Proper surgery groups and Wall-Novikov groups

- 1 -

Serge Maumary * IAS Princeton and UC Berkeley

The lifting of a surgery problem of closed manifolds to a covering leads usually to a proper surgery problem on open locally compact manifolds, and this proceedure gives by the present work new informations about the original problem. This is the motivation of proper surgery. In [8], proper surgery groups are constructed formally as in [9,§9] and our goal has been to "compute" these groups in terms of Wall-Novikov groups (both [8] and the present work have been done sinultaneously and ignoring each other). I am indebted to W.Browder, J.Wagoner, R.Lee, A.Ranicki for useful and friendly conversations, and to L.Taylor who pointed out a gap.

1. Notations and conventions

We consider exclusively locally compact manifolds M and CW-complexes X of finite dimension, and proper maps f between them (i.e. f^{-1} (compact) is compact).

If X is connected, we can choose a fondamental sequence of ngbd of $\therefore X_1 \supset X_2 \supset X_3 \supset \cdots$ formed by subcomplexes X_n with only non compact components (in finite number). We denote by $\overline{X} - \overline{X}_n$ any finite subcomplex of X such that $\overline{X} - \overline{X}_n \smile X_n = X$, and let $\dot{X}_n^{-1} = \overline{X} - \overline{X}_n \cap X_n$ which is a finite subcomplex containing the frontier of X_n in X. For any pointed connected CW-complex A, with associated universal covering \widetilde{A} , one usually denotes by C(A) the chain complex of cellular chains on \widetilde{A} with integer coefficients (and if BCA, then C(A) mod C(A,B) is denoted by C(A,B)) We denote by $C(X_n)$ the <u>family</u> $C(X_n^1)$ obtained by choosing implicitely one base point in each connected component X^1 of X_n . * Supported by grant of Fonds National Suisse, SG 58 Similarly, we denote by $Z\pi_1X_n$ the family of rings $Z\pi_1X_n^{\dagger}$ and by a $Z\pi_1X_p$ -module M, we mean a family of $Z\pi_1X_p^i$ - modules Mⁱ. The homology of $C(X_n)$ is denoted by $H_k(X_n)$, while the homology of its dual C*(X_n), the family of Hom $\pi_1 X_n^{i}(C(X_n^{i}), Z\pi_1 X_n^{i})$, is denoted by $H^{k}(X_{n})$, where $C(X_{n}^{i})$ is given the right structure via the antiautomorphism $\alpha \rightarrow w(\alpha)\alpha^{-1}$ of $Z\pi_1 X_n^1$, w being given by some fixed homomorphism $\pi_1 X \rightarrow +1$. The U-groups of [4] or [5] will be denoted by L_{m}^{p} (G) while L_{m} (G) denotes the ordinary Wall groups (or V-groups). As an inner automorphism of G induces \pm identity on L_m^p (G), L_m^p ($\pi_1 X_n^i$) is well defined and we write $L_m^p(\pi_1X_n) = \bigoplus_{i=1}^{p} L_m^p(\pi_1X_n^i)$. Similarly $X_{n+1} \rightarrow X_n$ induces a unique homomorphism on L^p_m . In particular, $\lim_{t \to m} L^p_m(\pi_1 X_n)$ only depends on X, as well as $\lim_{n \to \infty} L^p(\pi_1 X)$. As for the latter it maybe useful to recall Milnor's definition of \lim_{\leftarrow} 1 of an inverse system of abelian groups $A_1 \stackrel{\#}{\leftarrow} A_2 \stackrel{\#}{\leftarrow} A_3 \stackrel{\#}{\leftarrow} A_3$. : this is the Coker of $\Pi \land A \xrightarrow{1-S} \Pi \land A$, where $(1-S)(a_1, a_2, a_3, \ldots) = n > 1$ = $(a_1 - a_2^{\#}, a_2 - a_3^{\#}, ...)$. Observe that a subsequence of $\{A_n\}$ gives the same result : e.g. $\lim_{i \to a_{2n+1}} A_{n+1} = \lim_{i \to a_{n+1}} A_{n}$ by mapping $(a_1, a_2, a_3, ...)$ to $(a_1 + a_2^{\#}, a_3 + a_4^{\#}, ...)$ in the range of 1-S.

