CHAPTER TV

COHEN EXTENSIONS OF ZF-MODELS

In this chapter we study Cohen's forcing technique for con-
gtructing extensions of ZF-models. This technique was introduced
in 1963 by Paul J.Cochen. Using this method Cohen has solved the
long outstanding problems of the independence of the Continuum-
hypothesis from the axiom of choice and the independence of the

axiom of choice from the ZF-axioms (including foundation):

[9] P.J.COHEN: The Independence of the axiom of choice; mimeographed
notes(32 pages), Stanford University 1963.

[10} P.J.COHEN: The Independence of the Continuum Hypothesis; Proc.
Nat.Acad.Sci.USA, part 1 in vol.50(1963)p.1143~-1148,
part 2 in vol.51(1964)p.105-110.

A sketch of the proofs is contained in:

[11) P.J.COHEN: Independence results in set theory; In: The Theory
of Models~-Symposium, North Holland Publ.Comp.Amst.1965,
D.39-54.

In these papers the constructible closure is obtained by means of
3bdel's F{a)~hierarchy (G8del's monograph [25] ,of 1940). Dana Scott
has remarked that the constructible closure can be obtained in a
much more elegant way using Gd8del's My-hierarchy (G&del's paper [ 24}
of 1939). The presentation of the independence proofs in Cohen's
monograph is based on these improvements:

[12] P.J.COHEN: Set Theory and the Continuum Hypothesis;
New York -~ Amsterdam 1966 (Benjamin, Inc.).

Since the publication of Cohen's papers [ 9 1, [10] and [44] the
forcing technique has been modified in various ways by several
authors. Using modified "G&del-functions F" W.Felscher and H.Schwarz
have studied systematically Cohen-generic models (see Tagungsbe-
richte Oberwolfach April 1965 and the dissertation of H.Schwarz:
Ueber generische Modelle und ihre Anwendungen; Freiburg i.Br.1866).
A topological approach to forcing has been developed by C.Ryll~-
Nardzewsky and G.Takeuti:
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{83] G.TAKEUTI: Topological Space and forcing; Abstract in the
J.S.L., vol.32(1967)p.568~-58639.

A detailed exposition of this approach is contained in:

[66] A.MOSTOWSKI: Censtructible Sets with applications;
Amsterdam ~ Warszawa 1969(North Holland + PWN).

That forcing can be understood as a boolean valuation of sentences
has been discovered by D,Scott, R.M.Solovay and P,Vopénka -see
the forthcoming paper by Scott-Sclovay, or Scott’s lecture notes
of the UCLA set theory Institute (August 1967) and

{72} J.B.ROSSER: Simplified Independence Proofs; Academic Press
1969.

[86] P.VOPENKA: General theory of V-models; Comment.Math.Univ.
Carolinae (Prague) vol.8(1867)p.145-170.

For further litterature on V-models see the bibliography in [861].
Some of Vopénka's papers have been reviewed by K.Kunen in the
J.S.L. 34(1968)p.515~516. ~We shall present here the forcing me-
thod in a way close to P.J.Cohen, using ideas which are due to
D.Scott, R.M.30lovay and others. The following basic publications
will be useful:

{39] R.B.JENSEN: Modelle der Mengenlehre; Springer-Lecture Notes,
vol.37, 1367.

[40] R.B.JENSEN: Concrete Models of Set Theory; In Sets, Models
and Recursion theory, Leicester Proceedings 1965, North
Holland PublComp.Amsterdam 1967, p.44=-74.

{80] J.SILVER: Forcing % la Solovay; unpublished lescture notes
(28 pages).

(51] A.LEVY: Definability in axiomatic Set Theory I; in: Logic,
Methodology and Philosophy of Sci., Congress Jerusalem
1864, North Holland Publ.Comp.Amst.1965, p.127-151.

The main difficulties which arise when one wants to extend a given
ZF-model 1L by adjoining some new sSets Qe @i s+ .. to YL are that
the sets a; may contain undesired information encoded by the in~-
terior €-structure of aj. For instance, the interior €-structure

of a; may give rise to mappings which destroy the replacement axiom
in the extension. These "new" sets a. which, when added to?«ﬂ,

i
generate a ZF-model are called "generic sets". The forcing method
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is a technique to obtain generic sets. Herein the main idea is
that every finite part of the interior €-structure of a; has to
be infntr, id est, a; has to fulfill finite amounts of conditions
which can ba posed inM . Then a determination of the whole in-
terior €-structure of as is obtained in a way similar to Linden-
baum's completing process (sec c.g. Mendelsonl[60}p.64) by choosing
a "complete sequence of conditions".

In this chapter %e shall not construct socalled "endextensions”
The extensions we are decaling with are those which contain the
same ordinals!

A) THE FORCING RELATION IN A GENERAL SETTING

The simplest general framework for constructing Cohen models of
7ZF is provided by considering partially ordered structures. This
approach, a straightforward generalization of Cohen's original
work, is due to R.M.Solovay. We shall present here a slight gene-
ralization of Solovay's approach.

ret W 2 (M,€ ) be a standard model of ZF (see p.25 for the

> M
definition of '"standard"). Let

QU= Casry 0y ¢ g

be a first-order relational system in M with domain A and some
n;-ary relations Ry (i € I) defined on A. We assume that A is a

set in the sense of L. We want to extend ML by adding to mL

a generic copy of L . The properties which this copy has to ful-
fill in the extension 31, of M are expressed in a certain formal
language £ . The language £ describes 90 . Since € shall ex-
press in a very detailed way all that what "happens" in 7 , we
construct £ as a ramified language which has means to talk about
every v.Neumann-Stufe V  separately. Formally this is done by
introducing limited comprehension terms % (intended interpretation
of Eax¢(x): set of sets x of rank less than o satisfying ¢; the

E is taken from the french word "Ensemble') and limited quantifiers
\/& (read \/zé(x) as: "there exists an x of rank less than @ such
that 9(x)).

The Alphabeth of the ramified language ¢

1) One sort of set-variables: Vo V1 sVase e ey Vs (n € W), X,¥,2,..

are used to stand for these variables.
2) Set-constants x for each set x of ne.
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3) Constants éj for each j € A.

4) n,-ary predicates m, for each i € I and ¢ for membership.

5) logical symbols: 1, v , \/ (not, or, there exists).

6) limited comprehension operatirs E® and limited quantifiers
\/a for each ordinal o onYI ., and finally brackets.

It is possible to arrange that these symbols are sets of 9YL in
the following way: 1= (0,00, v = (0,17, \/ =40,2),

\/a = (1,0, e =¢0,8), v, = (0,41 Y, E¥ = (2,00, x = (3,x),
a5 = (U300, moo= 5,1 and ( = (6,07 ,) = (6,17,

The formulae of L are obtained from these symbols by concatena-
tion as usual by recursion. It follows that the collection of all

formulae constitutes a class of 97L.

Definition. The notions of a ranked (= limited) formulae and of a
limited comprehension term of £ are defined as follows:

(a) If uy,uz ... are limited comprehension terms, set-
congtants or constants &, or variables, then w € W
and ni(u;,...,un') are limited formulae.

{(b) If & and ¥ are 1imited formulas, then so are 10,
$ v ¥ and \/i@ (for o inm).

(e¢) If ¢ is a limited formula with no free variables other
than x, and a is an ordinal of M such that (i) & con-
tains no occurrence of \/B with B > a, (ii) ¢ contains
no occurrence of EB with 8 = o, (iii) ¢ contains no
set-constant x for a set x of Mirimanoff-rank 2 a, (iv)
if o < A then ® contains no occurrence of a., then

]
£%x0(x) is limited comprehension term.

