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ABSTRACT. It is shown that a second order recurrence expression with coefficients having
bounded variation, written as a second degree polynomial of the forward shift operator, can be
factored as the product of two first order expressions. This result is used to obtain asyrnptotics over
the complex plane for a class of polynomials orthonormal over the real line.
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1. Introduction

Consider the second order recurrence equation

I(n + 2) + ex(n)/(n + 1) + (3(n)/(n) = hen) (-00 < n < 00) (Ll)

with I as the unknown function, such that the coefficients ex and {3 are of bounded variation (i.e.,
(2.4) below holds). Writing A and B for the limits of the sequences ex(n) and {3(n),respectively,
the equation

t2 + At + B = 0 (1.2)

This material is based upon work supported by the National Science Foundation under Grant
Nos. DMS-8601184 (first author) and DMS-8419525 (second author), and by the PSC-CUNY
Research Award Program of the City University of New York under Grant No. 6-66429 (first
author).
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is called the characteristic equation of (1.1). Provided the roots of (2.1) have different absolute val­
ues, we will be able to express the left­hand side of (1.1) as an operator product. That is, introducing
the forward shift operator E , the left­hand side of (1.1) can be written as

«E2 + OlE + (3)f)(n)

(E will be described in some detail in the next section.) This will be factored as

where and are functions on integers (it is shown in (2.9) below how to multiply out this
product). Thus (1.1) can be written as

(E - = h,

which can be solved explicitly as

the inverses on the right can be written as infinite sums, and they will be convergent if h is well­
behaved.

Now, polynomials orthogonal on the real line satisfy a recurrence equation analogous to (1.1):

an+2Pn+2(X) + (bn+l - X)Pn+l + an+lPn(X) = 0 (n -1) (1.3)

(see (4.3) below). If the coefficient sequences here are of bounded variation, then we can use the
above method to obtain an asymptotic expression for Pn outside the real line (see Theorems 4.1,
5.1 and 5.2 below). The results we obtain go partly beyond Theorem 1 of Mate­Nevai­Totik [5, p.
232] in mat our asymptotic estimate holds on unbounded sets as welL

While equation (1.3) is a homogeneous equation, it is only valid for n ­1. Before the
method outlined above can be applied, it has to be extended to an inhomogeneous equation valid
for ­00 < n < 00.

PART I. RECURRENCE EQUATIONS
2. The Factorization Theorem

In this section Ol, f3, .. ., I,g, ... will denote functions on integers and E will denote the for­
ward shift operator, that is

(­00 < k,n < 00).

We will write terms involving products of several functions, indicating the argument only once on
the right. That is, e.g.,

Ig(n) = (fg)(n) = I(n) . g(n).

Such terms may be interlaced with integral powers of E. An occurrence of E in the term will
affect all functions to the right in the same term. That is, e.g.,
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1Eg(n) = I(n)g(n + 1),
I1Ez/zE-3!3/4Fr!5(n) = !l(n)!z(n + 2)!3(n - l)/4(n - 1)/s(n + 3)

(e.g. to obtain 14(n - 1), observe that 14 is affected by powers of E to the left of it, i.e., by
E ZE-3 = E-I), and

(Ea)\n) = EaEaEa(n)

=a(n + 1)a(n + 2)a(n + 3).

Using this notation, we can now state the Factorization Theorem:

THEOREM 2.1. Consider the recurrence polynomial

(2.1)

(EZ + aE + (3)/(n)

with 1 as the indeterminate function, where

(i) lim a(n) A,
n-oo

and

(-00 < n < 00)

(ii) lim (3(n) = 1,
n-oo

(2.2)

(2.3)

00

2:<1 a(n + 1) - a(n) I + I + 1) - (3(n) j) < 00.
n=O

Assume here A is a complex number such that

A fj. [-2,2].

