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1. Introduction.

Let X be a Klein surface [i.e, a compact surface equipped with a dianalytic structure [1]). If X
is an orientable surface without boundary then this surface is a classical Riemann surface. A Klein
surface X is said to be hyperelliptic if X admits an involution ¢J such that XI (¢J) has algebraic genus
O.

The study of automorphism groups of hyperelliptic Riemann surfaces is a classical topic from
the 19th century, whilst the studies of groups of automorphisms of hyperelliptic Klein surfaces not

being Riemann surfaces have been started to investigate in the recent decade. This paper concerns
the problem of the groups of automorphisms of non-orientable hyperelliptic Klein surfaces without
boundary. We here solve it completely when the topological genus g of the surface is odd. In the
case of bordered hyperelliptic Klein surface, similar results, but concerning only the order of the
group, have been established recently in [6].

By the well known correspondence between Klein surfaces and algebraic curves [1], our results
can be expressed in terms of the automorphism groups of purely imaginary algebraic curves.

2. NEC groups and hyperelliptic surfaces.

A non-Euclidean crystallographic group (N.E.C. group) r is a discrete subgroup of isometries
of the hyperbolic plane V with compact quotient Vir. Each NEe group r has associated with a
signature a that has the form [11]

(2.1)

where C, = (nil, ... , nj.;); C, are called cycle-periods, njj periods of cycle-periods and rn, proper
periods.

The numbers in a are non-negative integers; mj and njj are greater than or equal to 2, and the

number g is the topological genus of the surface Vir (the algebraic genus p = ag + k - 1, where
a =2 or a =1 according to the sign '+' or '-' in q). This surface is orientable or not, according as

the sign in a is '+' or '-' respectively.
If r = 0 or k =0, we write in a H or {-} respectively. If the number s, is zero for some i, we

denote O, by (-).
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The signature (1' determines a canonical presentation of the group I', which as shown in [11] and
[14], is given by the generators

subject to the relations

X;

e;

C;i
a;, b;

i =1,···, r
i =1,···,k

i =1"" .k,
i =1,···,g

i =1,"',g

j =0,· ",8;
(if sign '+')
(if sign '-')

X?,' =1

Crj_1 = Crj = (c;j_1C;j)fi,j = 1

e;1c;oe;c;., =1
r k g

II X; IIe, II [*] =1
;=1 ;=1 ;=1

i =1,···,r

i= 1,···,k; j= 1"",8;

i =1,·· ',k

where [*] is a,b;a;lb;l or dr according to the sign in (1'.

The area of I' is

r k "

1J(r) =271"[ag + k - 2 + 2)1 - 11m,) + 1/2E E(l - 1/n,j)]
,=1 ,=lj=l

If I' is a subgroup of I" of index N then the following relation between areas holds:

1J(r) =N lJ(f').

(2.2)

(2.3)

A non-orientable Klein surface without boundary X of algebraic genus p ;::: 2 can be expressed
as X =V If where I' is an NEC group with signature

(gj-j[-],{-}) (2.4)

and if G=Aut(X) is the full group of automorphisms of X then G is isomorphic to N,,(r)/f where
9 is the group of all isometries of V (see [12]).

In [9J the non-orientable hyperelliptic Klein surfaces without boundary are characterized by
means of NEC groups. We summarize the results in the following.

Theorem 2.1. Let X =V/f be a non-orientable Klein surface without boundary of genus 9 ;:::
3.Then

(a) X is hyperelliptic if and only if there exists a unique NEG group f 1 containing I' as a subgroup
of index 2, I'1 having one of the following signatures

g

(i).

g

(ii). (1; {-}) (g even)

(b) The automorphism of hyperellipticity tP where (tP) = fIff is a central element in the full
group of automorphisms ofG ofx.
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In our paper a hyperelliptic Klein surface (in short HKS) will mean a non-orientable hyperelliptic
Klein surface without boundary.

3. Groups of automorphisms of non-orientable hyperelliptic Klein
surfaces without boundary.

In this section, we will give a necessary and sufficient conditions for a finite group to be the group
of automorphisms of a HKS when a group of hyperellipticity r 1 has signature (i) (see theorem 2.1).
Thus our results will hold for all HKS for which a group of hyperellipticity has signature (i) and 80

in particular they are complete for HKS of odd topological genus g.