The notion of a free variable is defined as usualj a limited formu-
1a without frec variables is said to be a limited sentence. We shall
refer to the set-constants, constants of the form éj (j € A) and

the limited comprehension terms as constant terms. Remark that the

definition above of a limited comprehension term is given with re-
spect to the parameter Az@wIn most applications we choose X to be w
respectively w+1l.

Definition. Let p(x) be the Mirimanoff-rank of the set x in the
sense of J¥L (see p.14). The degree 8(t) of .a constant
term t is given by:

(a) 8(x) = p{x),
(b) 8Casgd= A
(c) 8(E%® (x)) = «
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Abbreviations. Let u and v be constant terms or variables; then

u = v stands for /\x(x € u*®x € v) where x is a variable distinct
from u,v. For constant terms u and v, u ~ v will stand for

:Cx € U ®x € v) where a = Max{d(u),8(v)}. u = v is thus a
limited sentence.

Next we define in M a well-founded, localizable partial-orde-
ring between limited formulas ¢ by assigning to ¢ an ordinal Ord(9)
of ML . Read Ord(¢) as "the order of ¢". This then allows to define
in MW! the the forcing relation b between "conditions" and limited
formulas by induction on Ord(®). Obviously instead of defining Ord(9)
to be the ordinal w?.a + w.e + m we could define Ord(%) to be
(a,e,m ) and then taking the lexicographical ordering to these triples.

Definition. For a limited formula ¢ define
Ord(®) = w’.o + w.e + m

where (i) a is the least ordinal such that ¢ contains
no gquantifier \/B with 8 > a and no constant term t of
degree 2 a,
(ii) e = 3 iff ¢ contains at least one of the symbols T
e = 2 iff ¢ does not contain any " but ¢ contains at
least one of the symbols éi’ e = 1 iff % contains no
symbol T and no symbol éj but % contains a subformula
v € u where v is either a constant term with §(v) + 1 = o
or a variable which stands in the scope of a limited
quantifier /\a {for o defined in (1)), e = 0 in all other
cases.
(iii) m is the length of &.

Let S be an infinite set in YL such that x € § » o(x) <X and } =
sup{p(x);x € 8} where A 2 w. We want to find for each j € A (where
Ol ¢aR; g
generic subset as of S and generic relations B, for i € I between
these aj's such that in the metatheory Ol and <{aj;j € A}’Bi)iEI

are isomorphic. Id est: we want to find a generic copy of (L.

is the given first order relational system) a

The sets aj have to fulfill certain properties, or in different
words: they have to satisfy certain conditions p (like "7 ¢ aj“ for
instance, or others) which can be posed in M.

Instead of defining the sets aj directly we first give a list

saying that the sets aj and the relation Bi have in Pl (the extension
of W) only those properties which are "forced" by some finite

amount of information.
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Definition: A condition p is a finite partial function from S X A
into 2 = {0,1}.

Let P be the set of WL of all conditions and let < be the partial
ordering in P defined by p S q * p C q.

The definition of forcing is given first for limited sentences ¢ by
induction on Ord(2). Notice that p varies over the set P and that
for a given ordinal B, all the ranked sentences ¢ with 0rd(d) < 8
constitute a set in ML . Therefore (by the recursion theorem) the
definition of p I 9% by induction on Ord(¢) is permissible.

Definition of the (strong) forcing relation I for limited sentences
¢. The definition takes place in MWL . Let T be the we-
class of constant terms and let u be a variable ranging

over constant terms.

(L plhuex® (Jy €x)pliku=y.

() plrue E%8(x) @ (£t € T)(8(t) <o & plku=t &
p i 8(t)).

(3) plhuced, ® (Ix € 8)(plkx >udpx,1) = 1),

(1) pl-T o e ~(3q =p)q k).

(s pFkovvYe(plbdvpi-y).

(6) p IF V3otx) * (Ju € TH(su) <a & pkeu).

(7)) jol I TTi(Ul ,...,uni) had (Hjl""’jl’li € A)((jl,-.,jnj?e Ri &
X I'— = .' « . e v -
& p li-uy 2y, & & p il uni éjn.)

1

To see that p Ik % is indeed defined by induction on Ord(®), notice
that the formulae occurring on the right side of ® have order
strictly smaller that the formulae occurring on the left side of #,
Further remark that in the definition of Ord(u; ™ uz) we have

e =1,
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The definition of p ¢ for arbitrary L-sentences ® will be
given in the Metalanguage (and not in m) by induction on the
(ordinary) length of ¢. This definition will be valid since p ranges
over a set P and the collection of all formulae of £ constitutes
a set in the sense of the meta-theory (since M is a set in the
sense of the meta-theory). Again let u,v range over T and p,q
range over P.

Definition of p ¢ for arbitrary (unlimited) £-sentences $.
(8) phkuevandp mi(ur,..5u, ) are defined as above.
(9) plT1@»~(3Fq>p)qg o).
(1) phkodvve(plkovpl¥.
(11) p kY380 @ (Fu € TH(s(w) <a & p Ik Sw).
(12) p FV, 00 ® (3 u € H(p IF o(u)).

It is obvious that for limited sentences ¢ of £, p I ¢ according
to this definition iff p IF & according to the former definition.
The rest of this section is devoted to the study of the formal
properties of the forecing relation IF. In the following three lem-
mata let & be any L-sentence.

Consistency-Lemma. For no p € P do we have both p & and p 71 9.

Proof. If pl-® and p 1 9 for some p € P and some L-formula 9,
then by (9) p 1% » ~ p k9 and we get a contradiction in the
metalanguage, q.e.d.

First Extension Lemma. If p ¢ and p < ¢, then q I &.

Proof by induction on the complexity of ¢ (i.e. for limited sen-
tences ¢ by induction on Ord(¢) and for unlimited ¢ by induction
on the length of &), see e.g. Jensen {391p.94-95.

Second Extension Lemma. For every p € P there is a q € P, p S q,
such that either q ¢ or q 71 9,
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Proof. Suppose that for no q 2 p we do have g b %, Thenp 719
by (9). Suppose now that for nc q # p we do have q "1 &. Then by
(9): p IF Y1 $). But applying (9) twice one gets
P11 d e (g2 p)l~(Fq" 2 qXq' kNI
*(Vq2p)(3q" 2" F®
Thus there exists q' 2 p such that q' IF ¢, q.e.d.

Remark that forcing does not obey some simple rules of the
propositional calculus. Exempla gratia, p may force 1 1 ¢ but not ¢.
Furthermore, the forcirig relation I has by definition (clauses (5),
(10), (12)) a homomorphism property with respect to disjunction
(v,¥) and existential quantification (V,3). If we introduce con~
junction A and universal quantification A as usual, then one no-
tices that IF does not have the homomorphism property for conjunction
{A ,&) or for universal quantification (A,V). For example only

plroen¥=(3q >p)(Jq >plla Fo aq ¥

holds. We shall introduce a relation I (called weak forecing), which
has the property that p o o p 7171 ¢ and the homomorphism proper-
ty for conjunction and universal quantification. IF*does not have

the homomorphism property for disjunction and existential quantifi-
cation and is, as we may say, dual to the strong forcing relation I

Definition. p ¢ @ p 17 @) "p weakly forces &"
pll e (pl& vp -1 9) "p decides &"
pl*e e (p e ¥p BT 9) "p weakly decides &"
¢« (Vp € P)X(p o).
p1 and p2 are compatible # (;q € P)X(py £q & p2 Sqg).

