R, +, .)

that its multipUcative Loop

(R, +) is either an abeLian

nucl-eus of the additive wop

With the previous results we can also obtain some properties of division

neorings (for the definition of this structure see [13 ] ,p. 507).

is a finite pLanap division neoring such

is associative then the additive Loop

or the right and the middle

(R, + which must have the inverse ppo-
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that the additive (R, +) possesses the in-

compaat, finite

is one of the three

quaternionsJ or the second
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perty consist of the in (R, +)

has no Moufang s o.

Proof. From Th(I I, 8) in [13 1 we know that the loop (R, +) is

commutative and has the inverse property. Now the assertion follows from

t hm, (3.9) and lemma 2.2 of [ 6 ], p , 113. 0

From (3.13) we can deduce by help of (3.9) the

Remark (3.14) . If (R, +) is a proper additive loop of a finite planar

division neoring (R, +, . ) whose multiplicative loop is power associa­

tive then the group r which preserves the directions leaves the point

(1,1) fixed and operates transitively on the other points of a line through

(1,1). Also the full group of collineations of (R, +) leaves (1,1) fixed.

Any division neoring F which has an element a 0 contained in some

additive subgroup possesses a prime subfield K lying in the center of

F. The characteristic of K is called the characteristic of F (cf.

[ 12 ] pp , 38­40).

A division neoring (R, +, . ) is called a topological division neoring

if the operations "+" and fl fl and all the binary operations which arise

from solving the equations in (R, +) and (R, .) are simultaneously

continuous in both variables.

Theorem (3. 15).Let

such

verse property.

(.4). If the characteristic of R is different from 3 then the neot-inq

is either a or the the right and the middle of

the additive consist of the identity which is the Mou-

fang element: of (R, 1').

(B). If (R, +, .) is a connected, looall.u

neoring then either (R, +, .)

cal: fields (real: numbere, compl-ex numbers,

alternative of (AJ
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Proof. From [12 ] , (1.18), p , 41 (cf. also [21 ] 3.4 and

[12 1 (4.13» follows that (R, + cannot be a proper Moufang loop.

The rest follows from thm. (3.11) since (R, + has a transitive

group. o

We notice that there exist planar associative division neorings which

possess an additive loop with the inverse property and which are homeo­

morphic to the real line ffi (cf. [ 22 ], pp. 459­461, § 13). The whole

collineation group of such a loop leaves in the net N(Q) the point

0,1) fixed.

Paige gave necessary and sufficient conditions that the additive loop of

an associative neoring is a commutative Moufang loop ([ 20 1thm. II,ll).

From (3.11 (cf. also [5], 70 corollary 2» follows that this con­

dition can be satisfied only if the additive loop is an abelian group.

We study now the collineation group of a Moufang loop.

Theorem (3.16). Let Q be a Moufang loop and N(Q) the net belonging

to Q. Let us denote by E the full ool.l.ineat-ion group of Q and by

r the subgroup of index 6 in 1: which l.eaves the set of horizontal.

l.ines and the set of vertical. l.ines invariant. E (respectively r)

operates transitively on the flags (respectively points) of N(Q) if

and only if every element c t 1 of Q is a companion of a pseudo-

automorphism of Q • On the set of lines E operates always transitively.

Proof. The mappings

Ya = [(x, y) .... (ax, ya ) ; a f Q J (0 )

are collineations of N(Q). For it is clear that 'fa maps the verti­

cal (respectively horizontal) lines on vertical (respectively horizontal)

lines. Let us consider now all points (x, y) with xy = d where d is

a fixed element. Then we have ([ 6 ], p. lIS, lemma 3.1)

(ax )( ya ) = [a (xy ) J a = ada

and so the image of a transversal line is a transversal line.
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The set of the collineations (0) operates transitively on the set of

the vertical (respectively horizontal) lines. The group E contains

(see thm. (3.3» an involution which maps the set of the transver­

sal lines onto the set of vertical lines such that =1 • Let
t v

now W be any transversal line;then there exist a Ya with

and we have

one has

versals.

