Skip to main content

Use of Green's functions in the numerical solution of two-point boundary value problems

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 362))

Abstract

This study investigates the use of Green's functions in the numerical solution of the two-point boundary value problem. The first part deals with the role of the Green's function in solving both linear and nonlinear second order ordinary differential equations with boundary conditions and systems of such equations. The second part describes procedures for numerical construction of Green's functions and considers briefly the conditions for their existence. Finally, there is a description of some numerical experiments using nonlinear problems for which the known existence, uniqueness or convergence theorems do not apply. Examples here include some problems in finding rendezvous orbits of the restricted three body system.

Supported by the National Aeronautics and Space Administration — Washington, D.C.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   59.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

VI. Bibliography

  1. Ahlberg, J. H., E. N. Nilson, and J. L. Walsh, "Convergence Properties of General Splines," Proc. Nat. Acad. Sci. USA 54 (1965) 344–350.

    Article  MathSciNet  MATH  Google Scholar 

  2. Arenstorf, R. F., American Journal of Mathematics, LXXXV (1963) 27.

    Article  MathSciNet  Google Scholar 

  3. Bailey, P. B., L. F. Shampine, and P. E. Waltman, Nonlinear Two Point Boundary Value Problems, New York: Academic Press, 1968.

    MATH  Google Scholar 

  4. Bellman, R. E. and R. E. Kalaba, Quasilinearization and Non-linear Boundary Value Problems, New York: American Elsevier Publishing Company, 1965.

    MATH  Google Scholar 

  5. Ben-Israel, A., and A. Charnes, "Contributions to the Theory of Generalized Inverses," SIAM J. Appl. Math. 11 (1963) 667–699.

    Article  MathSciNet  MATH  Google Scholar 

  6. Bounitzky, E., "Sur la Function de Green des Équations Differentielles Linéaires Ordinaires," J. Math.Pures Appl. (6) 5 (1909) 65–125.

    MATH  Google Scholar 

  7. Ciarlet, P. G., F. Natterer, and R. S. Varga, "Numerical Methods of High Order Accuracy for Singular Nonlinear Boundary Value Problems," Numerische Mathematik 15 (1970) 87–99.

    Article  MathSciNet  MATH  Google Scholar 

  8. Ciarlet, P. G., M. H. Schultz, and R. S. Varga, "Numerical Methods of High-Order Accuracy for Nonlinear Boundary Value Problems. I. One Dimension Problem," Numer. Math. 9 (1967) 394–430.

    Article  MathSciNet  MATH  Google Scholar 

  9. Ciarlet, P. G., M. H. Schultz, and R. S. Varga, "Numerical Methods of High-Order Accuracy for Nonlinear Boundary Value Problems. V. Monotone Operator Theory," Numer. Math. 13 (1969) 51–77.

    Article  MathSciNet  MATH  Google Scholar 

  10. Ciarlet, P. G., Variational Methods for Non-Linear Boundary-Value Problems, Doctoral Thesis, Case Institute of Technology, 1966.

    Google Scholar 

  11. Elliott, W. W., "Generalized Green's Functions for Compatible Differential Systems," Amer. J. Math. 50 (1928) 243–258.

    Article  MathSciNet  MATH  Google Scholar 

  12. Fox, L., The Numerical Solution of Two-Point Boundary Value Problems in Ordinary Differential Equations, London: Oxford University Press, 1957.

    MATH  Google Scholar 

  13. Henrici, P., Discrete Variable Methods in Ordinary Differential Equations, New York: John Wiley & Sons, 1962.

    MATH  Google Scholar 

  14. Jamet, P., Numerical Methods and Existence Theorems for Singular Linear Boundary-Value Problems, Doctoral Thesis, University of Wisconsin, 1967.

    Google Scholar 

  15. Jamet, P., "On the Convergence of Finite-Difference Approximations to One-Dimensional Singular Boundary-Value Problems," Numer. Math. 14 (1970) 355–378.