Then (2.2) can be factored as

(2.4)

(2.5)

(2.6)

for large enough n, say n ;;:: no, where and are functions on integers. Moreover, writing
tIn and t2n with 1tIn 12: 1tZn 1for the roots ofthe equation

we can choose and such that

t Z + a(n)t + (3(n) = 0, (2.7)
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ex>

L ItIn - (n) I < 00.

n=no

(2.8)

It may be possible to gain some insignt into the meaning of the factorization in (2.6) by multi­
plying it out. We obtain

(E - - = E 2f(n) - - +
= fen + 2) - + (n + l))f(n + 1)

+ (n)f(n). (2.9)

The equation

(2.10)

is called the characteristic equation of the difference polynomial in (2.2). Condition (2.5) ensures
that the roots of this polynomial have different absolute values, and this will be crucial for our
method. Condition (2.3)(ii) is only technical, and it can be replaced with the more general condition

lim f3(n) = B to,
n­+ex>

(2.11)

but then (2.5) will have to be modified appropriately. The characteristic equation in this case is

t2 + At + B = 0,

but this can be transformed back to the form in (2.10) by using the substitution t v'Bt' . This
substitution corresponds to the substitution

in (2.2), and so condition (2.11) can be reduced to condition (2.3)(ii).

As A t ±2 according to (2.5), the roots of equation (2.10) are distinct. Hence (2.4) implies

ex>

L(I tl,n+1 ­ tIn I + I t2,n+l - t2n D< 00

n=O

in virtue of the case m = 2 of the following simple

LEMMA 2.2. Assume that the roots WI, ... , W m of the equation

(2.12)

(Urn = 1)



162

are pairwise distinct. Then the Jacobian

au·
det]

is different/rom zero.

PROOF. Write

m m

P(w) =2: UjWj =II (w - Wk)·
i=O k=l

As the Zk 's are distinct, we have

P(W)
m-l
'" j aUjLJ W a .
j=o Wk

Now the conclusion of the lemma follows from the observation that the vectors [aUj / aw
(1 ::; k ::; m) are linearly independent. Namely, the equation

implies Ck = 0 for each k; to see this, make W -+ Wk. The proof is complete.

As we will apply Theorem 2.1 to obtain uniform asymptotics for orthogonal polynomials, we
will need a more precise version of this theorem in that we will need an estimate for the remainder
of the sum in (2.8).

THEOREM 2.3. Assume the hypotheses ofTheorem 2.1, and let p be a real with 0 < P < 1.
Let no be such that

I {3(n)/tln I ::; p

and

00

Itln I ;::: 1 + 2: Itl,n+l - tln I
n=no

hold/or n ;::: no. Then S"l and S"2 in (2.6) can be chosen such that

00 n-l

2: Itl ll - S"l (v) I s 2: Itl,II+1 - tl ll Ipn-l-II/0 - p)
1I=n

00

+ 2: I tl,II+1 - tl ll I /(1 - p)
1I=n

(2.13)

(2.14)

(2.15)
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holds for every n ;::: no.

Observe that an integer no satisfying (2.13) and (2.14) does exist. Indeed, writing tl and tz
with Itl I;::: I tz I for the roots of the characteristic equation (2.10), we have Itl I> Itz I in view
of (2.5), and so we have I tl I> 1, as tltz = 1. Now, since pen) -+ 1 and tIn -+ tl, (2.13)
will hold for large enough n. Moreover, writing TJ (tl - 1)/2, we will have I tIn I;::: 1 + TJ
for large enough n, and so (2.14) will hold for large enough no in view of (2.12).

3. The Proof of the Factorization Theorem

The reason the Factorization Theorem is useful is that it reduces the solution of certain second
orders difference equation to the successive solution of two first order difference equation. Un-
der certain conditions, first order difference equations can be solved explicitly, as shown by the
following simple

LEMMA 3.1. Given the functions f, 9 .and h on integers, suppose that we have

Then

(E - g)f(n) = hen) (-00 < n < (0). (3.1)

00

fen) = L (E-Ig)lE- I hen)
l=O

holds for each n provided that

lim (E-Ig)l fen) = 0
l-too

holds for each n.

Observe that e.g.,

(3.2)

(3.3)

(cf. example (2.1) above). Condition (3.3) will be fulfilled in our applications, as we will have
fen) = 0 when n is a large enough negative number.

PROOF. Replacing hen) with the left-hand side of (3.1), the right-hand side of (3.2) becomes

00 00

L(E-Ig/E-I(E - g)f(n) = L«E-1g/ - (E-Ig/+I)f(n)

= lim (1 - (E-Ig)N+I)f(n) = f(n) ,
N-too

where 1 is the identity operator; the last qeuality follows from (3.3). This shows that (3.2) is indeed
valid, completing the proof of the lemma.