Lemma A: The weak forcing relation has the following properties
(u,v are variables for terms and 9,¥ are any {-formulae)
(i) pheoee~Jgp<qa&qlol,
(iiYplho=p e,
(iii) p K1 o ¢ p 71 0,
(iv) If © is of the form ¥y a ¥z ,¥;% \y,,/\xw, Ay, u = v or
ux=v, thenp k¢ ¢ p Fo,
(V) plFoAY®[p e & plyl,
i) p I Ao« (YuemDip Fowl,
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(vii) p wf/\§¢ * (Vu € Disuw) <a=p Fawl,
(viii) p Ko ¢ ¥ = [p Ko » p V],
(ix) (YVp' 2 p)(Fq2p)q Fe @ q IF¥] =p o &y,
(x) (Va=plg Fe ® q iyl =p o v,

Proof. Ad(i): Let ¥ be 71 ¢. By (9) of the forcing definition
~(3q Zpllg Y] is equivalent to p 7T ¥ which is p K171 8
by definition of I this is equivalent to p .
Ad(ii): follows from the first extension lemma and (9).
Ad(iii): "<" follows from (ii). Now assume p =1 & and suppose
that ~p 71 ®. Then by (9): q ¢ for some q & p. Thus by (ii)
q Ko, This is in contradiction with ) =7 ¢ by the consistency lemma.
Ad(iv): Notice that all the forms of ¢ listed are of the form T,
thus the claim follows from (iii). The symbols A ,"’,/\, /\a are
introduced by definition for longer expressions in terms of
T,v, v, Va only.
Ad(v): p IF® a ¥ is by (iv) equivalent with p Ik & A ¥, which is
by definition: p "1 % v 1 ¥). This is, using first (9) and then
(10) of the forcing definition equivalent to

(\/q)[p Sqg=~(q-TowvaqlkTTMl.
Using again (9) cne gets equivalently p F171¢ & p 7171V,
Ad(vi): The proof is similar to the proof of (v)
Ad(vii): Again the proof similar to (v) or (vi).
Ad(viii): Assume p ¢ ¢ ¥ and p ¢ but ~p IF¥. By (i) there is
an extension q of p such that q =71 ¥. Since p < g the first exten-
sion lemma yields g 171 ®. Thus by (9) of the forcing definition

(Valqg €q' = ~q' 70 v q' FNI.
Using (10) and then again (9) of the forcing definition this gives
us q (T 9 v ¥). Thus: q I-"Wd + ¥) by definition of +. Using
(iii) and (v) one sees that this is in contradiction with p Ko o v,
Ad(ix): suppose that the conclusion does not hold and proceed
using (i) and (9), (10) of the forcing definition and the second
extension lemma. In this way one immediateky gets a contradiction.

Ad(x): follows directly from (ix). This proves lemma A.

Lemma B. Let p and g be elements of the set P of conditions and
let ¢ and ¥ be £-sentences.
(i) If p; and p2 are compatible and p1 | ¢ and p: ¥, then
gl @A ¥ for every q greater than both, p; and pa.
(ii) If p N ¢ and pll Y thenpll ¢ ¥, plt o> ¥, pll 2AY
and p il ¢ & V¥,
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(iii) If pH ¢ and pl ¥, thenpFO2A ¥ ® (p IH O & p IF¥),
(iv) If pll ¢ anapll ¥, thenp e ¥ ® (p -0 ® p l¥).

Proof by direct computation.

Lemma C. Let p, ¢ and ¥ be as in lemma B.
(i) If pl*® and p I*¥, thenp "1 ¢, p "o A ¥, pli*o v ¥,
piH* + ¥ and p I1*0 ¥,
(ii) If p 1" and p I1°¥, then p li*o v ¥ © (p Fo ¥ p V).
(iii) If p %0 and p I*Y, then p o ¢ ¥ @ (p Fo « p FY¥).

Proof by direct computation (use lemma A, (viii) and (ix))J.

Lemma D. If p |l ¢, (1 =1,...,n), C is an n-ary sentential connective
id est: an operation which is an iteration of the primitive
sentential connectives 1 and v) and ¢ is the corresponding
sentential connective of the meta-language (id est: the
analog of ~ and v ), then:

(i) p It C(¢1,...,®n), and
(11) p = C(Oy,...,0 ) ® C(p &y ,...,p n—cbn).

Proof by induction on the number of times 1 and v are used in C
(use lemma B).

Lemma E. Let C be a n-ary sentential connective. If C(¢"""¢n) is
a tautology for all ¢;,...,¢n, then for all p and for all
£-sentences @;,...,@n it holds that

P cee,,. .. ,‘Dn).

Proof. Use lemma A and C (see e.g. A.Lévy [511p.141).

Lemma F. Let u, v and w stand for constant terms; then for every p:
(i) plu = u,
(ii) plhku=v=plkv =,
(iiid[plku=vaplv=wl =plu-=w,

Lemma 6. Again let u, v and w be constant terms, then for every p:
(Dphu=xveplus=v,
(ii) [phlhuew aplu=v]l =plvew,
(iii) [phweugplu=vi=plFvev.

For a proof of lemmata F and G see Lévy [51]1p.141 or Easton, Annals
of Math. Logic, vol.1(1970):[1%].
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Corollary H: If p %’wi(u;,...,uni) and plFus = vi,..p W—uni= Vni’

then p W‘ﬂi(v,,...,vni).

This follows easily from the definition of forecing, clause (7),
and lemmata F and G.

Digression: The forcing definition p I ¢ between elements p of

the set of conditions (of ML) and limited £-formulae ¢ was given

in the. "groundmodel"” 9¥l while the definition of p I ¢ for unlimited
® was given in the underlying meta-theory. We shall show in the
sequel that for each specific L-sentence ¢ the forcing relation can
be defined in ML, because & is finite and the construction of the
class KQ of p's forcing ¢ can be done in finitely many steps. For
each specific ¢ the mechanism of constructing Ky can be implemented
within WL but the mechanism is not universally applicable for all
sentences ¢ of £, so that within ?YL we do not have the whole rela-
tion Jr. This is not too much surprising, since the definition of
forcing resembles very much the definition of truth, and by the
Epimensrides-Tarski paradox we cannot define in ZF (or within the

Ml -1anguage) the notion of truth for L-sentences [see Lévy [51]
p.138, A.Tarski: Logis, Semantics, Metamathematies (Oxford 1956)

p. 248, Fraenkel-BarHillel: Foundation of Set Theory (Amsterdam
1958) p.306 and Kleene: Introduction to Meta-Mathematics (Amsterdam-
Groningen 1867) p.3%,42, 501, see also Mendelson [60)p.151]).

However we can define forcing for a single given sentence ¢ or fer
some particular family of sentenees withixx?YL.

Lemma I: Let @(x;,...,xn) be an unlimited formula of £. There is a
class Ky of the model YL whose elements are the (n+i)~
tuples (p,ul,...,un> such that p W—@(u,,...,un), where the

ui(l < i € n) are constant terms.

According to our remark on page 79 the constant terms u; are consi-
dered as certain special finite sequences of symbols which are in
WU - for morc details see Easton's thesis, Annals of math.Logic,
vol 1(1870).

