Proper surgery groups and Wall-Novikov groups
$\frac{\text { Serge Maumary }}{}{ }^{*}$
IAS Princeton
and UC Berkeley

The lifting of a surgery problem of closed manifolds to a covering leads usually to a proper surgery problem on open locally compact manifolds, and this proceedure gives by the present work new informations about the original problem. This is the motivation of proper surgery. In $[B]$, proper surgery groups are constructed formally as in $[9, \S 9]$ and our goal has been to "compute" these groups in terms of Wall-Novikov groups (both [ 8 ] and the present work have been done sinultaneously and ignoring each other). I am indebted to W. Browder, J. Wagoner, R.Lee, A.Ranicki for useful and friendly conversations, and to L. Taylor who pointed out a gap.

1. Notations and conventions

We consider exclusively locally compact manifolds $M$ and $C W-c o m$ plexes $X$ of finite dimension, and proper maps $f$ between them (i.e. $f^{-1}(c o m p a c t)$ is compact).

If $X$ is connected, we can choose a fondemental sequence of ngbd of $: x_{1} \supset x_{2} \supset x_{3}$ ) .... formed by subcomplexes $x_{n}$ with only non compact components (in finite number). We denote by $\overline{x-x}$ any finite subcomplex of $x$ such that $\overline{x-x_{n}} \vee x_{n}=x$, and let $\dot{x}_{n}=\overline{x-x_{n}} \cap x_{n}$ which is a finite subcomplex containing the frontier of $X_{n}$ in $X$. For any pointed connected CW-complex $A$, with associated universal covering $\widetilde{A}$, one usually denotes by $C(A)$ the chain complex of cellular chains on $\widetilde{A}$ with integer coefficients (and if $B(A$, then $C(A)$ mod $C(A, B)$ is denoted by $C(A, B))$ We denote by $c\left(X_{n}\right)$ the family $C\left(X_{n}^{i}\right)$ obtained by choosing implicitely one base point in each connected component $x^{i}$ of $X_{n}$.

[^0]Similarly, we denote by $Z \pi_{1} X_{n}$ the family of rings $Z \pi_{1} X_{n}^{i}$ and by a $Z \pi_{1} X_{n}$-module $M$, we mean a family of $Z \pi_{1} X_{n}^{i}$ - modules $M^{i}$. The homology of $C\left(X_{n}\right)$ is denoted by $H_{k}\left(X_{n}\right)$, while the homology of its dual $C *\left(X_{n}\right)$, the family of $\operatorname{Hom}_{\pi_{1}} X_{n}\left(C\left(X_{n}^{i}\right), Z \pi_{1} X_{n}^{i}\right)$, is denoted by $H^{k}\left(X_{n}\right)$, where $C\left(X_{n}^{i}\right)$ is given the right structure via the antiautomorphism $\alpha \rightarrow W(\alpha) \alpha^{-1}$ of $Z \pi_{1} X_{n}^{1}$, $w$ being given by some fixed homomorphism $\pi_{1} X \rightarrow+1$.
The U-groups of $[4]$ or $[5]$ will be denoted by $L_{m}^{P}(G)$ while $L_{m}(G)$ denotes the ordinary wall groups (or V-groups). As an inner automorphism of $G$ induces $\pm$ identity on $L_{m}^{p}(G), L_{m}^{p}\left(\pi_{1} X_{n}^{i}\right)$ is well defined and we write $L_{m}^{p}\left(\pi_{1} X_{n}\right\}=\underset{i}{\oplus} L_{m}^{p}\left(\pi_{1} X_{n}^{i}\right\}$. Similarly $X_{n+1} \rightarrow X_{n}$
 only depends on $X$, as well as $\lim _{n}^{1}{ }_{L_{m}}^{p}\left(\pi_{1} X_{n}\right)$. As for the latter it maybe useful to recall Milnor's definition of lim ${ }^{l}$ of an inverse system of abelian groups $A_{1} \stackrel{\#}{*} A_{2} * A_{3}^{*} \not \approx:$; this is the Coker of $\prod_{n>1} A_{n} \xrightarrow[n>1]{l-S} \prod_{n}$, where $(1-S)\left(a_{1}, a_{2}, a_{3}, \ldots\right)=$ $=\left\{a_{1}-a_{2}^{\#}, a_{2}-a_{3}^{\#}, \ldots\right\}$. Observe that a subsequence of $\left\{A_{n}\right\}$ gives the same result : e.g. $\lim _{\neq}^{1} A_{2 n+1}=\lim _{\neq 1}^{1} A_{n}$ by mapping $\left(a_{1}, a_{2}, a_{3}, \ldots\right\}$ to $\left(a_{1}+a_{2}, a_{3}+a_{4}^{*} \ldots\right)$ in the range of $1-S$.
2. Homology and cohomology inverse systems