Next we tum to the proofof the Factorization Theorem. As Theorem 2.1 follows from Theorem
2.3, it will be sufficient to present only the
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PROOF OF THEOREM 2.3. As the expressions in (2.2) and on the right-hand side of (2.9) (which
is the multiplied-out version of (2.6» must agree for any choice of the function f, the respective
coefficients must agree, i.e., we must have

-a(n) = (n + 1) +

and

That is

(n + 1) = -a(n) - (n).

(3.4)

(3.5)

Now, dividing equation (2.7) by t and replacing t with tIn (which is a root of this equation), we
obtain

tIn = -a(n) - {3(n)/tln'

Subtracting (3.5) from this, we obtain

that is

I t1,n+1 - (n + 1) I $1 t1,n+I - tIn I + I t ) II t1n - (n) I . (3.6)
n

Now choose

(no) = t1no (3.7)

for the no described in connection of (2.13) and (2.14), and define (n) for n no with the aid
of (3.5). We will prove by induction on n that

(3.8)

holds for n no. This is true for n = no, since (no) = tlno 1 holds in view of (2.14).
Let n no and assume that (3.8) holds with v such that no $ v $ n replacing n. Then

I {31(V) 1<
(v) - P

holds in view of (2.13), and so (3.6) becomes

(no $ v $ n)
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Using this for II = n, n - 1, ... , no repeatedly and noting that tlno - (no) = 0 by (3.7), we
obtain

n

I tl,n+l - (n + 1) I ::; L I tl,II+1 - tIll lpn-II .
lI=no

As p < 1, this implies

n

I (n + 1) I ;::: I tl,n+l I - L I tl,II+1 - tIll I;::: 1,
lI=no

(3.9)

(3.10)

where the last inequality holds in view of (2.14). Thus (3.8) holds with n + 1 replacing n. This
completes the inductive argument, showing that (3.8) holds for all n ;::: no. As a by-product, we
also obtain that (3.9) holds for all n ;::: no; actually it vacuously holds for n = no - 1 as well in
view of (3.7). In fact, (3.9) will be our key result, and (3.8) was needed only in order to establish
it.

Conclusion (2.15) of the theorem to be proved now readily follows. In fact, using (3.9), for
n ;::: no we obtain

00 00 00

I tl,l+1 - tu IL pll-l-l + L I tl,l+1 - tu I L pll-l-l.

1I=n l=n 1I=l+1

lI=n

00 00 11-1

L I tIll - I s L L
1I=n l=no

n-l

=2:
l=no

I t t I 1I-1-l
1,l+1 - U P

By evaluating the inner sums we obtain (2.15). The proof of Theorem 2.3 is complete.

PART rr, AN APPLICATION TO ORTHOGONAL POLYNOMIALS

4. The Main Asymptotic Result

In what follows, by measure we will mean a positive finite measure a on the real line R whose
support supp(a) (the smallest closed set S c R with a(R\S) = 0) is an infinite set, and all the
moments of which are finite, that is, for every integer n ;::: 0 the integral

exists (i.e., it is absolutely convergent). Associated with the measure a there is a unique sequence
of orthonormal polynomials

Pn(X) =Pn(da,x) ='"Ynxn + ... ('"Yn ='"Yn(da) > 0, n ;::: 0) (4.1)
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(it is traditional to use the differential notation da instead of ex in these formulas) satisfying

i: Pm(x)Pn(x)dex(x) = 1 or 0 (4.2)

according as m = n or m =I n (m, n 0). These polynomials satisfy a recurrence relation

an+2Pn+2(Z) + (bn+l - Z)Pn+l(Z) + an+1Pn(Z) = 0 (n -1), (4.3)

where P-l = 0, PO = 0, ao 0, and an > 0 for n 0 (cf. e.g., Freud [2, formula (1.2.4)
on p. 17] or Szego [7, formula (3.2.1) on p. 42]). If one wants to indicate the dependence of the
coefficients an, bn on the measure ex, one may write an(dex) and bn(da) instead.

The connection between the behavior of the coefficients an, b« and the properties of the
measure ex is frequently investigated. In the most studied cases, the limits

lim an = a (=I 0) and lim bn = b

exist (and are finite). By a linear change of variables, we may assume a = and b = 0 here. In
this case, the support of ex is [-1,1] plus countable many isolated atoms (singletons with positive
measure); see Blumenthal's theorem in Chihara [1, Sections IV.3-4, pp. 113-124]. The set of
measures for which a = and b = 0 is often called M(O, 1), and it is studied in detail e.g., in
Nevai [6] (from p. 10 on at several places).