Lemma 3.1. (1) Let G/Z2 !:!! ZN and ZN G. Then

(i) if N is odd then G!:!! Z2N and

(ii) if N is even then G!:!! Z2 X ZN or G!:!! Z2N.

(2) Let G/Z2!:!! DN / 2 and DN / 2 G. Then

(i) if N/2 is odd then G DN and

(ii) if N /2 is even then G!:!! DN or G!:!! Z2 X DN/2, or G =UN/2, where G =UN/2 is the group
with presentation (z ,y IzN, y2, yzyzN/2+l).

Proof Note first that Z2 is a central subgroup of G .and the second cohomology H2(ZN, Z2) is
trivial (if N is odd) or is the cyclic group of order 2 (if N is even). Since H2(G,A) classifies the
extensions of G by A, the first case follows.

Now let G/Z2 !:!! DN/2. If N /2 is odd then H2(DN/2, Z2) = Z2 and it turns out that there
are two such groups: G = DN and G = GN/2, where GN/2 is the group with the presentation
(z ,y I zN, zN/2y2, y-1 zyZ) (see [2]). Let H be a subgroup of index 2 in GN/2. We will show that
H is a cyclic group generated by e. In fact, y2 E H and so do :tN / 2 . Since :t

2 E Hand N/2 is odd
we obtain that :t E H, and so H is a cyclic group of order N as required. Hereby GN / 2 does not

contain DN/2

Now let N /2 be even. Although in this case H2(D
N / 2 , Z2) is a group of order 8, it turns out that

there are only six groups G for which G/Z2 !:!! DN / 2 and the complete list of them can be found in
[2]. Obviously DN and Z2 x DN/2 contain DN/ 2 as a subgroup. Moreover it is easy to check that
(y,z2) generate the dihedral subgroups of order N in UN/2' Now looking at the possible generators
of quotients of G of order 2 and using the Reidemeister-Schreier algorithm for determining the
presentation of a subgroup of a given group one can argue that there is no dihedral group DN/2

among subgroups of index 2 in the remaining three groups.

9

Lemma 3.2. Let r, be an NEG group with signature (OJ {(-)}) and let r- be an NEG

group containing r 1 as a normal subgroup of index N. Then I" has one of the following signatures:,.
(i) wherek=g/N,,.
(ii) where Ie =(g -1)/N,
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h I

(iii) {(N/2, for some h, where I=2g/N - 2h + 2,
h I

(iv) for some h, where I =2(g-I)/N - 2h+2.

Proof Let I" has (2.1) and let p, be the smallest integer for which xfi E fl' Since the only
elements of f 1 of finite order are those of order 2, we have that mdp, = 2 or mdp, = 1. For
notational convenience assume that mdp, =2 for i =1"", n and m,/p, =1 for i =n + 1"", T.
The elliptic elements in the second case do not produce proper periods in I'1, whilst in the first case
they produce 2:7=1N/p, proper periods, all of them being equal to 2 (see [3] and [4]).

Now consider the periods in I'1 provided by reflections of I". Let % be the smallest integers for
which (c,jC,j_1)9ij E fl. The same argument, as in the first case, shows that n,j/q,j =2 or 1. Let
E = {(i,j) I n,j/% = 2}. Clearly the only proper periods in f 1 induced by reflections of I" are
those provided by the pairs of reflections corresponding to the elements of E, and each such pair
produces N/2q,j periods, all of them being equal to 2 (see [3]). As a result

n

9 EN/p, + E N/2q,j
,=1 (i,i)EE

Using (2.3) we obtain

n r

g/2 - 1 = N[ag* 2 + k +E(I- l/m,) + E (1- l/m,)
,=1 ,=n+1

+ 1/2 E (1 l/n,j) + 1/2 E (1 - l/n,j)]
("j)EE ("j)tE

(3.1)

(3.2)

The number n has been chosen in such a way that m, = 2p, for i = 1,···, nand m, = p, for
i =n+ 1, .. · ,T, whilst n,j =2q,j for (i,j) E E, and n,j =% for (i,j) ¢ E. So using (3.1) and (3.2)
we obtain the following equation.

n k 8i

-1 =aNg* - 2N + kN + NE(1-1/p,) + NEE(I- l/q'j).
,=1 ,=1 j=l

(3.3)