Proof by induction on the length of the formula 9. Since the

atomic formulae are all limited formulae, the lemma is true for
atomic ¢. If @(x:,...,xn) is Y1 (X500, V Wz(Xg...,xn) and the
classes wa and sz satisfy the lemma for ¥; and P2 respectively.
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then K, = le u sz is the required class for ¢. If ¢ is
\/yw(y,xl,...,xn) and if KW satisfies the lemma for w(xo,xl,...xn),
then {(p,2); V;(p,y,z) € KW} is the required class. The case that

% is \/3W(y,x1,..,xn) is similar to the previous one. If ¢ is

| W(xl,...,xn) and if KW satisfies the lemma for ¥, then

{p,z2) 3 pe P~ qu(P < g~ ({q,2 e Ky}

is the required class KQ. This proves lemma I.

Definition: A set ¥ of conditions is dense (cofinal) in {P,C), the

set of all conditions, iff for every p € P there is a
q € ¥ such that p < q.

Definition: A sequence ® of conditions is complete iff & is well-
ordered by € and of ordertype w, = {p(G},p(l),
p(k),..‘}, such that 8 N { ¥ § for every dense set ¥

of conditions.

e ey

Remark. Both definitions above are given in the meta-language (and
not in ¥L). The notion of a dense subset of a partially ordered
set is due to F.Hausdorff who used the name "cofinal”. The original
definition of "completenass" for sets # of conditions of P.J.Cohen
was A bit more restrictive. The definition given above is due to
W.B.E&ston (Thesis, Princeton 1964, the main part appeared in the
Annals of math.Logic, vol.1(1970)).

Lemma J: If R is a complete sequence of conditions, then for every
o,

L-sentence ¢ there exists p(k) € & such that p
Proof. Let & be given. By lemma I there is a set K in ML whose
elements are just those conditions p for which p | ¢ holds. By the
second extension lemma K is a dense subset of P, thus K N & #* ¢,
and there are conditions p € ® such that p € K and hence p | 2,
g.e.d.
The following lemma is the only place where we need the countability
of MU . Notice that the weaker assumption, namely the N -set of
M -subsets of P is countable, is already sufficient. This was
used e.g. by R.Solovay in the construction of a model YL which

contains a non-constructible A}-set of reals.

Lemma K: There are complete sequences of conditions. Moreover, for
every condition p there is a complete sequence ® in which
p occurs as first element.
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Proof. Since ?rL is countable (in the meta-theory), there is an
enumeration of all sets of WL and in particular an enumeration
of the set of all subsets of P which are in Ml . Let {sn;n e wl
be an enumeration of the powerset of P in the sense of M.
Take any condition p and define p(0)= p. If p(n)
p(n+1) be any condition in sp which extends p(n) if such an element
exists, etherwise put p(n+1) = p(n). We show that the so-defined
intersects every dense set of

is defined,let

sequence # = {p(O),...,p(n),...}

conditions. If ¥ is a dense set, then it has a number, say n, in

(n+1) € g
n

the enumeration, thus ¥ = s . By definition p and

p(n+1) € 8, q.e.d.

Definition: Let ¥ be any collection (in the sense of the meta-langu-
age) of conditions and let ¢ be an L-sentence. We write
-9 for (3p € H(p + ¢) and similarly ¥ ¢ for
(3p €I)(p ). Notice, that if ® is a complete se-
quence of conditions, then & I+ ¢ and & ¢ are equiva-
lent.

Lemma L: Let ® be a complete sequence of conditions and ¢(x1,...,xn)
an L~-formula. If & fl-u; = vy ,...,f0 w‘un = vy for constant
terms u,,...,un,v,,...,vn, then

& I q)(ul ,...,un) * K] ||"<!>(Vl ,...,Vn)n

This follows by induction on the length of ¢ from lemmata F, G and
corollary H.

So far we have investigated several useful properties of the
forcing relation. In the next section we shall show that every
complete sequence of conditions gives raise to a valuation of the
predicates aj so that the resulting sets are generic.

B) COHEN - GENERIC SETS

We shall use the terminology and formalism introduced in section A.

Definition: Let ® be a complete sequence of conditions. Define
the function valg (valuation or interpretation with
respect to &) on the set T of all constant terms of
the language £ by induction on their degree as follows:

valg(u) = {vala(v); vVET & 8(v) < 8(u) 4 &k v g u}

Finally define:
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TL(R = {vala (u);u € T}
(we shall usually omit the subscript & from valg
and TL“).

Lemma M: Let u and v be constant terms. If p Ik u € v then there
is a comstant term w such that §(w) < §(u), &§(w) < &(v)
and plhbu®w, pltwev,

{for a proof see e.g. A.Lévy [51]p.1u1).

Lemma N: B uzveRibg>v e valg(u) = valg(v).

Lemma O: ')“ﬁﬁ is a transitive set. For each x € m, vala(_)g) = X,

hence m_c_ Tla.

Proof: The transitivity of W—a follows directly from the definitions
of valg and nﬂ val(x) = x follows easily by induction on $§(x)
using the definition of val(x), the forcing-definition and the

lemma N. Thus the witnessing constants x ensure that ML is con-
tained in % as a transitive submodel.

The semantics of £. For each x € JU 1let r(x) be the least §(w)
for which val(w) = x. Thus x,y € N & xe€ y = r(x) < r(y) by
lemma N. Now the formulae of £ can be interpreted in YL in the
following way:

(i) A term u is interpreted in YU by val(u).

(ii) u € v holds in JU iff val(u) € val(v).

(iii) The sentential connectives 1, v and the existential quantifier
V are interpreted as usual by ~, v and 3 .

(iv) \/§<I>(x) holds in YU iff there exists y € JU witn r(y) <a
such that ¥(y).

(v) y:,....,,yn:_L satisfy 7,(x ,...,xni) in Y iff there are ‘
1 ,.,.,jni € A such thet (i ,...,jni) € R; and y1 = val(ajl)a

'aYni = Val(éjnj.).

One of the most important steps in showing that YL is a model of
ZF is by proving that YU can be described to a large extent
within U . When one is dealing with inner models WL s of some
structure M, in the verification of the axioms in Dﬂ; one usu-
ally uses the fact that m; can be described entirely within f)‘!'Z: ,
thus reducing the validity of some axioms in 917/4 to the validity
in mz . Cohen-extensions JU of countable ZF-models m have
similar features. Though 77/ extends m N 7{, can be described to
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a good extend in m, so that again questions about the validity
of statements in J{ can be reduced to questions which can be
posed (and "answered") in ML .

This is the content of the following lemma:

Lemma P: Let ¢ be an L-sentence. Then @ holds in TL(R iff R I 0,
For a proof see e.g. A.Lévy [§1]p.144 or Easton's thesis (Aw].

L T ..
Lemma Q: p ¢ iff R f-fb for all complete sequences & containing p.
Proof (see Lévy or Easton, loc.cit,).

Lemma R: val( Eaxé(x)) is the set of all members y of Y1 such that
r(y) < o and y satisfies &(x) in JU . val(a.) = ag is the
set of all y € JU such that r(y) <A and y ¢ ‘éj holds

inT(,.

Lemma S: For every j € A, val(éj) € s and val(éj) ¢ N, thus the
sets val(éj) = ay are Unew",

Proof. a, € S follows easily from clause (3) of the foreing defini-

tion and lemma R. We have to prove that a. is "new". Suppose a.
] 3

is not new. Then 25 € WU and since ag = x for some x e M,

val(x) = x by lemma 0. Hence val(x) = x = ay = val(aj) and lemma N

yields: ®& I-a, = x. Therefore p I éj = x for some p € &, Since p

is finite there are sets s € S such that p is not defined for (s,3.

Now define go = p Y {{{(5,9,00} and q: = p YV {{{s,3>,0}.q0 and @

are extensions of p. Proceed by cases.If s £ x then s £ valp(x) = X

for every complete sequence 8. Also, if q1 € &, then ® IFs € é‘j and

hence s € valg(a.) = a. by lemma R (since s € S + p(s) <X and

G(éj) = A). Thus s € é? holds in Tla for & containing qi while
s € x fails in TLa. Hence ® Fa, # x for every complete sequence
# containing qi (by lemma Q). Lemma A (iii) yields: q1 IF éj * x.
If s € x then proceed as above and obtain go I+ éj # x.

Thus we have shown that every condition p has an extension q such
that q I+ éj # x. By lemma A (i),(iii) this implies that every
condition p forces a; #* x. It follows now from lemmata O and P

that as = val(éj) & N,q.e.d.

Lemma T: mand ith have the same ordinals.
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Proof. Since m < YU by lemma 0 every ordinal of W{ is an or-
dinal of Yl (notice that since ML and Y are transitive €-models
the notion of "being an ordinal" is absolut). Now let a be an
ordinal of J{ . Since a = pla) < §(a), 6(0) € 7rL, the transitivity
of MU implies a € N . Here p(a) < §(a) holds since s,y € YU and
x €y =r(x) <vr(y), thus x € ¥ = o(x) < r(x).

But by definition of r(x) we have r{x) € §(x), thus p(x) < 8(x)

for all x € JU ,» g.e.d.

Having proved all these various lemmata we are able to prove
the main-theorem of forcing manely that the structure TL is a
model of ZF.

HAUPTSATZ of the forcing technigue

Let M be a countable transitive €-model of ZF and let
M- (A,Ri) ;er be a (18t-order) relational system in W .
If the forcing relation IF is defined as in section A, then
for every complete sequence R the structure .')‘Lﬁ is a coun-

table, transitive €-model of ZF which extends YL .

Proof: That ‘Tl_a is transitive and includes L has been shown in
lemma O.

Ad.axiom(0): Since val(8) = 4 € TL ., the axiom of null-set holds
in Y.

Ad(I): Extensionality follows from the transitivity of YU .
Ad(II): If a and b are sets of T , then a = val(ti1), b = val(tz)
for terms ty, t2 of £, Let 8(ti) = oy, 8(tz) = 02 and ¢ = maxfo;,
a2} + 1, then t3 = E%x(x = t1 V X ™) is a term of degree a and
val(ts ) is the unordered pair of a and b.

Ad(III): Similar to (II). A4(IV): Since val(w) = w by lemma 0, the
axiom of infinity holds in JU .

Ad(V): The power-set axiom holds in YU : (sec; Conen [1‘1]}:.46-‘*'}_)
Cohen's proof that the power-set axiom holds in the extension J1
(sece [10)part II) folliows the proof of Gddel {251 that V = L
implies the GCH. We follow, instead, an elegant proof due to

#H

R.M.Solovay which avoids G8del's argument (see Easton's thesis [14]),
We shall show, that for any constant term t there exists an

ordinal @ such that if val(s) € val(t) holds in J{ (for some

constant term s), then val(s) = val(s*) for some constant term
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s* of degree less than «. Then the power-set of val(t) in the
sense of JL is given by

val( E%(x € 0.

Let t be a constant term. For each constant term s define

(p is any condition):
$(s) = {{p,w ;6(w) <8(t) A p i we s}

By lemma I each ¢(s) is a set of L and the correspondence s " $(s)
is a function of YL . Let this function be represented by the
classterm G. We claim that ¢(s;) = ¢(s2) implies val(t) N val(sy) =
val(t) N val(sy ).

Proof. Suppose ¢(s1) = ¢(s;) and val(w) € val(t) N val(s;). Then

by the definition of the valuation val = valg: p(n) Fw e t and

(n) in the complete sequence &, Further w

p(n) w e sy for some p
may be taken so that 8(w) < 8§(t). Thus (p(n),w) € ¥(s1). Since
$(s1) = $(s2) we get (p(n),w) € ¢(s,) and this entails p(n) Fwe si2.
We conclude that val(w) € val(t) N val{s:;) [more precisely :
p(n) IFw € s; implies by lemma M the existence of a term w* such
that 8(w*) < 8(s;2), p(n) IF w = w* and p(n) I w* € s, . By lemma N:
val(w) = val(w*), thus val(w*) € val(s,) implies val(w) € val(sz).
Further, since val(w) € val(t) we get val(w) € val(t) N val(sz)
as stated abovel,

Thus we have shown that val(t) N val(s;)C val(t) N val(sz).
The inverse 2 follows in the same way, and we have proved that
$(s;1) = ¢(s2) implies that val(si) and val(s:2) are equal modulo
val(t).

Let TG(t) be the set (in WU ) of terms of degree less than
§(t). Then ¢(s) € P x Tscyy» Where P is the set of all conditions.
For every k € P x Té(t) let (T is the class of all constant terms)

Y(k) = {s; s €T ~ ¢(s) = k ~ /\sl[sx ET ~ ¢(sy) = k+6(s) < 8(s;)11.

(P(k) may be empty but in any case Y(k) is a set of YL ). By the
axioms of powerset and replacement in ML , {v; \/k\/s(k Cp x Té(t)A
g8 € P(k) ~ v = 8§(s))} is a set of I . Let Bo be the supremum of
the ordinals of this set and define B8y = Bo + 1 and a = By + 1.

Now suppose that x and y are sets of XU such, that y = val(t)
and x € y holds in YU . Then x = val(u) for some constant term
u and val(u) € val(t). Thus ¢(u) = k C P x Ts(t) and ¢(k) is not
empty, since k is represented as a ¢(u) for some constant term u and
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¥(k) contains those terms of minimal degree. Hence let s¢ be some
element of Y(k) = ¥($(u)). Then

val{u) = val(t) N valdu) = val{t) N val(se).

Define sy = gh

x(x € t ~ x € s0). Since §(t) € Bo < 81 and 8(s0) <
B1, s1 is a constant term of degree 8; and val(u) = val(s;) is

true in ifL (by lemmata MyN and R). Moreover 8(s1) = By <Bg + 1 =a.
Thus we have obtained an ordinal a (onTL )} with the required pro-

perties, q.e.d.

Notice that the proof given above is similar to the proof that
the powersetaxioms holds in L - see page 28. Also the proof that
the replacementaxiom holds in 31. will be inspired by the correspon-
ding proof for L. We need two lemmata.

Lemma U: Let Q(xo,X1,...,x ) be an unlimited formula of £. Then for
every ordinal o of 7TL there is an ordinal B8 of ??L such
that for every condition p and constant terms t;,...,tn
of rank less that o,

p I Vx°<»<x° St est) © b G 80k sthse et ).

Proof. Let ¢ be given and suppose that ¢ has no free variables other

than X0 505X . By lemma I (see cection A) there exists in MU a
class K whose elements are the n+2-tuples (p,to,t;,...,tn> such
that p F Q(to,...,tn). Hence

C= {{pyto,y...,t ), plFoCte,. cest)) A 8(E)) <o for 1 €£i<n}
is also a class of 9TL By the axiom of foundatlon in ?Tl the
follow1ng collection C* is a set of 7Yl

{(p,‘to,..,t> (Brtor..nt) €C ~lph V, 0lxo,ti,..nt) »

<
(pytssti,...,t) € 0(5(‘:«:) ‘5(1?0))]}

Thus C* contains only those n+2-tuples (p,to,..,tn) from C for
which to¢ has minimal degree whenever \/x°¢(xo,t1,...,tn) is forced
by p. By the replacement axiom in Y1 ,

D = {v; V(p,to,...,t) e ¢+ (Y = §(toa N}
is again a set of M|, and using again the replacement axiom 1n3¢L
there exists an ordinal 8 such that vy € D » y < B, Then it is easily
seen that the equivalence stated in the lemma holds for this B, q.e.d.

Lemma V: Let ®(x,,...,sn) be an unlimited formula of £ and a be an
ordinal of JJl . Then there exists a limited formula
@v(x;,...,xn) such that
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o o v
/\x;"'/\xn”’(" benx ) @ 870k, sx)]
holds in 9.

Proof by induction on the length of .

Case 1. If ¢ is atomic, then we can let ¢V be .

Case 2. 9 is 1 ?(xx,...,x Y. By the induction hypothesis there is

a llmlted formula W (xl,...,x ) such that /\a /\Xn[W(xl,...,x ) ©
hid W (X1 5...5%X_)} is true in 71 Hence, we can let ¢V be W(WV

Case 3. ¢ is ‘J ?(Xx,...,xn,y) Let Y = max{a $}. By the induction

hypothesis therc ig a limited formula W (x;,...,xn,y) corresponding
to ¥ and vy such that:
Yl /\Y /\Y V(X1 50005%x,,y) @ ¥ (x;,...,xn,y)I

holids in 7Z It follows that
5§,V
/\XI. /\Y \/6¥(x,,...,xr,y) - \J ¥Uxy 500Xy ,y)l
is also true in 71 . This shows that we can define 8’ to be

8
\/ywv(xl,...,xn,y).

Case 4. ¢ is \/y?(x;,...,xq,y). By lemma U there is for given ©
and o an ordinal B such that for each condition p and constant
terms tl,...,t of degree less than o,

D - v ‘i"(t; 5. ..,tn,y) ®p =~ vsv‘?(tl 9"‘3tn’y)'
This means by lemma A, (vii) of section A. that every condition

p weakly forces
/\zl... f\inF bgy(x,,...,xn,y) - \/S?(x;,...,xn,y)}

Hence also every p in the complete sequence & weakly forces this
formula, and therefore fl also strongly forces the formuia.
By lemma P of this section, this formula holds in 9L . Let
v = max{a,B} and proceed as in case 3 (using 8 rather than &),
q.e.d.

Using lemma V we are able to prove, that the replacementaxiom
(VI) holds in the structure Jl . Notice that our proof ressembles
very much the proof that (VI) holds in Gdédel's model L.

Continuation of the proof for the Hauptsatz

Ad(VI): The replacement-schema holds in YL - Let t; be a constant
term of degree o and let %(x,y) be a formula of £ such that it
holds in 37/ that for every x € t; there is precisely one y such
that ¢®{(x,vy). By lemma U there is an ordinal B such that

M EA Y 000y Voeo,l.
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By lemma V, there is a limited formula ¢V(x,y) such that

(+) T E Af( /\}E[cp\x,y) o o7 (x,9)],
where [ = max{a,B}. It follows from (+) that:
(o) TLEAY /\gmcx,y) o ¢7(x,y)].

Let s = Ely( Vi /\g Yy =z A~xeta @V(x,y) )}, then s is a constant
term of £, where A = max{a,8} + 1 = ¢ + 1. It follows that val(s)
is the image of val(t) under the function ¢ in T s, q.e.d.

Thus we have proved the Hauptsatz.

Digression. What have we done so far? Our main question was whether
the independence results we have obtained by means of the Fraenkel-~
Mostowski-Specker-method for the system ZF® (without the axiom of
foundation, but assuming the existence of reflexive sets x = {x})
are alsc true for ZF = ZF® + foundation. Obvicusly not all indepen-
dence results carry over to independence results in ZF, since e.g.
(AC) and (PW) - see p.62 - are equivalent in ZF while (AC) is
independent from (PW) in ZF® alone. The general procedure in the
construction of a permutation model'}?t of 7ZF® was to define some
relations R, (i € I) between a set A of atoms (i.e, reflexive sets)
and then to—construct the permutation model.ﬁ?{ over the structure

R o

In order to obtain independence results which apply to full
ZF-set theory (including foundaticn) our general idea was to add
to a given countable model N of 2F a generic copy of a structure
(’L = (A,Ri>i €1 Cbviously, we cannot congtruct within our
meta-theory (which is ZF + (AC)) a model ab ovo, since this would
give ctherwise a contradiction to G8del's theorem. But what we can
do is to construct from some given model 3TL of ZF another model
YL of ZF in which some interesting statements & are true while
others ¥ fail, thus proving that ¢ + ¥ is not derivable from ZF.
Again by Gddel's theorem, we have to use the fact that ML is a
ZF-model when proving that the extension ¥ is a ZF-model. This
we have done by reducing questions about YU by means of lemma P to
questions which can be posed in Y. This is the most astonishing
fact, that the extension can be described in the groundmodel W
(see lemmata I and P). It was the aim of the forcing definition to
determine the interior €-structure of the "new" generic sets aj(jGA)
in such a way that in ML we have evough information what properties
these sets aj have. These finite amounts of informations were called
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"conditions". Notice that since we are dealing with finite condi-
tions, the sets aj generic over J{, determined by these conditions,
are called Cchen-generic over‘yrb. The name "Cohen~generic" was
chosen in honor of the man who first invented forcing with finite
conditions. Forcing with perfect-closed subsets of the real-line

is usually called Sacks~forcing and the generic sets obtained

by this way of forcing are called Sacks-generic. Forcing with
Borel-sets is called Solovay-forecing and the corresponding

generic sets Solovay-generic - see Silver's Seminar notes [80]

and the articles of Sacks and Solovay.

We have developed Cohen-forcing in a general setting and
have obtained for lnflnlte sets S Cohen-generic subsets a. € S.

In many cases we shali\w Zs S. The Cohen-generic subsets gf w will
be called simply Cohen~generic reals, since every subset of
determines a real number.

Instead of proving one independence result after the other
we shall first colliect some additional informations about the
generic extensions 31 . We have shown (see lemma T) that m
and the extension 31 have the same ordinals. We ask: do they
have the same cardinals? id est: are the ordinals A which are
initial ordinals in the sense of JL just the initial ordinals
of L ? or better: under which conditions is this true? Another
question: Under what conditions on Cﬂ,: (A,Ri>i €1 is the axiom
of cheocice (AC) true in the extension?

Further, what are the conditions () has to fulifill iJIQTL in
order to ensure that the extension JI satisfies the oprdering
principle? In the following section we discuss these questions

and give some solutions.

C) ORDERINGS AND WELLORDERINGS IN GENERIC EXTENSIONS

We start with the presentation of a theorem which says that, if 3?1
is a countable standard m>del of ZF + (AC) and OL is finite, then
the model ﬂfﬂ obtained from UYL by adding a generic copy of O to
YYL, satisfies ZF + Axiom of choice.

A necessary remark. In section B we have shown, that the model 7
extends W1 (see lemma 0), but YL need not to be a Y| ~definable
subclass of 71 . This, however, can be attained by adding to the for-

cing language £ a further unary predicate symbol g. The intended
interpretation of g(v) is “v is in the groundmodel W1l".
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The forcing-definition has to be enriched by the clause:
*) p gt @ (Ix e Mre = .

for conditionsp and constant terms t. The interpretation of £ in
?1, id est the semantics for £, then has to be enriched by:
"y gatisfies é in Y| iff there is a constant term t such
that v = val(t) and & IF g(t)".
It follows that é defines ﬁﬂ/ in Y1 , more precisely, {val(x);
x € m} is T\ ~definable by means of g Whenever we shall need
the fact that MU is YU -definable we shall assume that forcing
was done in a way including clause (*). This assumption is made
e.g. in the following theorem, the proof of which is close to
G&del's proof that (AC) holds in L.