In studying equation (4.3), one can make use of the corresponding algebraic equation:

(4.4)

(we will not consider the case n -1, even though it is allowed in (4.3), because the fact that
ao = 0 would cause complications). Define r as a holomorphic function on C\[-1,1], where
C is the complex plane, by putting

r(z) = Z

where that branch of r is chosen for which

lim r(z) = 00.
%-'00

For -1 :5 x :5 1 put e.g.,

rex) = lim r(x + iy).
11-.0+

Then the roots of equation (4.4) can be written as

(4.5)

(4.6)
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(4.7)

and

(4.8)

Using the Factorization Theorem of Section 2 (or, rather, its variant, Theorem 2.3), we will
establish the following:

THEOREM 4.1. Let Ot be a finite positive measure on the real line with finite moments such that
suppto) is an infinite set. Assume that, writing an = an(dOt) and bn = bn(dOt), we have

(i) lim an = (ii) lim bn = 0
n-oo 2' n-oo

and

00

2:(1 an+1 an 1+ 1bn+1 - bn I) < 00.

n=O

Then, writing Pn(z) = Pn(dOt,z), the limit

n-1

g(z) = lim (Pn(z) IT(t1v(z»-1)
"'-00

v=O

(4.9)

(4.10)

(4.11)

exists for every complex z r:t:. [-1, 1]. Moreover, the convergence in (4.11) is uniform on every
closed set K c C\[-1, 1] . The limit

L = lim g(z)
z-oo

(4.12)

exists and L =I O.
When we say that a limit exists, we do, of course, require that it not be 00. Given K as

described, t1,; is holomorphic on K for large enough u in view of (4.9). Hence the uniformness
of the convergence in (4.11) implies that

N

g(z) IT t1v(Z)
v=O

(4.13)

is holomorphic on K for large enough N. In fact, we do not quite need the uniformness of the
convergence in (4.11) to reach this conclusion: clearly, it is sufficient to know that the convergence
in (4.11) is uniform on compact subsets of K (this observation will be of some use in Section 6).
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The above result is only partly new. It was setablished earlier as Theorem I in Mate-Nevai-
Totik [5, formula (9) on p. 232] except that the uniformness of the convergence in (4.11) was
established only for compact (and hence bounded) K c 0\[-1, 1] , and the existence of the limit
in (4.12) was not discussed. Condition (4.10) was first considered in Mate-Nevai [4] and (somewhat
later) Dombrowski [2].

5. The Main Lemma

A major step toward establishing Theorem 4.1 is represented by

LEMMA 5.1. Assume the hypotheses ofTheorem 4.1, and let D be an open subset of the complex
plain such that its closure D is disjoint from [-1 ,I]. Then for every large enough integer no there
are functions Fn and Gn satisfying

n-I

Pn(z) II (tlll(Z»-1 = Fn(z)(P1lQ(z) + (Pno+l(Z) - tlno(Z)Pno(z»Gn(z» (5.1)
11=0

for n > no and zED such that for certain function F, G, -rPln, and -rP2n we have

(5.2)

and

for every n > no and zED, and

lim -rPjn(z) 0 (j = 1,2)
n-+oo

(5.3)

(5.4)

uniformly for zED. Moreover, the functions F and G are bounded on every compact subset
ofD.

It is clear from (5.2)-(5.4) that for any fixed zED the limit of the right-and side of (5.1)
exists as n -+ 00, and in fact this limit is

g(z) = F(z)(Pno(z) + (P1lQ+l (z) - tl1lQ(Z)P1lQ(z»G(z». (5.5)

Moreover, if KeD is a compact set, then this limit is uniform on K, since the functions
F,G,Pno,Pno+l, and tl1lQ are bounded on K (for tino this is true in view of (4.7), since T is
bounded on compact sets - cf. (4.5». Hence the pointwise existence and the uniformness on
every compact set K C 0\[-1,1] of the limit in (4.11) follows from the above lemma. To
establish the uniformness of the convergence in (4.11) on unbounded K we need to study the
behavior of the functions F, G , and Gn near infinity. This will be done in the next section.

PROOF. Weare going to use Theorem 2.3 to factor the left-hand side of the recurrence equation
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bn+l Z an+l
Pn+Z(Z) + ---Pn+l(Z) + --Pn(Z) = 0;

an+z an+Z
(5.6)

this equation holds for n 0 (actually for n I, but cf, the remark after (4.4)) according to
(4.3). The roots of the corresponding algebraic equation (4.4) were given by (4.7) and (4.8).