Clearly k cannot be bigger than 1, otherwise the right hand side of (3.3) would be O. So let k =1.
Then g*=0, otherwise it again would be O. Thus we see that I" has signature

and so (3.3) becomes

Consider two cases:

r 6

N - 1= N E(1-1/p,) +N/2 E(1-1/qj).
,=1 j=l

(3.4)

Case 1. The cycle period of I" is empty. Then N - 1 =N (1 - l/p,) and it is easy to check
that the only solution of this equation is that all p, but one, say P1, are equal to 1 and P1=N. Now

for iiI, p, =1, and so m, =2. If mt/pl =1 then ml =N, whilst if mt/P1 =2, m1 =N /2. So
I" has a signature (i) or (ii) (the number k can be found using (2.3».
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Case 2. The cycle period is non-empty. Then by [7J, [8J two consecutive periods, say n,_1, n,
are equal to 2. Moreover if C'-2, C,-ll c. are the corresponding reflections, we can assume that
c._1 E f 1 , and c.-2, c. ¢ f 1 (see [8]). Thus q.-1, q. =2 and so the second summand of the right
hand side of (3.4) is 2: N12. Now all Pi are equal to 1, otherwise the first summand of the right
hand side is also 2: NI2 and is 2: N, a contradiction. The relation (3.4) becomes

,-2

NI2 -1 =NI2 E(1-1/qj)
j=l

and the only solution of it is that all qj but one, say q1, are equal to 1 and q1 =N12. Now since
all Pi = 1, mi = 2 for i =1,,,,, r. For qj = 1, the corresponding periods are equal to 2, and for
q1=NI2 the corresponding period is NI2 or N according as nI/q1 =lor 2.So in this case I" has
a signature (iii) or (iv) (the number I can be found as in the first case using (2.3».

Remark 3.3. From the proof of the previous lemma followsnot only that I" has one of the specified
signatures but also an information how the group f1 sits in I'".

In the case of signatures (i), (ii) all elliptic elements Zi but Zl belong to f1 whilst zf E f1 and
N is the smallest integer with this property.

In the case of signatures (iii), (iv) all elliptic element Zi must belong to r 1, all Ci, but C1, do
not belong to r 1 and CiCi+1 E r1 for i =1" ",1- 2, whilst (COC1)N/2 E f 1 and N12 is the smallest
integer with this property.

Lemma 3.4. Let r 1 and I" be NEG groups as in the previous lemma and assume that I' is an NEG
group with signature (2.4) being a subgroup ofr1 of indez 2 and normal in I'", Let a =r·/r. Then

(1) Ifr· has signature (i) then a=Z2N or a=Z2 x ZN'

(2) If I" has signature (ii) then a =Z2N.

(3) Ifr· has signature (iii) then a =DN or a =Z2 x DN/ 2 or a =UN/ 2, where

UN/2 =(z, y I zN, y2, yz yzN/2+1).

(4) If I" has signature (iv) then a=DN.

Proof Let G" =rO/f1 and B =r 1/r Z2. Clearly alB G", Let Zi, ei, Ci be the canonical
generators of I'". We will employ the notations introduced in the proof of the previous lemma.

(1) Let I" have signature (i). We show that in this case P1 =N and so the image of Z1 in a is an
element of order N. So ZN G. Thus by Lemma 3.1 G Z2N or G Z2 X ZN.

(2) Let I" have signature (ii). Then since I' has no periods, Zl induces an element of order 2N in
a. Hereby a Z2N.

(3) Nowassume that I" has signature (iii). We show that the pair ofreflections co, C1 corresponding
to the period NI2 satisfy co, C1 ¢ r 1 and co, Cl induces in G" an element of order N12. So
G· DN/2. Moreover co, C1 ¢ rand COC1 also induces an element of order NI2 in G. Thus the
result follows from Lemma 3.1.

(4) Finally let I" have a signature (iv) and let co, C1 be the pair of reflections corresponding to
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the period N as in the previous case. Then since I' has no proper periods and no period cycles
Co, Cl fJ f 1 and their product induces an element of order N in f. Therefore G!:!! DN .

Theorem 3.5. Let X bea HKS of odd topological genus g. Then Aut(X) may beone of the following
groups Z2N, Z2 x ZN, DN or Z2 XDN/2. Furthermore

(i) There exists a HKS of genus 9 having Z2N as the group of automorphisms if and only if
Nig -1 and N I- 9 - 1 or Nlg, N I- g, and N is odd.