Having implicitely choosen one base point for each connected component of $x_{n}$, we join the base points of $x_{n+1}$ to those of $x_{n}$ by paths in $X_{n}$ (in this usy, a tree grows in each connected component of $X_{1}$ ). The latter determine maps $\tilde{x}_{n+1}^{j} \rightarrow \tilde{x}_{n}^{i}$ and so pseudo-linear homomorphisms $\left[\left(X_{n+1}^{j}\right) \rightarrow C\left(X_{n}^{i}\right)\right.$.

This gives rise to an inverse system $\left\{C\left[X_{n}\right\}\right\}$. Note that $\stackrel{\oplus}{j}\left(Z \pi_{1} x^{i} \underset{n}{ }{ }^{i} \pi_{1} x_{n+1}^{j} \quad C\left(X_{n+1}^{j}\right)\right)$ (one summand for each $j$ such that $X_{n+1}^{j}\left(x_{n}^{i}\right)$ is isomorphic to the subcomplex of $c\left(x_{n}^{i}\right)$ determined by $x_{n}^{i} \mid x_{n+1}$ Two choices of base points and paths give two inverse systems related by a diagram of subsequences

which commutes up to the action of $\pi_{1} x_{n}^{i}$ on itself by inner automorphisms. Such a diagram is called a conjugate equivalence. Similarly, the families of cochain complexes $C_{c}^{*}\left(x_{n}, \dot{x}_{n}\right)$ def. . $=\underset{\vec{r}}{\underline{I} m} C^{*}\left(X_{n}, \dot{X}_{n} \cup X_{r}\right)$ form an inverse system by excision and is also well defined up to conjugate equivalence. Now, any element $[X] \in \underset{r}{\operatorname{im}} \mathrm{H}_{\mathrm{m}}\left(\mathrm{X}_{\mathrm{t}} \mathrm{X}_{\mathrm{r}}\right.$; Z) [homology with coefficients extended by w : $\left.Z \pi_{1} X \rightarrow Z\right)$ gives by cap products (see [1] ) a commutative diagram $c_{c}{ }^{*}\left(x_{1}, \dot{x}_{1}\right) \leftarrow c_{c}{ }^{*}\left(x_{2}, \dot{x}_{2}\right) \longleftarrow$

i.e. by definition a morphism of inverse systems. The latter is called an equivalence if there is an "inverse" morphism $\left\{C\left(X_{n}\right)\right\} \rightarrow$ $\xrightarrow{\Psi} \quad\left\{C_{c}^{*}\left(x_{n}, \dot{x}_{n}\right\}\right\}$, i.e. a commutative diagram of subsequences

where $\Psi$ is pseudo-1inear, and $r_{1}<s_{1}<r_{2}<s_{2}<\ldots$.

Observe that in this case, we can assume $r_{n}=s_{n-1}=n$ without loss of generality. When $n[x]$ is an equivalence, we say that $[X]$ is a m-fundamental class at $*$, and that $X$ is properly Poincaré at $*$ This turns out to be an invariant of the proper homotopy type of $X$. Now, a proper map f: $M \rightarrow X$ of properly Poincaré complexes is said of degree 1 if $f^{*}[M]=[X]$. By confusing $X$ with the mapping cylinder of $f$, and denoting the $k+l$-homology of $C\left(X_{n}, M_{n}\right)$, resp. $C_{c}^{*}\left(X_{n}, \dot{X}_{n} \cup M_{n}\right)$ by $K_{K}\left(M_{n}\right)$, resp. $K_{c}^{k}\left(M_{n}, \dot{M}_{n}\right)$, where $M_{n}=X_{n} \cap M, M_{n}=\dot{X}_{n} \cap M$ we get again inverse systems $\left\{K_{k}\left\{M_{n}\right\}\right\}$ and $\left\{K_{c}^{k}\left\{M_{n}, \dot{M}_{n}\right\}\right\}$ well defined up to conjugate equivalence. If $M_{n}=\partial M_{n}$, then the composition :
$\Psi: K_{m-k}\left(M_{n}\right) \stackrel{\partial}{\rightarrow} H_{m-k}\left(M_{n}\right) \stackrel{\text { Poincaré }}{\simeq} H_{c}^{k}\left(M_{n}, \partial M_{n}\right) \rightarrow K_{c}^{k}\left(M_{n}, \dot{M}_{n}\right)$ turns out to be a canonical equivalence of inverse systems with an inverse shifting $n$ by 4 (and so shifting $n$ by 1 on a subsequence). Qf course in the above, $H_{*}\left(M_{n}\right)$ and $H_{c}^{*}\left(M_{n}, \partial M_{n}\right)$ are with $\pi_{1} X_{n}$-coefficients.
3. Homology and cohomology direct systems