Let D, be an open set such that DeDI and D 1 C 0\[-1,1]. As 1/Z is bounded on D
and the derivative of r(z) (cf. (4.5)) is bounded on Di . it is easy to conclude from (4.7), (4.9),
and (4.10) that

1 00

lim - ""' I tlll+l(Z) - tIll I = 0n-+oo Z L.", ,
lI=n

uniformly for zED.

By (4.7) and (4.9) we have

lim tln(Z) == r(z)
n-oo Z Z

(5.7)

(5.8)

uniformly on D. As I r'(a) I> 1 for z E 0\[-1,1], it follows that there are constants 71 > 1
and 01, Oz > 0 such that if n is sufficiently large, say n nl for some nl , then

(5.9)

and

(5.10)

hold for zED. The constants 01 and Oz (and 03,04, ... below) may of course depend on D
and the measure a. (4.9)(i) and (5.9) imply that there are an integer no nl and a real p with
o < p < 1 such that

(5.11)

holds for zED and n ? no; e.g.,one can take p == 2/0 + 71). Using (5.9) (for I Z I small)
and (5.10) (for IZ I large) it is easy to conclude from (5.7) that

00

Itln(Z) I 1 + 03 IZ I + 2: I tl,II+1(Z) - tlll(Z) I
1I=no

(5.12)
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holds for zED and n > no with some positive constant 03, provided no is chosen large
enough; hence the conditions analogous to (2.13) and (2.14) are satisfied by equation (4.4) replacing
(2.7). Clearly, writing

() bn+1 - Z d f3() an+2an= an n=--
an+2 an+l

(5.13)

(these are the coefficients in equation (5.6», conditions (2.3) and (2.4) are satisfied in view of (4.9)
and (4.10). Finally, condition (2.5) corresponds to the relation z (/. [-1, 1J, which holds for
zED.

Hence, according to Theorem 2.3, the left-hand side of (5.6) can be factored as

(5.14)

where and are functions on integers (depending on z , as indicated by the second subscript)
and

We wrote z as a subscript so as to retain the original use of the forward shift operator as acting on
arguments.

If we choose no above large enough, then tln(Z) will be holomorphic in D for n no.
Then, defining (n) and (n) as in the proofofTheorem 2.3, that is, by formulas (3.7), (3.5), and
(3.4) (cf. (5.13) for a(n) and f3(n», these functions will also be holomorphic in D for n no.

The analogue of (2.15) in Theorem 2.3 is satisfied, i.e.,

00 n-l

2: I tllJ(Z) - I :5 2: I tl,lJ+l(Z) - tllJ(Z) Ipn-l-IJ1(1 - p)
v=n lJ=no

00

+ 2: 1 tl,lJ+l (z) - tllJ(Z) I 1(1 - p) (z ED, n no). (5.15)
1J=n

In virtue of the uniformness of the convergence in (5.7), this implies that

lim I tllJ(Z)
n-+oo L.." z

1J=n

1
Z

1 00

= lim -I-I " I tllJ(Z) - 1= 0
11-+00 Z L-,

IJ=n

uniformly for zED.

In view of inequality (5.10), this implies that

(5.16)
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1· 1:00 II tlv(Z) I 1- 0lID og-- - og-- -
n-oo Z Z

v=n

uniformly for zED, i.e.,

00

lim II (lI)/tlv(Z)) = 1
n--+oo •

v=n

(5.17)

uniformly for zED.

Now (5.14) factors the left-hand side of (5.6) for n ;::: no; however, we need a factoring valid
for all n, -00 < n < 00. To this end, put

(5.18)

for zED and -00 < n < no (for n ;::: no, and have already been defined),
and write

{

Pn(z)(= qz(n))
Tz(n) =

o

Define hz(n) by the equation

ifn ;::: no,

ifn < no.
(5.19)

for zED and -00 < n < 00. Then

hz(n) =0 unless n = no - 1 or n =no - 2,

hz(no - 2) = Pno(z) ,

and

for zED. As

according to (3.7), the last equation becomes

(5.20)

(5.21)

(5.22)

(5.23)
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(5.24)

Using Lemma 3.1 twice, we can solve equation (5.20) for rz(n). The analogue of condition
(3.3) is satisfied, since rz(n) = 0 for n < no according to (5.19). We obtain