Theorem. If 3YL is a countable standard model of ZF + (AC) and a
is Cohen-generic over YU, then the extension ?1,* tnlla]
is a countable standard model of ZF + (AC).

Proof. (R.B.Jensen [401p.69). Set up in ¥l a ramified language &
with a name a for a, names x for x in MU (this is possible in
I, since a and M are Y{-definable), limited quantifiers \/a,
limited comprehension operators t® for all ordinals o of 71 , 8C
that {(a,va> o € Onw' } and {{oa,E® ja € Onn } are classes of YU .
£ has furthermore all the symbols of ZF. Obtain by recursion (as
usual) the well-formed formulae, so that £, the collection of all
these wff's, is a class of JL. Define an interpretation @ for the
constant terms of £ by setting

QCa) = a, AUx) = x (for x € WLy,
and then extending to all constant terms of £ by recursion on §,
the degree (defined here as on p.79)., Since the correspondence
x ® x was by definition 37,»definable (see e.g. the conventions
on p.79), it follows from the recursion theorem, that the function
Q= {{t,2(t) ;t € T} is YU -definable (T is the class of all
constant terms). Let Ta be the set (of ¥ ) of constant terms t
of degree less than a. Define N = {a(t);t € Ta}' It follows that
\“GNa is the ¥ -class of all sets of Y.

After these preparatory remarks. let us prove that in 31,
every set x can be well-ordered. Let x be any set of 91,; then
there exists in JU an ordinal « such that x C N,-

We claim that Ta can be wellordered in 31 . In fact
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Ka = {x,x € )TL ~ 8(x) < a} is a set of YU and included in Ta .
Since M, = {Q(t) .t € Ka} is a set of WL , this set M, can be
well-ordered in MU and induces hence (via 97 1) a well-ordering
of K.+ By definition (see p.79) constant terms t of degree less
than o are constructed as finite sequences of symbols taken from
§ = K, U {BB;B < oty {\/8;6 < a}y {the ZF-symbols}.
The set of ZF~-symbols is countable, hence wellorderzble. Thus
the set S (of YU ) is wellorderable, and the set T, can be well-
ordered, e.g. lexicographically. Let W, be a well-ordering of T,.
For y € Ny let t by the first t € Ty (in the ordering W,) such
that y = Q(t). The function {(y,ty);y € x} is Yl -definable and
hence so is the well-ordering

{Uy1,y2) 591,72 € x ~ Ct,t )€ Wyl

. ¥i Yz
of x. This proves the theorem.

Corcllary 1. Let M be 2 countable, standard model of the NBG-sct
theory I + (E) and let a be Cohen-generic over m .
Then JU = Mlla) is a countable standard model of
L+ (B).

Here T is the set of axioms of groups A,B,C,D in G8del's crange
monograph {28] and (E) is the global version of the axiom of choice.

Corollary 2. Let N[, be a countable standard model of ZF + (AC) and
a1 .58 be finitely many sets which are Cohen-~generic
over WL . Then Y[ = BYL[al,...,an] is a countable
standard wodel of ZF + (AC).

Corollary 2 was obtained by S.Feferman using ideas of Gddel and Cohen:

@6} S.FETERMAN: Some applications of the notions of forcing and
generic sets. Fund.Math. 56(1965)p.325-345, See
also Feferman's article (with the same title) in
the "Theory of Models"-Symposium volume, North
Holland Publ.Comp. Amsterdam 1965.

Symmetry Properties of Generic Extensions. Let Yl be a ccuntable
standard model of ZF and let (J= (A’Ri)iEI be a relational system
in W{. Let (z} be the group in MU of automorphisms of Ol. Let £ be
the ramified language having constants x for each x € W1, constants

éj for each j € A and n;-ary predicate symbols w. for each i €I
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{as defined in section A). Let } be the forcing relation as defined
in section A. For o € and £-formulae ¢ let o(®) be the formula
obtained from ¢ by replacing every occurence of éj in ¢ by a
For conditions p (id est: finite partial functions from S X A intc
2 = {0,1}, see p.81) define o(p) by:

({s,3) ,00 € p # ((8,0(3i) ,00 € o(p)
({5, ,0 € p ¢ {{s,0(3i) ,1 € o(p)

By definition a formula ¢ of £ may contain some particular terms
like x or E®x¥(x) but contains never variables for terms. Thus if
Eaxw(x) oceurs in @, then E%x0 (¥(x)) occurs in 0(d). According to
the forcing-relation defined on p.81-82 the following holds:

Symmetry-Lemma (P.J.Cohen).Let & be any L-sentence and let p be any
condition. Then for every o € Q} we have p Ik o «
@ og(p) I a().

Proof by induction on Ord(¢$) for limited formulae ¢ and then for
unlimited & by induction on the length of &. Exempla gratia, suppose
the lemma is true for limited formulae @ of order < a. If ¢ has
Order o, proceed by cases. If ¢ is u € x, then

plhuex® @y €x)plhuey)* dy € x)(a(p) I o(u)= y)) since

y € x = p(y) < ply), hence Ord(u = y) < Ord(u € x).

The latter is equivalent to (dy € x)(o(p) IF o(u) « y) which in turn
is by (1) of the forcing definition equivalent to o(p) Ik o(u) e x,
id est o(p) # o(u € x). One proceeds .similar in all the other cases.

ﬂfhe symmetry~lemma has the following consequence, if p i+ ¢ and p
is in the complete sequence &, which defines U , then by lemma P,
% holds in Y . If ¢ is an automorphism of OL and o(p) = p, then
p - 0(®), hence 0(%) holds in YU as well. Since Q} is in L we
can handle symmetry-properties of Y{ in the ground model L.

We shall use the symmetry-lemma in order to prove that there are
models JU of ZF in which choice fails, thus proving Cohen's
theorem, that the axiom of choice (AC) is not deducible from ZF.
However, we shall not present Cohen's original proof [9 ], [14].

In the proof given here a Cohen-extension YU of a countable
standard model Y1l is constructed in which there exists an infinite,
but Dedekind-finite set A. This construction is due to J.D.Halpern-
A.Lévy:
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[35] J.D.HALPERN-A.LEVY: The Boolean Prime Ideal theorem does not
imply the axiom of choice; Mimeographed Notes, 93 pages.
To appear in the Proceedings of the 1967-Set Theory Sym-
posium at UCLA (AMS-Publications).

(see also Jensen's lecture notes [39]p.16u-167).

Definitions. A set x is called finite, iff x is equipotent to some
member n of w. A set x is infinite, iff it is not finite. A set x

is called Dedekind-finite, 1ff there dces not exist a function f

mapping x one-to-one onto some proper subset of x (This definition
of finiteness was used in 1888 by R.Dedekind in his famous monograph
"Was sind und was sollen die Zahlen"). In ZF it holds obviously that
every finite set is Dedekind-finite. In order to prove the converse
one needs the axiom of choice; the following fragment of the axiom

of choice turns out to be already sufficient:

w . .
(AC™): The countable exiom of choice: For every set x of non-empty

sets such that x is countable, there exists a function f
such that for all y € x it holds that f(y) € y.