(l =
t
E rand

(1 )Ya = wJ.I = (l )J.IYa
v t

wJ.IJ.I =W Since r is a normal subgroup of E

r operates transitively als,o on the set of trans­

Let us denote by the subgroup of r generated by (0). Since

< r
1

> r we can map every point (x, y) on (1,1) exactly then

when element of Q is a companion of a pseudo­automorphism of

Q; using a suitable Ya we obtain (x, y)Ya = (1, t) and the rest

of the statement follows from the theorem (3.4). 0



137

§ 4. The Lenz classification for loops and 3-nets.

Let N be a k-net (3 k). A translation a is a collineation

of N which preserves the directions and leaves invariant every

line of a direction 3( • If a 1 we shall call the direction

X the axis of a.

Remark (4.1) . If a 1 is a translation of a k-net N, then

a has no fixed points.

Proof. If s is a fixed point of a then every line incident

with s consists only of fixed points. 0

A collineation B of a k-net N (3 k ) which preserves the

directions will be called a homology if all elements different

from 1 of the group < B> generated by B have exactly one

fixed point p , the centre of B •

The translationswith the same axis X and all homologies with

the same centre p form according to the case a subgroup T(J()

and S(p) of the group r of all collineations which preserve the

directions. We shall call the group T(X) and then also the

axis 3( transitive if the direction 3C contains a line G such

that T(3t) is transitive on the points of G ; in this case

operates sharply point transitively on every line belonging to 3(

In an analogous way we shall call the group S(p) of homologies

and then also the centre p transitive if S(p) is transitive on

the points, different from p ,of a line G incident with p; then

the group S(p) operates sharply transitively on the points diffe-

rent from p of every line incident with p.

Theorem 4.2. If N is a 3-net then N bel-onqs to exaat"ly one of

the foLLowing seven Lenz classes:

Ls I , - In N there does eiciet: neither a transitive axis nor a tran-

sitive aentre.

I.2. - In N there is no transitive axis, but there exists exaat"ly

one transitive centre.
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I. J. - InN there exists no transitive axis, but on every 'line there

exists exactly one transitive centre.

I.4. - In N there exists no transitive axis, but the transitive centres

of N are exactly the points of one line of N •

I.5. - In N there exists no transitive axis, but every point is a tran­

sitive centre.

II. 1 - In N every direction is a transitive axis,but there is no tran­

sitive centre.

II.2 - In N every direction is a transitive axis and every point is

a transitive centre.

If Q is a loop then we will say that Q is of Lenz type A.a. where

A E [I.II] and a E fl.2.3.4.5} if the net belonging to Q has the

Lenz class A.a.

Let Q be a loop with respect to the multiplication" " The opera-

tions (a. b) -0 avb : Q -0 Q respectively (a. b) -0 alb Q -0 Q which

are defined by a-I a x b ) = b respectively (a ..... b) a = b give us on Q

two further loop structures; one can assign in such a natural way to

(Q•• ) the right and the left reversed loop.

Under the cardinality of the isotopy class 1(Q) of a loop Q we

understand the number of different isomorphy classes of loops within

I(Q).

Corollary (4.3).

Lenz classes 1.1

Every loop Q

till 11.2.

belongs to exactly one of the seven

A loop Q is of type

loop out of the isotopy

of automorphisms.

1.1 if and only if Q is not a group and no

class 1(Q) admits a sharply transitive group

A loop Q is of Lenz type 1.2 if and only if the cardinality of the

isotopy class I(Q) is at least five and 1(Q) contains a loop ad-

mitting a sharply transitive group of automorphisms.
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A loop Q is of Lenz type 1.3 if and only if the cardinality of the

isotopy class I(Q) is exactly two, I(Q) contains a loop Q+ admitting

a sharply transitive group of automorphisms and no element # 1 of Q+

and its reversed loops is a companion of a pseudo-automorphism.