- 2 -

2. Homology and cohomology inverse systems

Having implicitely choosen one base point for each connected component of X_n , we join the base points of X_{n+1} to those of X_n by paths in X_n (in this usy, a tree grows in each connected component of X_1). The latter determine maps $x_{n+1}^{j} \rightarrow x_n^{i}$ and so pseudo-linear homomorphisms $C(X_{n+1}^{j}) \rightarrow C(X_n^{i})$.

This gives rise to an inverse system {C(X_n)}. Note that $\bigoplus_{j \in \mathbb{Z}_{n} \times \mathbb{Z}_{n} \times \mathbb{Z}_{n+1}} X^{j} \otimes C(X_{n+1}^{j})$ (one summand for each j such that $X_{n+1}^{j} C \times \mathbb{Z}_{n}^{j}$)

is isomorphic to the subcomplex of $C(X_n^i)$ determined by $X_n^i | X_{n+1}$ Two choices of base points and paths give two inverse systems related by a diagram of subsequences

which commutes up to the action of $\pi_1 X_n^i$ on itself by inner automorphisms. Such a diagram is called a <u>conjugate equivalence</u>. Similarly, the families of cochain complexes $C_c^*(X_n, X_n) \stackrel{\text{def}}{=} 1$ $= \lim_r C^*(X_n, X_n \cup X_r)$ form an inverse system by excision and is also well defined up to conjugate equivalence. Now, any element $[X] \in \lim_r H_m(X, X_r; Z)$ (homology with coefficients extended by w : $Z\pi_1 X \neq Z$) gives by cap products (see [1]) a commutative diagram

where Ψ is pseudo-linear, and $r_1 < s_1 < r_2 < s_2 < \ldots$ n

Observe that in this case, we can assume $r_n = s_{n-1} = n$ without loss of generality. When n[x] is an equivalence, we say that [X] is a <u>m-fundamental class</u> at \bullet , and that X is <u>properly Poincaré</u> at \bullet . This turns out to be an invariant of the proper homotopy type of X. Now, a proper map f: $M \to X$ of properly Poincaré complexes is said of <u>degree 1</u> if f* [M] = [X]. By confusing X with the mapping cylinder of f, and denoting the k+1-homology of $C(X_n, M_n)$, resp. $C_c^*(X_n, X_n M_n)$ by $K_k(M_n)$, resp. $K_c^k(M_n, M_n)$, where $M_n = X_n \cap M$, $M_n = X_n \cap M$ we get again inverse systems $\{K_k(M_n)\}$ and $\{K_c^k(M_n, M_n)\}$ well defined up to conjugate equivalence. If $M_n = \partial M_n$, then the composition :

 $\begin{array}{rcl} & \operatorname{Poincar\acute{e}} & & \operatorname{Poincar\acute{e}} & & \\ & \Psi: \mathsf{K}_{m-\mathsf{k}}(\mathsf{M}_n) \xrightarrow{\partial} \mathsf{H}_{m-\mathsf{k}}(\mathsf{M}_n) & \simeq & \mathsf{H}_{c}^{\mathsf{k}}(\mathsf{M}_n, \partial \mathsf{M}_n) \rightarrow \mathsf{K}_{c}^{\mathsf{k}}(\mathsf{M}_n, \overset{\bullet}{\mathsf{M}}_n) & \text{turns out} \\ & \text{to be a canonical equivalence of inverse systems with an inverse} \\ & \text{shifting n by 4 (and so shifting n by 1 on a subsequence). Of} \\ & \text{course in the above, } \mathsf{H}_{*}(\mathsf{M}_n) & \text{and } \mathsf{H}_{c}^{*}(\mathsf{M}_n, \partial \mathsf{M}_n) & \text{are with} & \pi_1 \mathsf{X}_n \text{-coef-} \\ & \text{ficients.} \end{array}$