For $r<n<s$, let $C^{*}\left(X_{n}, X_{s}\right)_{r}$ be the family $\underset{j}{\oplus} \operatorname{Hom}_{Z \pi}{ }_{1} X_{r}^{i}$


Iim $C^{*}\left(X_{n}, X_{s}\right)_{r}$. For $r$ fixed, the restriction maps $C_{C}^{*}\left(X_{n}\right)_{r} \rightarrow C_{c}^{*}\left(X_{n+1}\right)_{r}$ determine a direct system $\left\{C_{c}^{*}\left(X_{n}\right)_{r}\right\}$. Similarly, if $C\left(x_{n}, \dot{x}_{n}\right)_{r}$ denotes the family $\underset{j}{\oplus}\left(Z \pi_{1} x_{r}^{i} \underset{Z \pi_{1}}{\otimes} x_{n}^{j} C\left(x_{n}^{j}, x_{n}^{j}\right)\right)$ (chains of $\tilde{X}_{r}^{i} \mid x_{n}$ mod $\tilde{X}_{r}^{i} \mid x_{r}-x_{n}$ ), then the quotient maps
$C\left(X_{n}, \dot{X}_{n}\right)_{r} \rightarrow C\left(X_{n+1}, \dot{X}_{n+1}\right)_{r}$ form a direct system, for $r$ fixed and $n>r$. Now, given a proper map $f$ : $M+X$ of degree 1 , if we write $K_{*}\left(M_{n}, M_{n}\right)_{r}$, resp $K_{c}^{*}\left(M_{n}\right)_{r}$, for the homology of $c\left(X_{n}, \dot{X}_{n} \cup M_{n}\right)_{r}$, resp $C_{c}^{*}\left(X_{n}, M_{n}\right)_{r}$, we find again an equivalence $\Psi$ :

$$
\left\{K_{m-k}\left\{M_{n}, \dot{M}_{n}\right\}_{r}\right\} \rightarrow\left\{K_{c}^{k}\left(M_{n}\right\}_{r}\right\}
$$

Of course, these direct systems are well defined only up to conjugate equivalence, the latter notion being the same as for inverse systems.
4. End homology and cohomology

The dual of $C_{c}^{*}\left(x_{n}, \dot{x}_{n}\right)$ is canonically isomorphic to $C^{\prime}\left(x_{n}, \dot{x}_{n}\right)$ notat. $=$ $=\underset{s}{l_{s} m} C\left(x_{n}, \dot{x}_{n} \cup x_{s}\right)$, which is nothing but the chain complex of locally finite chain on $x_{n}$ mod $\dot{x}_{n}$, with $2 \pi_{1} X_{n}$-coefficients. The quotient complex $C^{\prime}\left(x_{n}, \dot{x}_{n}\right) / C\left(x_{n}, \dot{x}_{n}\right)$ yields the end homology $H_{*}^{e}\left(x_{n}\right)$ by definition. As usually, the cochain complex $\underset{\substack{\lim }}{\operatorname{li}}\left(X_{s}\right) n$ yields the end cohomalogy $H_{a}^{*}\left(x_{n}\right)$ by definition. Now, one can prove [see 3] that, if $[X]$ is a m-fundamental class at $\infty$ coming from $C_{m}^{\prime}(X ; Z)$, then $n[x]$ gives rise to an isomorphism $H_{e}^{k}\left(x_{n}\right) \simeq H_{m-k}^{e}\left(x_{n}\right)$. All this applies to a proper map $f: M \rightarrow X$ of degree $l$, to yield an isomorphism $K_{e}^{k}\left(M_{n}\right) \simeq K_{m-k}^{e}\left(M_{n}\right)$. Our end homology can be viewed as an $\varepsilon$-construction (see [8] or [2]) with $\pi_{1} X_{n}$-coefficients as follows : consider the diagram of families of pointed subcomplexes