(ii) There exists a HKS of genus 9 having Z2 x ZN (N I- 2) as the group of automorphisms if
and only if Nlg, N I- 9 and N is even.

(iii) There exists a HKS of genus 9 having DN as the group of automorphisms if and only if
N12(g - 1) 'and N is even or N12g, 4YN.

(iv) There exists a HKS of genus 9 having Z2 x DN/2 as the group of automorphisms if and only
if NI2g and 41N,

Proof Let X be a HKS of odd topological genus g :::: 3. Then X =1)If, where I' is an NEC
group with signature (2.4). Since X is a HKS there exists an involution iP E Aut(X) such that X/(iP)
is a surface of genus O. By the theorem 2,1 iP is a central element in Aut(X). Let (iP) =fl/f and
let G be a group of automorphisms of X containing iP. Then G=P If for some NEC group I" I

9

containing f 1 as a normal subgroup. By Theorem 2.1 f 1 has signature ((-)}). The
Lemma 3.2 describes the possible signatures for I" and Lemma 3.4 gives us necessary conditions for a
group G to be represented in such case as a quotient I"If. Given a homomorphism fJ : f* --+ G and
a central element iP of G of order 2 let 1r be the canonical projection G --+ G/(iP) and fJ* =iP 0 fJ.
We have to investigate homomorphisms fJ from f* onto groups specified in Lemma 3 such that
KerfJ= I' and KerfJ* = f1, where I' is a group with signature (2.4) and fl is a group with signature

9

1. Let f* have signature (i). By Lemma 3.4 G =I"If may be only Z2N or Z2x ZN' Assume that
G =Z2N. We have to see whether or not a homomorphism fJ : I" --+ Z2N =(z I z2N) satisfying
the conditions in question exists. Since KerfJ is a surface group, fJ must preserve the orders of the
canonical generators of I'". So fJ is forced to be defined as follows8(Zl) =z2, fJ(Z2) =...=8(Zl+1) =
zN, O(c) =zN and O(e) =z-(lN+2). Clearly w =Z2C is a non-orientable element in KerfJ and so
by [10} Ker"9 is a non-orientable surface group. But clearly this homomorphism is an epimorphism
if and only if N is odd. Let this will be the case. Then 0* : P --+ Z2Nl(zN) !:!! ZN = (z I zN) is
given as follows O*(Zl)= (z)2, fJ*(Z2) =...=e*(zl+d =1, e*(c) =1 and O*(e) = (Z)-2 and so
KerfJ* =f 1, by the proofof Lemma 3.2 (see Remark 3.3). Moreover the canonical Fuchsian subgroup

21:

(f*)+ of I" has the signature (0;±;[N, {-}) (see [13]) and so Ie > 1 (i.e. N I- g) is a
maximal signature (see [12]). Hence the signature of I" is also maximal and so I" can be chosen
to be a maximal NEC group and so for the surface X =1)If just considered, Z2N can be assumed
to be the full group of automorphisms. The signature (0,+, [N,2}, {-}) corresponding to the case
9=N is not maximal, and so for 9=N the group Z2N cannot be the full group of automorphisms
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of a HKS of genus 9 (see Proposition 2.4 [5]).

Now let G =Z2 X ZN and let N be even. Consider the homomorphism 8 : P ---+ Z2 X ZN =
(z, y I z2,yN, [z,yJ) defined by 8(Zl) = zy, 8(Z2) = ... = 8(ZHd = z, 8(c) = z and 8(e) =
y-1 z(H1). Since 8 preserves the orders of the canonical generators of I" and w = Z2C is a non-
orientable element in Ker8, Ker8 =f. Moreover for the homomorphism 8* : P ---+ Z2 x ZN/(Z} =
(y I yN) we have 8*(Zl) = y, 8*(Z2) = ... =8*(ZHd = 1, 8*(c)=1 and 8*(e) = y-1. So by the
proof of Lemma 3.2 Ker8* =fl.

As in the case of Z2N we can argue that for N ::f. 9 a dianalytic structure on X can be so chosen
that Z2N is the full group of its automorphisms whilst this is not the case for N =g.