    Article  MathSciNet  MATH  Google Scholar 

  16. Lees, M., "Discrete Methods for Nonlinear Two-Point Boundary Value Problems," Numerical Solution of Partial Differential Equations, ed. by J. H. Bramble, New York: Academic Press, 1966. 59–72.

    Google Scholar 

  17. Loud, W. S., "Generalized Inverses and Generalized Green's Functions," SIAM J. Appl. Math. 14 (1966) 342–369.

    Article  MathSciNet  MATH  Google Scholar 

  18. Loud, W. S., "Some Examples of Generalized Green's Functions and Generalized Green's Matrices," SIAM Review 12, 2 (1970) 194–210.

    Article  MathSciNet  MATH  Google Scholar 

  19. Mikhlin, S. G., "Variational Methods of Solving Linear and Non-Linear Boundary Value Problems," Differential Equations and Their Applications, ed. by I. Babuska, New York: Academic Press, 1963 77–92.

    Google Scholar 

  20. Perrin, F. M., H. S. Price, and R. S. Varga, "On Higher-Order Numerical Methods for Nonlinear Two-Point Boundary Value Problems," Numer. Math. 13 (1969) 180–198.

    Article  MathSciNet  MATH  Google Scholar 

  21. Phillips, G. M., "Analysis of Numerical Iterative Methods for Solving Integral and Integradifferential Equations," Computer J. 13 (1970) 297–300.

    Article  MATH  Google Scholar 

  22. Reid, W. T., "Generalized Green's Matrices for Compatible Systems of Differential Equations," Amer. J. Math. 53 (1931) 443–459.

    Article  MathSciNet  MATH  Google Scholar 

  23. Reid, W. T., "Generalized Green's Matrices for Two-Point Boundary Problems," SIAM J. Appl. Math. 15 (1967) 856–873.

    Article  MathSciNet  MATH  Google Scholar 

  24. Reid, W. T., "Generalized Inverses of Differential and Integral Operators," Theory and Application of Generalized Inverses of Matrices: Symposium Proceedings, Texas Technological College Mathematics Series, No. 4, Lubbock, Texas 1968, 1–25.

    Google Scholar 

  25. Schoenberg, I. J., On Spline Functions, Math. Research Center MRC Tech. Summary Report No. 625, University of Wisconsin (May 1966).

    Google Scholar 

  26. Schoenberg, I. J., "On Interpolation by Spline Functions and Its Minimal Properties," Proceedings Conference on Approximation Theory (Oberwohlfach, Germany, 1963), Basel: Birkhauser, 1964, 109–219.

    Google Scholar 

  27. Sharma, A., and A. Meir, "Degree of Approximation of Spline Interpolation," J. Math. Mech. 15 (1966) 759–767.

    MathSciNet  MATH  Google Scholar 

  28. Varga, R. S., "Hermite Interpolation-Type Ritz Methods for Two-Point Boundary Problems," Numerical Solution of Partial Differential Equations, ed. by J. H. Bramble, New York: Academic Press, 1966, 365–373.

    Google Scholar 

  29. Vašakmadze, T. S., "On the Numerical Solution of Boundary-Value Problems," Ž. Vyčisl. Mat. i Mat. Fiz. 4 (1964) 623–637.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Dale G. Bettis

Rights and permissions

Reprints and permissions

Copyright information

© 1974 Springer-Verlag

About this paper

Cite this paper

Gallaher, L.J., Perlin, I.E. (1974). Use of Green's functions in the numerical solution of two-point boundary value problems. In: Bettis, D.G. (eds) Proceedings of the Conference on the Numerical Solution of Ordinary Differential Equations. Lecture Notes in Mathematics, vol 362. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0066602

Download citation

  • DOI: https://doi.org/10.1007/BFb0066602

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-06602-6

  • Online ISBN: 978-3-540-37911-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics