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ABSTRACT

It is known that the Chebyshev polynomials of the first and
second kinds are minimal in on [-l,lJ with respect
appropriate weight functions, ly certain powers of 1-x , for
1 P 00 • These properties are here exploited in two applications.
First, convergence and optimality properties are established for a
"complete" Chebyshev polynomial expansion method for the determination
of indefinite integrals. Second, coniectures are concerning
the near-minimality of the polynomials L- (2Bx) for
S""l with respect to exponentially n,.,,'=ighted L norms
on [0,00). p

1. INTRODUCTION

This paper discusse3 two distinct ways 6f exploiting minimal Lp
properties of Chebyshev polynomials Tk(X) and Uk(x) of the first

and second where k is the polynomial degree. Such minimal

properties, together with a numher of results concernino Chebyshev

series, are discussed in full by Mason [lJ and the two key properties

are that, amongst all suitably normalised polynomials Qk(x) of

degree k, for all 1 p 00

Tk (x ) minimises [ J ) -1/ 2 1Qk (x) IPdxJ lip (1)

J
1 lip (2)and Uk (x) minimises [ (1_x2) (p-l)/2!Qk(x) IPdX]
1

In the first application, a function is integrated after first being

expanded in a complete first and second kind Chebyshev series. Four

minimal Lp properties (namely (1), (2) for p = 1, 00) are then

used to establish the optimality of the chosen method in certain

canonical cases. We also establish L
oo

convergence for the integral

and L1 convergence for the integrand in the method. The present

discussion extends and broadens the author's earlier treatment of

integration methods in [lJ.
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The second application is in the determination of orthogonal

polynomial systems which have nearly minimal Lp norms on [0,00)

subject to weight functions closely related to e-x. Two new

conjectures are obtained, which extend to Lp norms some earlier

results of the author in [2J for . These conjectures have

already been tested and found to be valid for polynomials up to

degree 10 in L and they are trivially valid for all polynomial

degrees in L2 .00

2. INDEFINITE INTEGRATION

2.1. The Chebyshev Method

( 3)-1 x 1 ,in

Suppose that we require the value of the indefinite inteqral

h t x) = J x f(x)dx
-1

and that f(x) takes the form

(x) (4)

where fA and fB are given continuous functions. This means that

we are integrating functions which have x-1/2 singularities at end

points and a complementary smooth behaviour. (The analysis is

actually valid if fA and are at most L
2-integrable,

although

the methods can be of limited accuracy in such cases). Now let us

approximate fA and fB by the partial sums fA and fB of their
n-1 n

expansions in {Uk} and respectively, namely

fAlx) A n
-:= f n- 1 (x) = L U

k
_
1
(x) (5)

n-1

fB(x) fB(x)
n

'.Y L bk
(x) (6)

n k=o

1
where 2 J-1

(1_x2)1/2 (x) Uk- 1 (x) dxak 11

and b = 2 J_: (1_x2) 1/2
(x) Tk(X)dxk 11

On integrating (4) between 1 and x and using the apnroximations

(5), (6), we obtain an indefinite integral in the form

h(x) + , ( 7)



where

and

A
f n- 1 (x) dx
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n a
k- [T

k
(X) - T

k(-1)]k=1 k
(8)

(x)
1 -1 n bk 2 1/2
'2 botTI-cOS x)- {;1 k (1-x) Uk_1 (x)

(9)

The integration is here greatly simplified by the formulae

gx [Tk(X)] = k Uk_ 1(x) ,

d [(1 2)1/2 ()J x ri 2)-1/2 ()dx -x Uk- 1 x = - -x Tk x

The above method is essentially a generalisation to complete Tk and

Uk expansions of a method of Filippi [3J, which was originally

based on a Uk expansion. For practical implementation, however, the

partial sums (5), (6) should normally be replaced by the (virtually

indistinguishahle) polynomials obtained by collocation at the

respective Chebyshev zeros. This very much simplifies the calculation

and, indeed, if the discrete orthogonality properties of Tk and Uk

are exploited, then only O(n) arithmetic operations are required in

the method. (See [1J). However, it is more difficult to analyse the

collocation method in the context of approximation theory, and that is

why we have used the expansion method as our theoretical model here.

In the cOntext of definite integration, the method can he viewed as

a product integration rule with certain abscissae and weights, and

then convergence can be studied from this viewpoint (See [4J).