$$
\begin{array}{ccc}
\left(x_{n}, x_{n}\right) & \left(x_{n}, x_{n+1}\right) & \left(x_{n}, x_{n+2}\right) \\
\cup & \cdots \\
& \left(x_{n+1}, x_{n+1}\right) & \left(x_{n+1}, x_{n+2}\right) \\
& & \cup \\
& & \left(x_{n+2}, x_{n+2}\right) \\
& \cdots
\end{array}
$$

 and $\varepsilon C\left(X_{n}\right)=\underset{s>n}{1 \frac{1}{2} m} \mu C\left(X_{s}\right\}_{n}$. An isomorphism $C^{\ominus}\left(X_{n}\right) \simeq \varepsilon C\left(X_{n}\right)$ arises by decomposing $z \subset C^{\prime}\left(x_{n}\right)$ into $z_{n} \oplus z_{n+1}^{\prime} \in C\left(x_{n}, x_{n+1}\right) \oplus C^{\prime}\left(x_{n+1}\right)_{n}$, then $z_{n+1}^{\prime}$ into $z_{n+1} \oplus z_{n+2}^{\prime}$, and so forth.
5. The category of (inverse or direct) systems

If one considers systems of families of modules $\left\{A_{n}\right\} o v e r ~\left\{Z \pi_{1} X_{n}\right\}$ as abstract objects and takes their equivalence clesses by the relation of (conjugate) equivalence, and if one does the same thing for the morphisms $\left\{A_{n}\right\} \rightarrow\left\{B_{n}\right\}$, then it is routine to verify that one gets an abelian category (see [3], compare [7]). A more specific result is the following.

Proposition (see [3]) let \{[(n)\} be a system of chain complexes. each of the form $0 \rightarrow C_{\ell}(n) \xrightarrow{\partial} \ldots \rightarrow C_{1}(n) \rightarrow C_{0}(n) \rightarrow 0$ where $\ell>0$ is fiked independant of $n$ and $C_{k}(n)$ is free of countable rank. Suppose that the associated homology systems $\left\{H_{k}(n)\right\}$ are equivalent to for all $k<\ell$. Then there is an equivalence $\left\{H_{\ell}(\Pi)\right\} \rightarrow\left\{P_{n}\right\}$, where each $P_{n}$ is a projective countably generated module and each homomorphism $H_{\ell}(n) \rightarrow P_{n}$ is injective. Moreover, in the system $\left\{P_{n}\right\}$, one can assume that the image of $P_{n+1} \rightarrow P_{n}$ a dirsot summand, in particular also projective. These two results essentially allow us to elaborate an algebraic Whitehead torsion for proper homotopy equivalence (compare [ 8 ]).
6. Proper surgery

It is well known that any surgery rel, boundary on a compact $m-s u b m a n i f o l d$ of $M^{m}$ extends to $M$, and similarly for a clased bicollared submanifold $V^{n-1}$. By definition, a proper surgery on $M$ is the result of a diverging sequence of disjoint such surgeries. We distinguish the following particular case of carving out $\mathbb{R}^{\square} C M$. Let $f: M \rightarrow X$ be a proper normal map (relative to $\xi$ proper on $X], \varphi: \mathbb{R}^{q} \rightarrow M$ be a proper embedding, $\Psi:$
$\mathbb{R}_{+}^{q+1} \rightarrow X$ a proper map such that $\psi \mid \mathbb{R}^{q}=f_{0}^{\varphi} \quad\left(\mathbb{R}^{q}=\partial \mathbb{R}_{+}^{q+1}\right)$. Now the normal bundle of $\varphi$ is trivial (because $\mathbb{R}^{q}$ is contractiblej and we form $W^{m+1}$ by gluing $M \times I$ and $\mathbb{R}_{+}^{q^{+1}} \times D^{m-q}$ along $\mathbb{R}^{q} \times D^{m-q} c M \times I$.

As $(M \times I) \cup \mathbb{R}_{+}^{q+1}$ is a proper deformation retract of $W$, we can extend $f$ to $F$ : $W \rightarrow X \times I$ by using $\Psi$. The stable trivialisation of ${ }^{\tau} M \oplus f^{*} \xi$ on $M$ extends to a stable trivialisation of $\tau_{W} \oplus F^{*} \xi$ on $W$ because $W$ retracts by deformation on $M \times \square$. Now, $W$ is a cobordism between $M$ and $M^{\prime} \approx M-\varphi\left(\mathbb{R}^{q}\right)$. The inclusions $M(W) M^{\prime} \cup D^{m q}$ are homotopy equivalences