3. Homology and cohomology direct systems For r<n<s , let $C^*(X_n, X_s)_r$ be the family $\bigoplus Hom_{Z\pi_1} X_r^i$ $\begin{pmatrix} Z\pi_1 X_r^i \bigotimes_{Z\pi_1} Z_{n}^j C(X_n^j, X_s), Z\pi_1 X_r^i \end{pmatrix}$ and let $C^*(X_n)_r$ be the family $\lim_{T \to T} C^*(X_n, X_s)_r$. For r fixed, the restriction maps

 $\sum_{c}^{i} (X_{n})_{r} \rightarrow C_{c}^{*}(X_{n+1})_{r} \text{ determine a } \underline{\text{direct system}} \{C_{c}^{*}(X_{n})_{r}\}$ Similarly, if $C(X_{n}, X_{n})_{r}$ denotes the family $\bigoplus_{j} \left(Z\pi_{1}X_{r}^{j} \otimes C(X_{n}^{j}, X_{n}^{j}) \right)$ (chains of $X_{r}^{i}|_{n} \mod X_{r}^{i}|_{r}X_{r}^{-X_{n}}$), then the quotient maps $C(X_{n}, X_{n})_{r} \rightarrow C(X_{n+1}, X_{n+1})_{r}$ form a direct system, for r fixed and n > r. Now, given a proper map f: $M \rightarrow X$ of degree 1, if we write $K_{*}(M_{n}, M_{n})_{r}$, resp $K_{c}^{*}(M_{n})_{r}$, for the homology of $C(X_{n}, X_{n} \cup M_{n})_{r}$,
resp $C_{c}^{*}(X_{n}, M_{n})_{r}$, we find again an equivalence Ψ : $\{K_{m-k}(M_{n}, M_{n})_{r}\} \rightarrow \{K_{c}^{k}(M_{n})_{r}\}.$

Of course, these direct systems are well defined only up to conjugate equivalence, the latter notion being the same as for inverse systems.

- 5 -

4. End homology and cohomology

The dual of $C_{c}^{*}(X_{n}, \dot{X}_{n})$ is canonically isomorphic to $C^{*}(X_{n}, \dot{X}_{n})^{\text{potat.}} =$ = $\lim_{s} C(X_{n}, \dot{X}_{n} \cup X_{s})$, which is nothing but the chain complex of locally finite chain on $X_{n} \mod \dot{X}_{n}$, with $2\pi_{1}X_{n}$ -coefficients. The quotient complex $C^{*}(X_{n}, \dot{X}_{n})/C(X_{n}, \dot{X}_{n})$ yields the end homology $H_{*}^{e}(X_{n})$ by definition. As usually, the cochain complex $\lim_{s} C^{*}(X_{s})_{n}$ yields the end cohomology $H_{a}^{*}(X_{n})$ by definition. Now, one can prove [see 3] that, if [X] is a m-fundamental class at \sim coming from $C_{m}^{*}(X;Z)$, then n[X] gives rise to an isomorphism $H_{e}^{k}(X_{n}) \simeq H_{m-k}^{e}(X_{n})$. All this applies to a proper map $f : M \rightarrow X$ of degree 1, to yield an isomorphism $K_{e}^{k}(M_{n}) \simeq K_{m-k}^{e}(M_{n})$. Our end homology can be viewed as an ϵ -construction (see [8] or [2]) with $\pi_{1}X_{n}$ -coefficients as follows : consider the diagram of families of pointed subcomplexes

Then let $\mu \mathbb{C}(X_s)_n$ be the quotient complex $\prod_{r>s} \mathbb{C}(X_s, x_r)_n / \bigoplus_{r>s} \mathbb{C}(X_s, x_r)$ and $\varepsilon \mathbb{C}(X_n) = \lim_{r \to \infty} \mu \mathbb{C}(X_s)_n$. An isomorphism $\mathbb{C}^e(X_n) \approx \varepsilon \mathbb{C}(X_n)$ arises by decomposing $z \in \mathbb{C}'(X_n)$ into $z_n \oplus z'_{n+1} \in \mathbb{C}(X_n, X_{n+1}) \oplus \mathbb{C}'(X_{n+1})_n$, then z'_{n+1} into $z_{n+1} \oplus z'_{n+2}$, and so forth.

- 6 -

5. The category of (inverse or direct) systems

If one considers systems of families of modules $\{A_n\}$ over $\{Z\pi_1X_n\}$ as abstract objects and takes their equivalence classes by the relation of (conjugate) equivalence, and if one does the same thing for the morphisms $\{A_n\} \rightarrow \{B_n\}$, then it is routine to verify that one gets an abelian category (see [3], compare [7]). A more specific result is the following.

<u>Proposition</u> (see [3]) let {C(n)} be a system of chain complexes. each of the form $0 \rightarrow C_{\ell}(n) \xrightarrow{3} \dots \rightarrow C_{1}(n) \rightarrow C_{0}(n) \rightarrow 0$ where $\ell > 0$ is fixed independent of n and $C_{k}(n)$ is free of countable rank. Suppose that the associated homology systems {H_k(n)} are equivalent to 0 for all k < ℓ . Then there is an equivalence {H_k(n)} \rightarrow {P_{n}}, where each P_{n} is a projective countably generated module and each homomorphism H_k(n) \rightarrow P_{n} is injective. Moreover, in the system {P_{n}}, one can assume that the image of P_{n+1} \rightarrow P_{n} a direct summand, in particular also projective. These two results essentially allow us to elaborate an algebraic Whitehead torsion for proper homotopy equivalence (compare [3]).

6. Proper surgery

It is well known that any surgery rel, boundary on a compact m-submanifold of M^m extends to M, and similarly for a closed bicollared submanifold V^{n-1} . By definition, a proper surgery on M is the result of a diverging sequence of disjoint such surgeries. We distinguish the following particular case of <u>carving</u> out $\mathbb{R}^q \subset M$. Let f: M+X be a proper normal map (relative to ξ proper on X), $\varphi: \mathbb{R}^q \to M$ be a proper embedding, $\Psi: \mathbb{R}^{q+1} \to X$ a proper map such that $\Psi \mid \mathbb{R}^q = f_0 \varphi$ ($\mathbb{R}^q = \Im \mathbb{R}^{q+1}_+$). Now the normal bundle of φ is trivial (because \mathbb{R}^q is contractible) and we form W^{m+1} by gluing M×I and $\mathbb{R}^{q+1} \times D^{m-q}$

along R q × D^{m-q} c M×1 .

As $(M \times I) \cup \mathbb{R}^{q+1}_{+}$ is a proper deformation retract of W, we can extend f to F : W o X imes I by using Ψ . The stable trivialisation of $\tau_{\mathsf{M}} \oplus f^* \xi$ on M extends to a stable trivialisation of $\tau_{\mathsf{W}} \oplus F^* \xi$ on W because W retracts by deformation on M \times O. Now, W is a cobordism between M and M' \simeq M- $\varphi(\mathbb{R}^q)$. The inclusions MCW > M' \cup D^{mq} are homotopy equivalences

- 7 -

One can observe that M also results form M' by first a (m-q)surgery and then carving out \mathbb{R}^{m-q} . To each cocompact submanifold $M_n \subset M$ corresponds a cocompact submanifold $M' \subset M'$ of the following shape : $M'_n = (M_n \lor q$ -handle) - \mathbb{R}^q

7. Preliminary surgeries

Let M be an open m-manifold, X a proper Poincaré complex at • and f : M+X a proper normal map of degree 1. We assume that X is connected and so we can choose cocompact subcomplexes X_n in X which have only non compact connected components. We can assume that each \dot{X}_n is bicollared, and that f is transversal on each of them (see [1]). Then $f^{-1}(X_n)$ is a cocompact submanifolds $M_n C M$, such that $\Im M_n = f^{-1}(\dot{X}_n)$ and $\overline{M_n - M_{n+1}} = f^{-1}(\overline{X_n - X_{n+1}})$. Clearly, if m=2q, resp. 2q+1, q > 3, we can assume that each map $\overline{M_n - M_{n+1}} = \frac{f}{X_n - X_{n+1}}$ is q-connected, while $\Im M_n = \dot{X}_n$ is q-1, resp. q-connected. In particular, f is bijective on ends spaces. When m= 2q+1, we can improve still the connectivity of f as follows. Each module of the family $K_q(M_n, M_{n+1}) \stackrel{\text{def}}{=} H_{q+1}(X_n, M_n \cup X_{n+1})$ is finitely generated, and each generator can be represented by an embedded q-sphere S^q in $\overline{M_n} - \overline{M_{n+1}}$, provided with a nulhomotopy D^{q+1} in $\overline{X_n} - \overline{X_{n+1}}$. We pipe S^q to ∞ , getting \mathbb{R}^q proper M_n and extend D^q into $\mathbb{R} \stackrel{q+1}{\xrightarrow{}} \stackrel{\text{proper}}{\xrightarrow{}} X_n$:

- 8 -

Then the process of carving out $\mathbb{R}^{q} (M_{n}, \operatorname{allows} \operatorname{to} \operatorname{kill} \operatorname{each} K_{q}(M_{n}, M_{n+1})$. An immediate consequence is $K_{c}^{q}(M_{n}) = 0$, hence the direct system $\{K_{q+1}(M_{n}, \partial M_{n})_{r}\}$ is equivalent to 0 by duality. A more involved argument (see [3]) shows that $K_{q}(M_{n})^{def}H_{q+1}'(X_{n}, M_{n})$ also vanishes hence the inverse system $\{K^{q+1}(M_{n}, \partial M_{n})\}$ is equivalent to 0 by duality. Moreover, the inverse system $\{K_{q}(M_{n})\}$ and the direct system $\{K_{q}(M_{n}, \partial M_{n})_{r}\}$ are both equivalent to systems of projective countably generated modules (ibid).

8. The case m=2q+1, M open

Assuming the prelimininary surgery already done the starting situation is described by a commutative square

where Ψ , resp. $\overline{\Psi}$, are equivalences of inverse, resp. direct, systems (r being fixed, n variable > r), with inverse equivalences shifting n by +1.

The fundamental duality property of this square is the following <u>+</u> commutative diagrams of exact sequences

$$0 \rightarrow K^{q}(M_{n}, \partial M_{n})_{r} \rightarrow K^{q}_{e}(M_{n})_{r} \rightarrow K^{q+1}_{c}(M_{n}, \partial M_{n})_{r}$$

$$+ \overline{\Psi}^{*} \qquad + \Psi^{e} \qquad + \Psi$$

$$K'_{q+1}(M_{n})_{r} \rightarrow K^{e}_{q+1}(M_{n})_{r} \rightarrow K_{q}(M_{n})_{r} \rightarrow 0$$

$$0 \rightarrow K^{q}(M_{n})_{r} \rightarrow K^{q}(M_{n})_{r} \rightarrow K^{q+1}(M_{n})_{r}$$

$$+ \Psi^{*} \qquad + \Psi^{e} \qquad + \overline{\Psi}$$

$$K_{q+1}(M_{n}, \partial M_{n})_{r} \rightarrow K^{e}_{q+1}(M_{n})_{r} \rightarrow K_{q}(M_{n}, \partial M_{n})_{r} \rightarrow 0$$