A loop Q is of Lenz type 1.4 if and only if the cardinality of the

isotopy class I(Q) is exactly two, I(Q) contains a loop Q+ admitting

a sharply transitive group of automorphisms and every element of Q+ or

of one of its reversed loops is a companion of a suitable right (respec-

tively left) pseudo-automorphism.

A loop Q is of Lenz type 1.5 if and only if Q admits a sharply

transitive group of automorphisms, every loop isotopic to Q is iso-

morphic to Q and Q is not a group.

A loop Q is of Lenz type 11.1 if and only if Q is a group which

cannot be seen as the additive group of a vector space (over a field).

Q is of Lenz type 11.2 if and only if Q is the additive group of a

vector space (over a field).

Remark (4.4). If Q is a loop of Lenz type 1.2 or 1.3 which ad-

mits a sharply transitive group of automorphisms. then every pseudo-

automorphism of Q is an automorphism.

This remark follows immediately from (4.3); if Q would admit a proper

rof the group

would be differenta

r
1

or r
1

h v
of all collineations which preserve the directions would be transitive

pseudo-automorphism a then every companion of

from 1 .Then,however, the stabilizer

on the line 1h or on the line 1v (cf. 3.1). o

For the proof of (4.2) and (4.3) one uses the following

Lemma (4.5). Let Q be a loop and N(Q) the net belonging to Q;

assume that in N(Q) there exists a transitive axis 3E: Then N(Q)

belongs either to the Lenz class 11.1 or to the Lenz class 11.2. The

net N (Q) belongs to the class 11.1 exactly then if Q is a group
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which cannot be seen as the additive group of a vector space; N (Q)

belongs exactly then to the class 11.2 if Q is the additive group

of a vector space (over a field).

Proof. From our hypothesis follows that every loop belonging

to N(Q) is a group isomorphic to Q and that every direction is a

transitive axis ([ 4 J, p. 189). If N (Q) does not belong to the

class 11.1, then every point p of N (Q) is a transitive centre

since the collineation group of N (Q) is point transitive. Thus N (Q)

belongs to II. 2. In this case every group Q which belongs to N (Q)

admits a sharply transitive group A of automorphisms.

The semidirect product 8 = QA can be seen as a collineation group

of N(Q) which is contained in the stabilizer r l of the group r
h

of all collineations which preserve the directions, and which operates

on lh sharply transitively. The nearfield F associated to 8 has

as additive group just Q and therefore Q is abelian ([ 16 J
(8.2» • As a commutative group with a transitive automorphism group

Q is the additive group of a vector space over a field ([ 6 J '
thm.8.1). o

Proof of (4.2) and (4.3). Let N be a 3-net such that no direction

is a transitive axis, but such that there exist two different transi-

tive centres and

We assume first that PI and

net N Then the stabilizer

which preserve the directions

P2 are incident with a line L of the

r
L

of the group r of all collineations

is point transitive on L The line L

can be seen as the line 1h respectively

either Q or one of the reversed loops of

1v of a loop

Q belongs to

Q

N

such that

Since every element of Q is a companion of a left pseudo-automorphism

respectively of a right pseudo-automorphism of Q, the group r ope-

rates point transitively on lv or Ih (3.4). Thus N belongs either

to the class 1.4 or to the class 1.5 according to the case whether

there exists an element # I in Q which is companion of a left and

of a right pseudo-automorphism or not.
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If in N there is no line incident with the transitive centres P1

and P2' then the collineation group r is transitive on each one of

the three sets of the horizontal 1ines.of the vertical lines and of

the transversal lines. If N does not belong to the class I.5 then

on every line of N there exists exactly one transitive centre. In

this case N belongs to the class I.3.

If a loop Q is of Lenz type I.1 no loop in the isotopy class I(Q)

admits a sharply point transitive group of automorphisms (3.2).