$M \times I$
M

One can observe that $M$ also results form $M^{\prime}$ by first a (m-q)surgery and then carving out $\mathbb{R}^{m-q}$. To each cocompact submanifold $M_{n} C M$ corresponds a cocompact submanifold $M_{n}^{\prime} C M$ of the following shape $: M_{n}^{\prime}=\left(M_{n} \cup q\right.$-handle $)-\mathbb{R}^{q}$

## 7. Preliminary surgeries

Let $M$ be an open m-manifold, $X$ a proper Poincaré complex at and $f$ : $M \rightarrow X$ a proper normal map of degree 1 . We assume that $X$ is connected and so we can choose cocompact subcomplexes $x_{n}$ in $x$ which have only non compact connected components. We can assume that each $\dot{x}_{n}$ is bicollared, and that $f$ is transversal on each of them (see [1]). Then $f^{-1}\left(X_{n}\right)$ is a cocompact submanifolds $M_{n} C M$, such that $\partial M_{n}=f^{-1}\left(\dot{X}_{n}\right)$ and $\overline{M_{n}-M_{n+1}}=f^{-1}\left(\overline{X_{n}-X_{n+1}}\right)$. Clearly, if $m=2 q$, resp. $2 q+1, q \geqslant 3$, we can assume that each map

```
M-M
q-connected. In particular, f is bijective on ends spaces.
```

When $m=2 q+1$, we can improve still the connectivity of $f$ as follows.
Each module of the family $K_{q}\left(M_{n}, M_{n+1}\right)$ def $H_{q+1}\left(X_{n}, M_{n} \cup X_{n+1}\right)$ is finitely generated, and each generator can be represented by an embedded $q$-sphere $S^{q}$ in $\bar{M}_{n}-M_{n+1}$, provided with a nulhomotopy $0^{q+1}$ in $\overline{X_{n}-X_{n+1}}$. We pipe $S^{\square}$ to $\infty$, getting $\mathbb{R}^{\text {a }}$ proper $M_{n}$ and extend $D^{\square}$ into $\mathbb{R} \xrightarrow{q+1 \text { proper }} X_{n}$ :


Then the process of carving out $\mathbb{R}^{q} C M_{n}$ allows to kill each $K_{q}\left(M_{n}, M_{n+1}\right)$. An immediate consequence is $K_{c}^{Q_{n}}\left(M_{n}\right)=0$, hence the direct system $\left\{K_{q+1}\left\{M_{n}, \partial M_{n}\right\}_{r}\right\}$ is equivalent to 0 by duality. A more involved argument (see [3]) shows that $K_{q}^{\prime}\left(M_{n}\right){ }_{i}^{d e f} H_{q+1}^{\prime}\left(X_{n}, M_{n}\right)$ also vanishes hence the inverse system $\left\{K^{q+1}\left(M_{n}, \partial M_{n}\right\}\right\} i s$ equivalent to 0 by duality. Moreover, the inverse system $\left\{K_{q}\left\{M_{n}\right\}\right\}$ and the direct system $\left\{K_{q}\left(M_{\Pi}, \partial M_{\Pi}\right\}_{r}\right\}$ are both equivalent to systems of projective countably generated modules (ibid).
8. The case $m=2 q+1, M$ open

Assuming the prelimininary surgery already done the starting situation is described by a commutative square

$$
\begin{aligned}
K_{c}^{q+1}\left[M_{n}, \partial M_{n}\right)_{r} & \longrightarrow K_{c}^{q+1}\left(M_{n}\right)_{r} \quad r<n . \\
& \uparrow{ }_{c} \longrightarrow K_{q}\left(M_{n}, \partial M_{n}\right)_{r}
\end{aligned}
$$

where $\Psi$, resp. $\bar{\Psi}$, are equivalences of inverse, resp. direct, systems (r being fixed, n variable > r), with inverse equivalences shifting $n$ by +1 .

The fundamental duality property of this square is the following $\pm$ commutative diagrams of exact sequences

$$
\begin{align*}
& 0 \rightarrow K^{q}\left(M_{n}, \partial M_{n}\right)_{r} \rightarrow K_{e}^{q}\left(M_{n}\right)_{r} \rightarrow K_{c}^{q+1}\left(M_{n}, \partial M_{n}\right)_{r} \\
& \uparrow \bar{\Psi}^{*} \quad \uparrow \Psi^{\mathrm{e}} \quad \uparrow \Psi \\
& K_{q+1}^{\prime}\left(M_{n}\right)_{r} \rightarrow K_{q+1}^{e}\left(M_{n}\right)_{r} \rightarrow K_{q}\left(M_{n}\right)_{r} \quad \rightarrow  \tag{0}\\
& 0 \rightarrow K^{q}\left(M_{n}\right)_{r} \rightarrow K_{e}^{q}\left(M_{n}\right)_{r} \rightarrow K_{c}^{q+1}\left(M_{n}\right)_{r} \\
& \uparrow \Psi^{*} \uparrow \Psi^{\ominus} \uparrow \bar{\Psi} \\
& K_{q+1}\left(M_{n}, \partial M_{n}\right)_{r}+K_{q+1}^{e}\left(M_{n}\right)_{r} \rightarrow K_{q}\left(M_{n}, \partial M_{n}\right)_{r} \rightarrow 0
\end{align*}
$$