where Ψ^* is the composition $K'_{a+1}(M_n, \partial M_n) \xrightarrow{\text{can.}} dual K_c^{q+1}$ $(M_n, \partial M_n)_r \xrightarrow{dual \Psi} dual K_q(M_n)_r \simeq K^q(M_n)_r$, and similarly for Ψ^* , and Ψ^{e} = lim Ψ^{*} is actually an isomorphism (see [3]). One sees that both Ψ and $\overline{\Psi}$ are induced by $\Psi^{\textbf{e}}$. Our aim is to improve the initial arbitrary choice of X_n, X_n in the mapping cylinder X of M $\stackrel{f}{\rightarrow}$ X so as to get Ψ bijective. One cannot do this for X itself but one can replace X by any complex simply homotopy equivalent to X rel. M. The first step is the following. Lemma : Ker Ψ and Ker Ψ are finitely generated. Proof (sketched): using the results of §5, one finds an equivalence $\{K_{c}^{q+1}(M_{n},\partial M_{n})_{r}\} \xrightarrow{inj} \{P_{n}\},$ Where each P_{n} is projective, the image of $P_{n+2} \rightarrow P_n$ being a direct summand P'_n . By composition with Ψ we get an equivalence $\alpha: \{K_{\alpha}(M_{n})\} \rightarrow \{P_{n-1}\}$ such that ker $\alpha = \ker \Psi$ and im $\alpha = P'_{\alpha}$, which is projective. Hence ker α is a direct summand. But ker Ψ is contained in the kernel of $K_q(M_{n+1})_r \rightarrow K_q(M_n)_r$, which is finitely generated, hence so is ker Ψ , as direct summand. The same argument applies to $\overline{\Psi}$. This shows actually that, for a subsequence, the kernel of $K_n(M_n)_{n-1} \xrightarrow{\Psi} K_n^{q+1}(M_n, \partial M_n)_{n-1}$ is finitely generated, and similarly for $\bar{\Psi}$. The first improvement is to replace X by $X \underset{n+1}{\cup} M$ and X by X_{n+1}∪^M, where M_n∞M_{n+1}

Then, in the square

 $K_{c}^{q+1}(M_{n}, M_{n}) \longrightarrow K_{c}^{q+1}(M_{n})$ $K_{q}(M_{n}) \longrightarrow K_{q}(M_{n}, M_{n})$

ker $_{\Psi}$ and ker $\overline{\Psi}$ are finitely generated. The second improvement is to enlarge X inside $\overline{X_n - X_{n+1}}$ with $\overline{M_n - M_{n+2}} \lor e^{q+1}$, to kill ker $\overline{\Psi}$:

By taking the quotient map, we find $K_q(M_n, M_n) \rightarrow K_c^{q+1}(M_n)$ injective, and by the fundamental duality property we can restablish ψ and the initial square (see [3]). Assuming ψ injective, we can enlarge both X and X inside $\overline{X_{n-1}} - X_n$ with $\overline{M_{n-1}} - M_n = 0$ e^{q+2} to kill ker ψ . By taking the quotient map, we find $K_{a}(M_{a}) \stackrel{\Psi}{\rightarrow} K_{a}^{q+1}(M_{a}, M_{a})$ injective, and we restablish $\overline{\Psi}$ and the square by the fundamental duality property again. By using the proof of the above lemma, both $K_{q}(M_{n})$ and $K_{q}(M_{n}, M_{n})$ are seen to be projective (ibid). Then one can still kill the kernel of the map $K_{(M_{p})}^{*} \rightarrow K_{(M_{p})}$ where # means with $\pi_{i_1}X_{i_2}$ -coefficients, and this will make ψ bijective (ibid). Then the fundamental duality property implies that ψ is injective. Now, the commutative diagram of exact sequence

shows that ψ induces an isomorphism $K_{(M_{1})}^{\bullet} \cong K^{(M_{1})}^{\bullet}$, i.e. a non degenerated quadratic projective finitely generated $Z_{\pi_1}X_{\pi_2}$ module < K (M) >

<u>Proposition</u> : the quadratic form on < K (M) > so obtained satisfies the following properties :

- i) it is induced by the (degenerated) intersection form on $K_q (\partial m_r)^{\#}$ for some r > n, hence determine an element of $L^p_{2n} (\pi_1 X_n)$.
- ii) it is defined stably, and the operation of carving out a trivial proper embedded ${\rm I\!R} \stackrel{q}{\sim} {\rm C}$ M (bounding ${\rm I\!R} \stackrel{q+1}{} {\rm C}$ M) adds a trivial free hyperbolic module
- iii) there is a canonical equivalence between the quadratic $Z\pi_1X_n$ -modules $\langle K_q(M_n) \rangle$ and the $Z\pi_1X_n$ -extension of $\langle K_q(M_{n+1}) \rangle$. In other words the sequence $\langle K_q(M_n) \rangle$ is an element of $\lim_{n \to 2^q} L_{2q}^p(\pi_1X_n)$
- iv) the latter is well defined by the normal map f: $M \rightarrow X$, and is a cobordism invariant. For the proof of this proposition, we refer to [3] . As a result, we get a homomorphism σ : $L_m(eX) \rightarrow \lim_{m \to 1} L_{m-1}^p(\pi_1X_n)$ for m odd.Here, $L_m(eX)$ is the group of proper "surgery data over X at ∞ ", (same definition as in [8], but use only proper h.e. at ∞ in defining 0) and satisfies actually an exact sequence $L_m^p(\pi_1X) \stackrel{\tau}{\rightarrow} L_m(X) \rightarrow L_m(eX) \rightarrow 0$, where $L_m(X)$ is the proper surgery group (see [8] for its construction).

<u>Proposition</u> : ker σ is isomorphic to $\lim_{t \to 0} \left[L_{2q+1}(\pi_1 \times_n) \right]$. The idea of the proof is to construct a map $\lim_{t \to 0} \left[L_{2q+1}(\pi_1 \times_n) \right]$ \downarrow Ker σ and an injective left inverse (see [3]). <u>Theorem</u> (partial exact sequence) : for m odd, one has an exact

sequence $\Pi_{m} \xrightarrow{1-s} L_{m}(\pi_{1}X) \oplus \Pi \xrightarrow{\tau} L_{m}(X) \xrightarrow{\sigma} \Pi_{m-1}^{p} \xrightarrow{1-s} L_{m-1}^{p}(\pi_{1}X) \oplus \Pi_{m-1}^{p}$ where Π_{m} is the product $\Pi L_{m}(\pi_{1}X_{n})$, and S is the <u>shifting map</u>. Nore precisely, $(1-S)(a_{1},a_{2},a_{3},\ldots) = (a_{1}^{\#},a_{1}-a_{2}^{\#},a_{2}-a_{3}^{\#},\ldots)$

- 12 -

for $a_n \in L_m(\pi_1X_n)$, # denoting the homomorphisms $L_m(\pi_1X) \leftarrow L_m(\pi_1X_1) \leftarrow L_m(\pi_1X_2) \leftarrow \cdots$ Proof : observe that ker (1-S) is the subgroup of $\lim_{h \to 1} L_{m-1}^p(\pi_1X_n)$ vanishing in $L_{m-1}^p(\pi_1X)$. The range of σ is in ker (1-S) by the proof of iii in proprabove, replacing $\langle K_q(M_n) \rangle$ by ϕ and $\langle K_q(M_{n+1}) \rangle$ by the π_1X -extension of $\langle K_q(M_n) \rangle$. The exactiness Imoreker (1-S) is seen by constructing a cobordism between $N \xrightarrow{1} N$ and a proper h.e. $N' \rightarrow N$, where N is an open 2q-manifold provided with a 1-equivalence N $\rightarrow X$. The various map τ are also constructed by cobordiam on a 2q-manifold, and $\tau_o(1-S)$ vanishes. Hence we get induced maps τ satisfying the commutative diagram of exact sequences

$$\begin{split} \lim_{n} L_{m}(\pi_{1}X_{n}) & \rightarrow L_{m}(\pi_{1}X) \rightarrow L_{m}(X) \rightarrow \qquad L_{m}(eX) \rightarrow \qquad 0 \\ & \uparrow \overline{\tau} \qquad & \uparrow \overline{\tau} \qquad & \uparrow \overline{\tau} \\ \lim_{n} L_{m}(\pi_{1}X_{n}) & \rightarrow L_{m}(\pi_{1}X) \rightarrow \quad Coker(1-S) \rightarrow \qquad \lim_{n} L_{m}(\pi_{1}X_{n}) \rightarrow \quad 0 \end{split}$$