2. Let I" have signature (ii). By Lemma 3.4 G = I"/f may be only the cyclic group of order
2N. We will show that this is so. Let 8 : P ---+ Z2N = (z I z2N) be the homomorphism defined
by 8(Zl) =X, 8(X2) =... =8(Xk+d = xN, 8(c) =zN and 8(e) =z-(kN+l). Clearly Im(8) =Z2N.
Moreover Z2C is a non-orientable element in Ker8 and so Ker8 =f. Now for the homomorphism
8* : I" ---+ Z2N/(zN) ZN = (f I fN) we have 8*(Zl) = f, 8*(Z2) = ... = 8*(ZH1) = 1,
8*(c) = 1 and 8*(e) = (f)-l. So by Remark 3.3 KerO· = fl' As in the previous case we argue
that for N i 9 - 1, Z2N can be assumed to be the full group of automorphisms of the surface just
constructed, whereas this is not the case for N =9 - 1.

3. Let I" be the group with signature (iii). By Lemma 3.4 G = P /f may be only one of
the groups DN, Z2 X DN/2 or UN/2. Clearly N must be even in this case, otherwise DN would
have the trivial center whilst the remaining two groups are not defined. We will show first that
the group DN is a group of automorphisms of a surface in question if and only if N /2 is odd. Let
8 : I" ---+ DN =(z, y I z2, y2, (zy)N) be the homomorphism weare looking for. Let z be the central
element of order 2 in DN for which DN/(z) DN/2. Then by Remark 3.3 8(zt}, "', 8(Zh) must be
equal to z, 8(co) =6(c/+l =az'o (eo =0 or 1), 8(c.) =bz' i (e. =0 or 1) for i =1"" ,I-I, O(cI) =z
for some elements a, b of order 2 whose product has order N/2. So in particular DN Z2 X DN / 2.
But the last is the case if and only if N /2 is odd, i.e. 41N.

Conversely let N /2 be odd. Let h =0 and let 8 : I" ---+ DN be the homomorphism defined by
8(co) =8(c/+1) =Y 8(c;)=zyz for 1 :'5 i:'5 1- 1 and i odd, 8(Cj) = zyz(zy)N/2 for 1 :'5 i :'5 1- 1
and i even, 8(c/) = (xy)N/2, and 8(e) = 1. It is easy to check that Im(8) = DN and Ker8 = I'
whilst Ker8* = fl. The same argument as used before shows that the dianalytic structure on X

just considered can be so chosen that Aut(X) =DN.

Now let N/2 be even and let for h =08: P ---+ Z2 X DN/2=(z I z2) I8l (z, y Iz2, y2, (zy)N/2)
be the homomorphism defined by 8(co) = 8(C/+1) = e, O(c;) = y for 1 :'5 i :'5 1- 1 and i odd,
8(c.) = yz for i :'5 i:'51- 1 and i even, O(CI) = z, and O(e) =1. As in the previous case we show
that Ker8 = I' and for the homomorphism 0* : P ---+ Z2 x DN/2/ (Z}=DN/2, KerO* =fl. Again
the same argument as used before shows that the dianalytic structure on X just considered can be

so chosen that Aut(X) =Z2 X DN / 2 •

So it remains to show that the group UN/2 cannot stand for a group of automorphisms of a
surface in question. If this were so, then arguing as in the case of the dihedral group, one can show
that the corresponding homomorphism were considered as the one defined there. Consequently,
UN/2 must be isomorphic to the direct product Z2 x DN / 2 •
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4. Now consider the group I" with signature (iv). By the Lemma 3.4 G = I"If may be only the
dihedral group DN of order 2N. Clearly N is even since DN has trivial center for N odd. Let for
h = 0 0: I" _ DN = (x, y I x2, v', (xy)N) be the homomorphism defined by O(co) = O(C/+l) = y,
O(Cl) = x, O(c;) = (xy)N/2 x for 2 ::; i ::;1- 1 and i even, O(c;) = x for 2 ::; i ::;1- 1 and i odd,
O(c/) = (xy)N/2, and O(e) = 1. Clearly ImO= DN and (COCl)N/2 c1 is a non-orientable element in

KerO. So KerO=f. Moreover for the homomorphism 0* : I" - DNI«xy)N/2) ::! DN/2= (x, y I
x2, y2, (xy)N/2) we have O*(co) = O*(ct+d=y, O*(Cl) =... =O*(cl-d = x, O*(c/) = 1, O*(e) = 1.
By the proofofthe Lemma 3.2 (see Remark 3.3) KerO* =fl. As before we argue that the dianalytic
structure on the surface just considered can be chosen in such a way that DN is the full group of its
automorphisms.
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