2.2. The L1 Convergence of the Integrand

Let uS first analyse the error

integrand using (5), (6) , namely

E
n

in the approximation of the

En (x) = f(x) - 1 (x) - (1_x2) 1/2 fB(xl
n

On setting x = cos 8 (for 0 8 11) and multiplying through by

sin 8 , we obtain

n
sin e E (cos 8) sin e f(cos 8) - L akTk(coS 8) -n k=o
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n- I: b
k

U
k_ 1

(cos El) =
k=l

sin El f(cos El)
n

(a
k

cos k El+ b
k
sin kEl)

kooo

The right hand side is the error in the partial sum of a Fourier

series expansion of a continuous function, namely sin El f(cos El)

and so by classical theory it converges to zero in

Convergence to zero immediately follows in the weaker

as n---+

norm

(in El) Hence

liEn (x) 111 J 1 IE (x) Idx = I
TI

IE (cos G) Isin G dG
n n-1 0

= Iisin G E (cos G) I 11 0 (10)
n

This establishes the convergence (in x) of the inteqrand to

f(x) as

2.3. The Uniform Convergence of the Integral

Turning now to the indefinite integral (which is obtained from

the approximate integrand), the error En in this is given by

En (x) h Cx) (x)
B .: En(x)dx- - Hn- 1 (x) =

Now IE (x) I .: E (x)dxl IX lEn (x) [dx ,n n -1

and hence

max It (x)
n

IE (x) [dx
n

(11)

From ( 10) we immediately deduce the uniform convergence of E n
to

zero as n ----?

The bound (11) is extremely conservative, since the modulus

of the integral of an oscillatory function has been bounded by the

integral of the modulus. Nevertheless, we show in 92.4 below the

remarkable fact that, in two canonical cases, the method optimises

both II En 11
00

and liEn 111 simultaneously.
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2.4. The Optimality of the Method

The tacit assumption was made above that the expansions (S) (6)

were particularly appropriate ones to adopt, and indeed their use

certainly ensured a very simple integration procedure. But it is not

clear that it might not, for example, be better to adopt a ITk }

expansion to fA(x) in (S) , and indeed this is the approach used

in the original Chebyshev integration method of Clenshaw and Curtis

[SJ . However, even though a wide variety of orthogonal polynomial

expansion methods would probably give reasonably comparable results,

the respective choices of 1 and 'T'k in (S) (6) are optimal,

in the sense that I IE: n 11
00

and II En 111 are minimised in two

canonical cases, provided an appropriate small error is introduced

(through a constant of integration) .

2.4.1. Polynomials of De9ree n for f(x)

Consider first the function

f(x) = = xn (with fB(x) = 0) ( 12)

which is representative of all

higher than the approximation

expansion of xn up to degree

the Un term must have a unit

A n -n
f
n
- 1 (x) = x -2 Un (x)

Now integrating up to x,

nth degree polynomials (of one degree

1 ). NOW, in this case, the partial

n in {Uk} is exact , and moreover

coefficient of xn . Hence

(13)

E (x)
n

+ C
-1

(n+l) T
n
+1 (x) + C

and, on setting C = 0 ,

-n -1E: n (x) = 2 (n+1) Tn+1 (x)
(14)

By the minimality properties (1), (2) of Un(x) , Tn+1 (X) for

p = 1 applied to (13), (14) , respectively, we deduce that both

II Enl11 and liE: 1\11
00

have been minimised (over all possible

expansions of f (x».

Note, however, that an error has been introduced at -1 , namely

(lS)
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However (15) tends to zero as n 00 , and hence £n(x) still

converges uniformly to zero.

2.4.2. Weighted Polynomials of Odd Degree n+1 for f Lx)

Next consider the function

f(x) 0)

(16)

up

n is even, which is representative of all polynomials of

n+1 (of one degree higher than fB) weighted by (1_x2)-1/2.
n

fB ensures that b
o

vanishes in (9) , so that the
n+1

x is not present. partial expansion of x

degree

The oddness of

term in cos- 1

where

to degree n+1 in {Tk}
unit coefficient of

is exact and the Tn+1 term must have a
1

. Hence

fB (x) n+1 2-n (x)x -n

In tegra ting from -1 to x ,

En (x) f x (x)dx -n 1(1_x2)-1/2U (x)E -2 (n+1)
n n-1

( 17)

( 18)

By the minimal properties (1), (2) of

(1_x2)-1/2U (x) for p=l,oo applied to
n

we deduce that hoth II I 11 and I I
all expansions of fB(x»)

(1_x2) 1/2T (x)
n+1

(17), (18), respectively,

11
00

have been minimised (over

No error has been introduced at x = -1 in this case.