where $\Psi^{*}$ is the composition $K_{q+1}^{\prime}\left(M_{n}, \partial M_{n}\right) r \xrightarrow{c a n}$ dual $K_{c}^{q+1}$ $\left(M_{n}, \partial M_{n}\right)_{r} \xrightarrow[\rightarrow]{\text { dual } \Psi}$ dual $K_{q}\left(M_{n}\right)_{r} \simeq K^{q}\left(M_{n}\right)_{r}$, and similarly for $\Psi^{*}$, and $\Psi^{£}=\underset{\vec{n}}{\lim } \Psi^{*}$ is actually an isomorphism (see [3]). One sees that both $\Psi$ and $\bar{\Psi}$ are induced by $\Psi^{e}$. Qur aim is to improve the initial arbitrary choice of $X_{n}, \dot{x}_{n}$ in the mapping cylinder $X$ of $M \xrightarrow{f} X$ so as to get $Y$ bijective. One cannot do this for $X$ itself but one can replace $X$ by any complex simply homotopy equivalent to $X$ rel. M. The first step is the following.

Lemma : Ker $\Psi$ and Ker $\Psi$ are finitely generated. Proof (sketched): using the results of $\S 5$, one finds an equivalence $\left\{K_{c}^{q+1}\left(M_{n}, \partial M_{n}\right)_{r}\right\} \xrightarrow{1 n j}\left\{P_{n}\right\}$, where each $P_{n}$ is projective, the imege of $P_{n+2} \rightarrow P_{n}$ being a direct summand $P_{n}^{\prime}$. By composition with $\Psi$ we get an equivalence $\alpha:\left\{K_{q}\left(M_{n}\right\}\right\} \rightarrow\left\{P_{n-1}\right\}$ such that ker $\alpha=k e r \quad \psi$ and im $\alpha=P_{n}^{\prime}$, which is projective. Hence ker $\alpha$ is a direct summand. But ker $\Psi$ is contained in the kernel of $K_{q}\left(M_{n+1}\right)_{r} \rightarrow K_{q}\left(M_{n}\right)_{r}$, which is finitely generatad, hence so is ker $\Psi$, as direct summand. The same argument applies to $\bar{\Psi}$. This shows actually that, for a subsequence, the kernel of
$K_{q}\left(M_{n}\right)_{n-1} \xrightarrow{\Psi} K_{c}^{q+1}\left(M_{n}, \partial M_{n}\right)_{n-1}$ is finitely generated, and similarly for $\bar{\psi}$.

The first improvement is to replace $X_{n}$ by $X_{n+1} \cup M_{n}$ and $\dot{x}_{n}$ by $x_{n+1} \cup \dot{M}_{n}$ where $\dot{M}_{n}=\overline{M_{n}-M_{n+1}}$


Then, in the square

$$
\begin{aligned}
& K_{c}^{q+1}\left(M_{n}, \dot{M}_{n}\right) \longrightarrow K_{c}^{q+1}\left(M_{n}\right) \\
& \Psi \uparrow \\
& \longrightarrow \bar{\psi}_{q} \\
& K_{q}\left(M_{n}\right) \longrightarrow K_{q}\left(M_{n}, \dot{M}_{n}\right)
\end{aligned}
$$

Ger $\Psi$ and $\operatorname{ker} \Psi$ are finitely generated. The second improvement is to enlarge $X_{n}$ inside $\overline{X_{n}-X_{n+1}}$ with $\overline{M_{n}-M_{n+2}} \cup e^{q+1}$, to kill jer $\bar{\Psi}$ :