00 00

r(n) =I:
k=O [=0

(5.25)

To simplify our notation, everywhere in this formula we dropped the subscript z; that is, we wrote
r = Tz, = = and h hz • Note that only finitely many terms are nonzero in the
sums on the right-hand side in view of (5.21). In fact, according to (5.21), the only nonzero terms on
the right-hand side are those for which n - k - l 2 = no - 1 or n - k - l 2 = no - 2.
Moreover, by (5.18) we can see that the terms corresponding to the latter case are zero unless
l = 0 (since otherwise this term contains 1) as a factor). Thus, assuming n no,
(5.25) becomes

n-no-l
r(n) = E-2h(n) + I: E-1h(n).

k=O

Eliminating the operator E as done in example (2.1), we obtain

r(n) = h(no - 2) if (n - >.) + h(no - 1) (iI (n J1.») (Yf - V»)
A=1 k=O v=k+2

(
nn- n

o >.») (h(no 2) + h(no _ 1) __1__ nn-no - V»)
L.J (n k - 1) (n - v) .

A=1 k=O v=k+2 1

By introducing the new variables j = n - >., l = n - k - 1, and m = n - v, this becomes

(

n- l ) ( n-l l-1 )
r(n) = Jl (j) h(no - 2) + h(no - 1) I: n

J=no l=no ) m=no )

Note that the denominators here are not zero in view of (3.8).

Write

and

(5.26)

(5.27)
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n-I 1 l-I ()

Gn(z) = L (l) II (:)

l=no 10 m=no b

for n no. Then (5.26) becomes

rz(n) = (y t11l(Z)) Fn(z)(hAno - 2) + hz(no - l)Gn(z)).

Hence (5.1) follows by (5.19), (5.22), and (5.24).

Putting

(5.28)

we can see that

F(z) = lim Fn(z)
n .....oo

and G(z) = lim Gn(z) ,
n .....oo

(5.29)

lim Fn(z)/F(z) = 1
n .....oo

uniformly for zED according to (5.17). Thus (5.2) and (5.4) with j = 1 hold.

To show (5.3) and (5.4) with j = 2, i.e., that

lim Gn(z) = G(z)
n .....oo

uniformly for zED, note that if n is large enough, then

(1 + .,,)/2

(5.30)

(5.31)

for every zED according to (5.9) (for I z I small), (5.10) (for I z I large), and (5.16); recall
that ." > l. Moreover, as we have

(ef. (3.4) and (5.13)) and the right-hand side here tends to 1 as n - 00 according to (4.9)(i), it
follows from (5.31) that, if n is large enough, then

(5.32)

for every zED. This and (5.31) imply that the convergence in (5.30) is uniform.

Finally, we have to show that, given a compact set KeD, F and G are bounded on K .
In view of (5.2)-(5.4), it is sufficient to show for this that Fn and Gn are bounded on K for



174

each n > no. For Gn this is so because Gn is holomorphic in D (cf. (3.8) and the paragraph
preceding (5.15». For Fn this is so because

(5.33)

holomorphic in D (cf. the same paragraph), and th'(Z) is bounded away from zero on K for
every 1/ 0 (since T is bounded away from zero on the whole plane - cf. (4.5) and (4.7». The
proof Lemma 5.1 is complete.

6. Near Infinity

In order to complete the proof of Theorem 4.1, we are going to study the behavior of the
functions F and G near infinity. We have

LEMMA 6.1. Assume the hypotheses of Lemma 5.1 (and so, also those of Theorem 4.1), and
suppose that the set D includes a deleted neighborhood of 00. Let KeD be closed. Thenfor
the functions F, G, G«, and the integer no described in Lemma 5.1 we have

04 IZ I-no < IF(z) I< c, I z I-no

and

for z E K with some positive constants 04, Os and 06, and

(6.1)

(6.2)

(6.3)

for Z E K and n > no.

PROOF. We are going to show (6.1) first. To this end, observe that there are positive constants
07 and 08 such that

(6.4)

holds for n no and zED. Indeed, the first inequality holds for n > no with 07 = 03 in
view of (3.10) and (5.12). For n = no, it holds in view of (5.10) and (5.23). As for the second
inequality, it follows from (5.15) that

00 1 00

L I tlll(Z) - 1:5 1 _ p L I tl,II+1(Z) - tl,,(Z) I
,,=no Jl=no

The right-hand side here is less than
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I t1no(Z) I /0 - p)

(ct. (5.12)); thus the second inequality in (6.4) follows from (5.10).