If a loop Q is of Lenz type I.2 then the collineation group r of

the net N(Q) which preserves the directions, has at least five diffe­

rent orbits on the set of points. From [ 21 J p. 50 (cf. also (3.5»

follows that the isotopy class I(Q) has at least five different iso­

morphy classes of loops. From (3.2) is clear that the isotopy class

I(Q) contains a loop admitting a sharply transitive group of auto­

morphisms.

If a loop

of the net

Q is of Lenz type I.3 then the collineation group r

N(Q). which preserves the directions. operates transi­

tively on the points which are transitive centres. If we take a transi­

tive centre as the point (1.1) for a loop Q+ which belongs also to

N(Q) then Q* admits a sharply transitive group of automorphisms

(3.2). Therefore r is transitive on those points of N which are not

transitive centres. Thus r has on N exactly two point orbits and the

cardinality of the isotopy class I(Q) is exactly two.

The rest of the assertions in (4.2) and (4.3) follows from (3.2).

(4.5) and (3.5). D

Remark (4.6). Let Q be a loop which admits a sharply transitive

group of collineations. Then the cardinality of the isotopy class I(Q)

is different from three and four.

Another characterization of loops of Lenz type I.4 is

Remark (4.7). A loop Q is of Lenz type I.4 if and only if the iso­

topy class I(Q) contains a loop Q* admitting a sharply transitive
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group of automorphisms and in Q. or in one of its reversed loops there

are elements t 1 which are companions of right (respectively left)

pseudo-automorphisms but no elements t 1 which are companions of left

(respectively right) pseudo-automorphisms.

The Lenz class 1.1 contains not only loops satisfying only fewalge-

braic rules (e.g. the free loops) but also for instance all proper Mou-

fang loops admitting no transitive group of automorphisms. This follows

e.g. from (4.4) and from the fact that in a Moufang loop there are always

elements different from 1 which are companions of pseudo-automorphisms

[ 6 ], p , 113 lemma 2.2 and [ 5 ], p , 70. Therefore every connected

Lie Moufang loop is of Lenz type 1.1 (cf. [ 17 ] ). Also every finite ,or

every commutative, proper Moufang loop M is of Lenz type 1.1; other-

wise M would admit a sharply transitive group of automorphisms. Then M

would be a simple loop such that no element has order 3 ([ 5 ],

p. 70, cor. 2). If M is commutative we have a contradiction to (3.9)

because of [ 6 ] p , 113 lemma 2.2 or p. 161 thm. 11.4. If M is

finite then every element of M would be an involution ([ 9 J, p , 387)

and this emplies again that M is commutative.

Also the Lenz class 1.2 contains many examples of loops. For instance

let (R, +, .) be a division neoring with associative mUltiplication such

that the additive loop (R, +) possesses the inverse property but is not

a group. If either the characteristic of R is different from 3, or if

R is a finite planar division neoring, or if R is a connected, locally

compact, finite dimensional, topological neoring, then the loop (R, +)

is of Lenz type 1.2 (cf , (3.14) till (3.16), [ 12 l,[ 13 ], [ 22 ],

pp. 459-461, [ 11 ] § 17, p. 229).

Definition (4.8). A k-net N is called strongly planar if it is embedd-

able in an affine plane E in such a way that the set of points of N

and E is the same; moreover every translation of N can be extended

to a collineation of E and every homology of N can be extended to a

homology of E • If a k-net N is embedded in this way in an affine

plane E, we say that N is strongly embedded in E •

There are many examples of loops of Lenz type 1.1, 1.2, 11.1 and 11.2.