By taking the quotient map, we find $K_{q}\left(M_{n}, \dot{M}_{n}\right) \rightarrow K_{c}^{q+1}\left(M_{n}\right)$ infective,
and by the fundamental duality property we can restablish $\psi$ and the initial square (see [3]). Assuming $\psi$ infective, we can enlarge both $x_{n}$ and $\dot{x}_{n}$ inside $\overline{X_{n-1}-x_{n}}$ with $\overline{M_{n-1}-M_{n+2}} \cup e^{q+2}$ to kill kier $\Psi$. By taking the quotient map, we find $K_{q}\left(M_{n}\right) \not{ }_{n} K_{c}^{q+1}\left(M_{n}, \dot{M}_{n}\right)$ infective, and we restablish $\bar{\psi}$ and the square by the fundamental duality property again. By using the proof of the above lemma, both $K_{q}\left(M_{n}\right)$ and $K_{q}\left(M_{n}, M_{n}\right)$ are seen to be projective (ibid). Then one can still kill the kernel of the map $k_{q}\left(M_{n}\right)^{\#} \rightarrow k_{q}\left(M_{n}\right)$ where $\#$ means with $\pi_{1} X_{n}$-coefficients, and this will make $\psi$ bifective (ibid). Then the fundamental duality property implies that $\psi$ is infective. Now, the commutative diagram of exact sequence

shows that $\psi$ induces an isomorphism $K_{q}\left(M_{n}\right)^{\# \#} \simeq K^{q}\left(M_{n}\right)$, ide. a non degenerated quadratic projective finitely generated $Z \pi_{1} X_{n}$ module $<K_{q}\left(\dot{M}_{n}\right)>$

Proposition : the quadratic form on $<K_{q}\left(M_{n}\right)>$ so obtained satisfies the following properties :
i) it is induced by the (degenerated) intersection form on $K_{q}\left(\partial M_{r}\right)^{\#}$ for some $r>n$, hence determine an element of $L_{2 q}^{p}\left(\pi_{1} x_{n}\right)$.
ii) it is defined stably, and the operation of carving out a trivial proper embedded $\mathbb{R}^{a} C M$ (bounding $\mathbb{R}_{+}^{a+1} C \quad M$ ) adds a trivial free hyperbolic module
iii) there is a canonical equivalence between the quadratio $Z \pi_{1} X_{n}$-modules $\left\langle K_{q}\left(\bar{M}_{n}\right)\right\rangle$ and the $Z \pi_{1} X_{n}$-extension of $\left\langle K_{q}\left(\dot{M}_{n+1}\right)\right\rangle$. In other words the sequence $\left\langle K_{q}\left(\dot{M}_{n}\right)\right\rangle$ is an element of $\underset{\pi}{\lim } L_{2 q}^{p}\left(\pi_{1} x_{n}\right\}$
iv) the latter is well defined by the normal map $f: M \rightarrow X$, and is a cobordism invariant. For the proof of this proposition, we refer to [3]. As a result, we get a homomorphism $\sigma$ : $L_{m}(e x) \rightarrow \underset{n}{\lim _{n}} \underset{m-1}{p}\left(\pi_{I} X_{n}\right)$ for $m$ odd. Here, $L_{m}(e x)$ is the group of proper "surgery data over $X$ at $\infty$ ", (same definition as in [B], but use only proper h.e. at $\infty$ in defining 0 ) and satisfies actually an exact sequence
$L_{m}^{P}\left(\pi_{1} x\right) \stackrel{\tau}{\tau} L_{m}(X) \rightarrow L_{m}(e x) \rightarrow 0$, where $L_{m}(X)$ is the proper surgery group (see [8] for its construction).

Proposition : ker $\sigma$ is isomorphic to $\lim _{\nmid}{ }^{1} L_{2 q+1}\left(\pi_{1} x_{n}\right)$. The idea of the proof is to construct a map $\quad \lim ^{1} L_{2 q+1}\left(\pi_{1} x_{n}\right)$ $\underset{\rightarrow}{\tau}$ Ker $\sigma$ and an injective left inverse (see [3]).