We are now going to estimate F(z) as given by (5.27) and (5.29). As

lim T(Z)/Z = 2
-%-+00

(cf, (4.5)), the limit

no-1

lim (zno II (t1v(Z))-1)
z-oo

1'=0

exists and is different from 0 (cf. (4.7)). Now, according to (4.7), the expression after the limit is
bounded, since I T(Z) I 1 for Z EO, and it is bounded away from zero on compact subsets
of D since T(Z) is bounded on compact subsets of 0 and Z is bounded away from zero on D.
Therefore, we have

no-1

09 IZ I-no < I II (t1v(Z))-1 I< OlD IZ I-no
1'=0

for zED with some positive constants 09 and OlD.

Moreover according to (5.17) there is an N no such that

holds for zED. Finally we have

(6.5)

(6.6)

(6.7)

for zED according to (5.10) and (6.4). Now (6.1) follows from (5.27) and (5.29) with the aid
of (6.5)-(6.7). Note that (6.1) actually holds for zED, and not only for z E K.

As for (6.2), it is an obvious consequence of (6.3) and (5.29). To show (6.3), observe that in
view of (5.23) we can write (5.28) as

n-1 t-1
On(z) = _1_ + L _1_ II

t1no(z) [=no+1 m=no

for n > no (and zED). From here (6.3) follows by virtue of (5.32) and (6.4) provided I Z I
is large enough (so that 07 I Z I> 1 + e for z E K in (6.4), where e > 0). For Z E Knot
large (6.3) simply says that On is bounded uniformly in n on each compact subset of D; this



176

is indeed so in view of the last sentence of Lemma 5.1 and the uniformness of the convergence in
(5.30). The proof of Lemma 6.1 is complete.

We are now in the position to complete the

PROOF OF THEOREM 4.1. Let D be an open set with KeD such that D is disjoint
from [-1, 1] and D includes a deleted neighborhood of infinity. We have to establish (4.12) and
the uniformness of the convergence in (4.11); the existence of the limit in (4.11) was pointed out
right after Lemma 5.1. In what follows we assume Z E K.

As for (4.12), observe that

holds for fixed n as Z -+ 00, where '"'In i 0 (cf. (4.1». Thus (5.5), (5.10), and (6.2) imply that

(6.8)

as Z -+ 00. Hence 9 is bounded away from 0 and 00 in a deleted neighborhood of infinity,
according to (5.10) and (6.1). Therefore, the existence of the limit L in (4.12) and L i 0 follow if
we can show that 9 is holomorphic in a deleted neighborhood of 00 . Now 9 is indeed holomorphic
in a deleted neighborhood of infinity, since the function in (4.13) is so and tlv(Z) (0 $ v $ N)
has no zeros if 1 Z I is large enough. Here the remark made after (4.13) is significant, since we
do not yet know the uniformness of the convergence in (4.11) on D, but we know it on compact
subsets of D (cf. the discussion after Lemma 5.1).

Next we tum to the question of the uniformness of the convergence in (4.11). Writing gn(z)
for the left-hand side of (5.1) and using (6.3) instead of (6.2) (and (5.1) instead of (5.5», we obtain

gn(z) = Fn(z)(,no+l Zno+1/tlno(Z) + oq Z InO-1»

for n > no as Z -+ 00, where the bound implicit in the symbol 0(·) is independent of n (it
depends only on the constants in (5.10) and (6.2), and the coefficients of Pno and Pno+l ). Thus,
by (5.2) and (6.8) we have

for n > no and 1Z I> R, with some positive constants ell and R. According to (5.10) and
(6.1), the right-hand side here is less than

CI Z I> R),

with some positive constants C13 and C14. Given e > 0, this will be less than f provided I Z I
and n are large enough, say 1Z I> Rl and n > nz. That is

1gn(Z) g(z) 1< e

whenever 1Z 1> Rl and n > nz. Since we know that the convergence

(6.9)
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lim gn(z) = g(z)
n .....oo

is uniform on each compact subset of D (cf. the discussion after Lemma 5.1), (6.9) now implies
that this convergence is uniform on each closed subset of D. Thus the uniformness of the conver­
gence on K in (4.11) follows. The proof of Theorem 4.1 is complete.
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