For instance strongly planar examples of groups of type 11.1 can be con-
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structed in the following way. Let G be an infinite group which does

not admit a sharply transitive group of automorphisms (e.g. let G be an in­

finite group in which there are element s of different order). From [14]

and [ 25 ] follows that there exists a projective plane P with the

following properties: In P there exists a point p on a line L such

that the group A of elations with the centre p and the axis L is

transitive and A is isomorphic to G . Consider now the affine plane

PL which arises from P by omitting the line L and all its points,

and let N (p) be a 3­net consisting of 3 pencils of parallel lines

of PL ' one of which is the pencil whose lines have the direction of

the improper point p A group which belongs to N(p) is strongly

planar and of Lenz type II. 1 •

In contra5t to the existence of many examples of the types mentioned

above we have the following

Remark (4.9). There are no strongly planar 3­nets of Lenz types 1.3,

1.4, and 1. 5

Proof. If N would be a 3­net of Lenz type 1.3 or 1.4 or 1.5 which

is strongly embedded in an affine plane A then it follows from [21 ]

p. 57­70 that the collineation group of A would contain all trans­

lations of A. Then A would be desarguesian and N could be con­

sidered as a 3­net belonging to the additive group of a skew­field. But

then N would belong to the Lenz class 11.2. n

In general we have not been able to decide whether there exist examples

of loops of Lenz type 1.3, 1.4 and 1.5. If such examples exist. their

order is at least 7 (c f , [ 8 J, § 4.2).

The loops of Lenz type 1.4 are most peculiar. Since this class does

contain neither commutative loops nor loops with the inverse property

one cannot expect that the search for examples will be in the next time

positive. Also our attempts to obtain examples of loops of Lenz type 1.3

and 1.5 in the class of addit i ve loops of neofields ([ 20] and [15 ]

were not successful. On the other hand it is not known whether there

exists a proper infinite simple Moufang loop admitting a sharply transi­

tive group of automorphism; such a loop would be of the Lenz type 1.5.
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Another class of loops which may be considered in order to obtain exam­

ples is the class of totally symmetric loops. A totally symmetric loop

is a commutative loop in which the following identity is satisfied:

x(xy) = y • The totally symmetric loops correspond in a one­to­one way

to the Steiner triple systems(cf. [ 8 ] p , 75); therefore there are

totally symmetric loops which are not groups and which admit a sharply

transitive group of automorphisms ([ 7 J,C 18 J,l 19],[ 23]) . Since

the class of totally symmetric loops is not too difficult to handle we

obtained the following

Remark (4.10). Let Q be a totally symmetric loop which admits a sharp­

ly transitive group of automorphisms. If Q possesses a pseudo­automor­

phism which is not an automorphism then Q is of Lenz type 1.5.

Proof. Let N be the net belonging to the totally symmetric loop Q.

The points of N are the pairs (x , y) with x, Y F Q and the trans­

versal lines c t can be described by the equations y = xc Let y

be a collineation of N which preserves the directions. Then y can

be described as a mapping (x , y) (x
U S where andof the type , y ) U

S are permutations of Q such that for every cEQ there exists a

suitable c' satisfying for all x the equation

(1)

For x = 1 from (1) follows lU cS = c' and we have

xU (xc)S = l u c S

This equation for x = c leads to cS = l u (culS) and we have

(3)

For c = 1 we have from (3):

and



145

Now (3) is equivalent to

a [(x c)a ( l a 113 ) J a 113 a
[

a (ca 113 ) ]x = c = x x

This emplies

(x c)a (la 113 ) a (ca 113 )= x

(4)

( 5)

If we take for a a proper pseudo-automorphism and for 113 a com-

panion of a then a leads to a collineation y which does not leave

the point (1,1) fixed. With our assumptions follows now that Q is

of Lenz type 1.5. 0

In general we have been unable to decide whether or not there exist

loops Q of Lenz type l.4 or l.5 admitting a group of collineations

which in the corresponding net N(Q) preserves the directions, leaves

a line L invariant and operates on the points of L sharply 2-transi-

tively. The non-existence of such loops would follow from the non-exi-

stence of near-domains which are not near-fields.

Thus for instance there are no finite loops of such kind (cf. [ 16 ],

p. 31) or no locally compact, connected loops with the above property

(cf , [ 24 J).
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