By the latter proposition, the right $\overline{\tau}$ is injective, hence so is the middle one. This proves the exactness Ker τ = Im (1-S). We also know that σ_{τ} =0. The exactness Ker σ = Im τ is a result of the above diagram

9. The case m=2q+2, M open

Assuming the preliminary surgery already done, we are left (as in) the case m odd) with only one inverse system $\{K_{q+1}(M)_n\}_r$ and one direct system $\{K_{q+1}(M_n, \partial M_n)_r\}$ not equivalent to D. Following Wall's idea for the compact case, we want to consider the surgery data $M \stackrel{f}{\to} X$ as the union of two surgery cobordisms $M^0 \cup V \rightarrow X^0 \cup H$ along their common boundary $U \rightarrow \partial H$.

<u>Lemma</u> (see [8 chap.II th.3]) : X has the simple homotopy type of a CW-complex $X^{O}_{\partial H}$ \cup H, where H is a locally finite m-handlebody of O and l-handles. Actually, H is a regular ngbd of a tree in R ^M, with l-handles attached.

Proposition : assuming X of the above form, one can find a codimension O-submanifold V of M such that, if $M^{O} = \overline{M-V}$, $f(M^{O}) C X^{O}$ and f(V)(H up to a proper homotopy of f. Actually, V is a locally finite handlebody of 1, q and q+1-handles, formed by a regular ngbd of the union of immersed spheres $S^{q+1} \rightarrow M$ piped to • . The proof relies on the same geometrical arguments than [6]. We refer to this as a <u>Mayer-Vietoris</u> decomposition of M $\stackrel{f}{\rightarrow}$ X. Actually, the ngbd of • in 3H, resp 3V, can be chosen such that their frontier $\partial \dot{H}_{n}$, resp $\partial \dot{V}_{n}$, is S^{2q} , resp $S^{q}xS^{q}$, and $f(\partial V_{n}) \subset \partial H_{n}$. This implies that $K_{n}(\partial V_{n})$ is a free hyperbolic module (with the intersection form). Then we can modify the choices of the ngbd of •: X_n^0 in X^0 , and the choice of X_n^0 , as in the proof of iv in the first prop. of §8 to get $K_{\alpha}(\overset{\bullet}{\overset{\bullet}{n}}^{O})$ as a projective Lagrangian plane in $K_{n}(\partial V_{n})$. This determines an element of $L^{p}_{2\alpha+1}(\pi_1 X_{\alpha})$ and we have results similar to those in §8, with m replaced by m+1.

- 13 -

- 14 -

REFERENCES

1.	W.Browder :	Surgery on simply connected manifolds. Springer 1971.
2.	T.Farrell-J.Wagoner :	Algebraic torsion for infinite simple homotopy types. Infinite matrices in algebraic K-theory and topology Comm. Math. Helv. 1972
з.	S.Maumary :	Proper surgery groups,Berkeley mimeo notes 1972
4.	S.P.Novikov :	Algebraic construction and properties of hermitian analogs of K-theory kv.Akad. Nauk SSR Ser.Mat.Tom 34 1970 Math, USSR kv vol.4,2, 1970
5.	Ranicki :	Algebraic L-theories, these Proceedings
6.	R.Sharpe :	thesis Yale 1970
7.	L.Siebenmann :	Infinite simple homotopy types Indag. Math. 32, 5 1970
8.	L. Taylor :	thesis Berkeley 1971
9.	C.T.C. Wall :	Surgery on compact manifolds Acad. Press 1970