Theorem (partial exact sequence〕 : for $m$ odd, one has an exact
sequence $\pi_{m} \stackrel{1-s}{\rightarrow} L_{m}\left(\pi_{1} x\right) \oplus \pi \xrightarrow{\tau} L_{m}(x) \stackrel{\sigma}{\rightarrow} \pi_{m-1}^{p} \xrightarrow{1-s} L_{m-1}^{p}\left(\pi_{I} x\right) \oplus \Pi_{m-1}^{p}$
where $\pi_{m}$ is the product $\pi_{n>1} L_{m}\left(\pi_{1} X_{n}\right)$, and $S$ is the shifting map. More precisely, $(1-s)\left(a_{1}, a_{2}, a_{3}, \ldots\right)=\left(-a_{1}^{\#}, a_{1}-a_{2}^{\#}, a_{2}-a_{3}^{\#}, \ldots\right)$


```
Lm
Proof : observe that ker (1-S) is the subgroup of 
vanishing in L mol (\pi, X). The range of \sigma is in ker (I-S) by the
proof of iii in prop.above, replacing < K (M (M
<K
tness Imo=ker (I-S) is seen by constructing a cobordism between
N }\stackrel{l}{->}N\mathrm{ and a proper h.e. N', N, where N is an open 2q-manifald
provided with a l-equivalence N }N=X\mathrm{ . The various map t are also
constructed by cobordiam on a 2q-manifold, and \tau (I-S) vanishes.
Hence we get induced maps t satisfying the commutative diagrem
of exact sequences
```



```
By the latter proposition, the right T is injective, hence so is
the middle one. This proves the exactness Ker r = Im {I-S).
We also know that o
of the above diagram
```

9. The case $m=2 q+2$. M open
Assuming the preliminary surgery already done, we are left (as in)

direct system $\left\{K_{q+1}\left(M_{n}, \partial M_{n}\right\}_{F}\right\}$ not equivalent to 0 . Following wall's
ide for the compact case, we want to consider the surgery date
$M \stackrel{f}{f} X$ as the wnion of two surgery cobordisms
$M^{0} \cup V \rightarrow X^{\circ} \cup H$ along their common boundary $U \rightarrow \partial H$.

Lemma [see [B chap.II th. 3] ) : X has the simple homotopy type of a CW-complex $X_{\partial H}^{0} \cup H$, where $H$ is a locally finite m-handlebody of 0 and 1 -handles. Actually. $H$ is a regular $n g$ bd of a tree in $R^{m}$, with 1 -handles attached.

Proposition: assuming $X$ of the above form, one can find a codimension O-submanifold $V$ of $M$ such that, if $M^{0}=\overline{M-V}, f\left(M^{\circ}\right) C X^{0}$ and $f(V)(H$ up to a proper homotopy of $f$. Actually, $V$ is a locally finite handlebody of $1, q$ and $q+1$-handles, formed by a regular ngbd of the union of immersed spheres $S^{q^{+1}} \rightarrow M$ piped to . . The proof relies on the same geometrical arguments than [6]. We refer to this as a Mayer-Vietoris decomposition of $M \xrightarrow{f} X$. Actually, the ngbd of in $\partial H$, resp $\partial V$, can be chosen such that their frontier $\partial \dot{H}_{n}$, resp $\partial \dot{V}_{n}$, is $s^{2 q}$, resp $s^{q} \times S^{q}$, and $f\left(\partial \dot{V}_{n}\right)\left(\partial \dot{H}_{n}\right.$. This implies that $K_{q}\left(\partial \dot{V}_{n}\right)$ is a free hyperbolic module (with the intersection form). Then we can modify the choices of the ngbd of $\infty: X_{n}^{0}$ in $X^{0}$, and the choice of $\dot{X}_{n}^{0}$, as in the proof of iv in the first prop. of $s 8$ to $g e t K_{q}\left(\bar{M}_{n}^{0}\right)$ as a projective Lagrangian plane in $K_{q}\left(\partial \dot{V}_{n}\right)$. This determines an element of $L_{2 q+1}^{p}\left(\pi_{I} X_{n}\right)$ and we have results similar to those in $s 8$, with $m$ replaced by $m+1$.

## REFERENCES

| 1. W. Browder : | Surgery on simply connected manifolds. Springer 1971. |
| :---: | :---: |
| 2. T.Farrell-J.Wagoner : | Algebraic torsion for infinite simple homotopy types. Infinite matrices in algebraic $K$-theory and topology Comm. Math. Helv. 1972 |
| 3. S.Maumary : | Proper surgery groups, Berkeley mimeo notes 1972 |
| 4. S.P.Novikov: | Algebraic construction and properties of hermitian analogs of $K$-theory ... kv.Akad. Nauk SSR Ser.Mat. Tom 341970 Math, USSR Kv vol.4,2, 1970 |
| 5. Ranicki : | Algebraic L-theories, these Proceedings |
| 6. R.Sharpe : | thesis |
|  | Yale 1970 |
| 7. L.Siebenmann : | Infinite simple homotopy types Indag. Math. 32, 51970 |
| 8. L. Taylor : | thesis <br> Berkeley 1971 |
| 9. C.T.C. Wall : | Surgery on compact manifolds Acad. Press 1970 |


[^0]:    * Supported by grant of Fonds National Suisse,

    SG 58