3. NEAR-MINIMALITY IN L WITH EXPONENTIAL WEIGHTS
P

Consider the following

polynomial Pk(x) of degree

respectively:

L norms of an appropriately normalised
Pk . ht d b -x and 1/2-x, we L g eye x e ,

(19)

(20)

Specific cases include

II 1/2 -x . I Ix e PI 00

(21)
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-1/2 -2xp2 d Jl/2x e
k

x

(22)

1/2 -2xp2 d J1/2
x e k x

2

1p

p

(23)

Note that weights -x in F1 for co and F2 for p = 1,e occur p
x-1/2e-a x occur in F1 for p 1,2 and x1/2e-a x occur in F2
for p = 2,co

Now F
1
, F2 are functionals of P

k
, which we desire to minimise

Explicit solutions are only known for p 2, in which case

(24)

where f3 = 1 . For other values of p we aim instead to "nearly

minimise" F1 , F2 . The

"nearly minimise" is a

that in practice

relatively within

appropriate specification for the term

matter of personal taste. However, we suggest

be accepted for k 10 if its functional is

of the minimum possible value.

This requirement can in fact be comfortably satisfied by (24)

for p = and 6 1 (see [2J) For example, for n=10 , 6 =.975,

F1 and F2 are within 10% of their minima. Let us now propose two

conjectures which extend the above deductions for p = 2,co and which

have therefore already been confirmed in these 2 cases.

Conjecture 3.1. For any p (1 P 6 co)

by Pk = for some 6 1 = 6 1(p)

(P
k)

is nearly minimised

close to 1.

Conjecture 3.2.

minimised by P
k

For any p (1 6 P 00)

L;/2(282X} for some

is nearly

close to 1 .

Although we have no rigorous proofs, the following discussions

give support to the Conjectures, and are based on the

application of bilinear transformations to (I), (2) which take

[-1, 1] into [0, co} .
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3.1. Discussion of Conjecture 3.1

(25)

is minimised over normalised polynomials Qk of degree k (by (1))

when Qk = T
k

and hence when

o (i < k ) (26)

Setting t

(Ax+1)

A

and

-1
r

dt

r = k+p-1 , so that

2 dx

(Ax+1) 2

it follows from (25) (26) that

[( x- 1/2 I (l+x/r)-r P
k
(x) IP dX) l/p

0

is minimised over polynomials Pk of degree k when

(27)

e-x in both (27)Replacing -r weight(l+x/r) by the comparable

and (28) , ( ) is nearly minimised when

Joo x- 1/2
-213 . x

e . j k P.(x) Pk(x)dx = 0
0 1

where l3 i k
1/2 (j+k+1)r-1=

o (j <k )

(j < k )

(28)

(29)

Now I3 j k = k/ (k+pd) e! 1 for j = k-1 (the key value of j) , and

hence on replacing 13 jk by a constant 13 1 1 in (29) we obtain

Conjecture 3.1.

3.2. Discussion of Conjecture 3.2

(30)

is minimised Over normalised polynomials Q
k

of degree k (by (2)),

when Qk = Uk and hence when
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J_: (1_t2) 1/2 Q °(t) Qk (t) dt 0 (j < k)
-J

Setting t Ax-1 A -1 k+1+p-1Ax+1
, r r

( 31)

it follows from (30), (31) that

x(O-1) /2 (1+Ax)-(p+1) I (1+AX)-kPk(x) I (1+Ax)-2dx]1/P

(32)

is minimised over normalised polynomials Pk of degree k when

1/2x (1+x/r) (i < k ) ( 33)

Replacing

and (33) ,

by the comparable weight

is nearly minimised when

-xe in both ( 32)

where f3 lk
J

1/2 -28 °kx
x e J Po(x) Pk(x)dx

l

1 -1"2 (i+k+3) r

o (i < k ) (34)

-1Now 8 ik (k+1) / (k+1+p ) 1
l

and hence on replacing B ik hy
l

obtain Conjecture 3.2.
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