W, e e s .
Lemma: ZF + (AC ) L Every infinite set x has a denumerable subset.

Proof. Let x Dbe infinite. Define S, = iy € x; ? = n} for n € w.

Then T = {Sn;O < n < w} is denumerable. By (ACW)' there cxists a
function f defined on T such that f(Sn) € Sn for all n, 1 < n <uw.
Hence f(Sn) contains n elements. Define g(n) = f(Sn) for‘i < n < w,

The set {g(n); 1 € n € w} = G is countable.Thus using (AC ) one obtains
a function h defined on G such that h{g(n)) € g(n). Define h*(n) =
hig(n)), then {h*(n);1 € n < w} is an infinite countable subset of x.
This set is infinite since x is infinit: and therefore every Sn

for 1 € n < w non-empty, g.e.d.
Corollary. ZF + (ACY) | A set x is finite iff it is Dedekind-finite.

Prcof. Let x be Dedekind-finite and suppose x is not finite. Then
by the precceding lemma X has a countable infinite subset y =

{z1 ,22 »23 ,...}. Define a function f on y into y by: f(zn} = 2440
then f"yv = {7 ,%3 ;24 5...}. Extend f to a function f* defined on the
whole of x by £*(u) = u iff u € y and £*(u) = f(u) iff u € y.

Then f* is a one-to-one mepping from x onto (the proper subset)

x - {z1}. Thus x would be Dedekind-infinite, a contradiction, q.e.d.
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Now we shall construct a Cohen-extension ?1, of some ZF-
model MU in which (AcY) fails by showing that in YU there are
infinite sets which are Dedekind-finite. The model used is due
to Halpern-Lévy [35] as indicated above.

Theorem. If ZF is consistent, then
"7F + there exists an infinite set which is Dedekind-finite"

is consistent too. Thus (ACY®) is not provable in ZF.

Proof. Let jYL be a countable standard model of ZF. Consider the
following structure Cﬂ, = (AR in ML , where A is w and R is

the unary predicate which holds for every x € A; thus (&L: {w,w .
Define a ramified language £ in )YC which has besides the usual
ZF-symbols also constants x for every set x of ML , constants éi
for every i € w = A, a constant b and limited juantifiers \/Q and
iimited comprehension orerators E® for all ordinals a of 7TL, 80
that the sequences {(a,\/a); o€ 0on™} and Ka,E%; o« € 00 }
are ingrz(see section A for details). Define a condition p to be
a partial finite function from w x w into 2 = {0,1} and define

the forcing relation Ik as in section A. Thus the key-clauses (3)
and (7) read in the present context (t is a constant term):

phte éj » (dnewplhte=nspln,P) = 1]

1.
]
Obtain a complete sequence & of conditions and thereby an interpre-~

n
plkted «(F5¢wlplht=a,

tation valﬁ of the constant terms of the language £, which defines
the model I . Write ay = val(a.), b = val(b); then aj C w for all
j e wand b = {aj; i € w}. By our "Hauptsatz", JU is a model of
ZF. We want fo prove that in JL , b is infinite while Dedekind-

finite. This is done in several steps.
1 Step. a; * a; if and only if i # j.

Procf. Suppose there are integers i and j such that 1 # j and
a; = aj holds in JU . Then.(by lemma P) a; = aj is forced by some
P in the complete sequence ®, which defines )1 . Hence p I ag = aj.
Since p is finite there exists a natural number n such that
{n,i € p and {(n,J ¢ p. Since i # j, we can extend p to a condition
q by defining:

q=pV {{{n, D, ,{n,,01}.
By the foreing definition q fbn ¢ éi and g "1n € éj where p < q.
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Thus, by the 15t Extension-lemma, we have obtained a contradiction.
2.8tep. It holds in ?1 that b = {aj; j € w} is infinite.

Proof. Otherwise there would be a one-to-one function f in 31 map-
ping b onto some member n of w. This is impossible by the result
proved in the first step.

3.Step. It holds in %] +that b is Dedekind-finite.

Proof. Let f be any one-to-one function in VL which maps b onto
some subset c¢c of b. We claim that (f'b =)c = b. It is sufficient
to show, that there exists a number m € w such that f(aj) = aj for
all j 2 m.

By definition of 3 , f is a limited comprehension term
E®x®(x) = tg. By our assumption it holds in P that f is one-to-ome;
thus by lemma P:

p I+ Fnc(tf) ~ Fnc(tf~1) ~ Dom(tg) = b o~ Range(tf) c b
for some p in the complete sequence ®. Let occ(d) be the M -set
of numbers j such that éj occurs in ¢, where tg = E%x9(x). Let k
be any (sufficient large) natural number such that occ(¢) C k and
Dom(p) € w % k. This means: all j € occ($) are smaller than k and
if «i,n) ,e) € p for some i € w, ¢ € 2, then n < k.

We claim that p ﬂ3<ij,éj> e tp for 3 2m=k + 1.

Otherwise there would exist an extension q of p (by the definition
of forecing) and natural numbers n; ,n, such that ny ¥ n;, m <ny,

m € n; and

(o) q W—(énl,énz) € tg

Choose h € w such that {{n,j ,e € q implies n < h, j < h and such
that n; # h, no # h. Define a permutation ¢ on w by o(h) = n;,
o{ny) = h, o(i) = 1 for i € w-{h,n; }. An application of the symmetry-
lemma to (0) yields:

g{q> w-ﬂanl,ah} e tg

since ocec(®) C k <m € n, ,ny , hence o(9) = §, thus U(tf) =
0(E%x8(x)) = E%x0(®(x)) = E%xd(x) = te. By definition of o,

q V o(q) is a function and hence a condition extending both q and
0(q) .Therefore by the first extension lemma and lemma B:

h.

q U oalq) I <én1’an2) €ty A <én1,éh) € tp ~ Fnelty) ~ Fnoltg®

Hence q U o(q) I+ an2 tf(anl) = a,, since tp is a function. This
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contradicts the result proved in the first step. Thus in fact
pig'tf{éj) = éj for all 3 2 m and f must be surjectiv. This

finishes the proof the theorem.

D) THE POWER OF THE CONTINUUM IN GENERIC EXTENSIONS

If we assume the axiom of choice (AC), then every set x is
equipotent y}th prectsely one aleph Na. If R is the set of all
reals then R = Ry for a certain ordinal ¥. Is it possible to
determine this ordinal? It follows from Cantors theorem f\x(i < 7%)
that ¥ 2 1. G.Cantor has spent many years in order to solve this
problem without arriving at the determination of the value for ¥.

The natural approach to this problem is to determine the
cardinalities of various subsets of R. Cantor showed that every
perfect set has cardinality 23° ( a set is perfect iff it is a
compaet subset of IR, non-void and every element of it is an
aceumulation point of it). Moreover, the Cantor-Bendixion-theorem
asserts that every closed subset of IR is either countable or the
union of a perfect set and a eountable set. Thus no closed subset
of R has a cardinal strictly between Ny and 230 . Some further
results of classical descriptive set theory read as follows:

(a) Every uncountable 3;-set of reals contains a perfeet subset.

(b) Every lli-set of reals is the disjoint union of N, many Borel sets.
It follows that every Il -set has power < Ny or = 2N° . Since
Borel-sets are éi (Souglin‘s theorem), hence §j, it follows that
every E{-set of reals has cardinality < ¥, or = ZNb (For the

notion Ii, etc,... see chapter II, page 44). For a treatment of

these results see: [78] and:

[§5) A.A.LJAPUNOW: Arbeiten zur deskriptiven Mengenlehre;
V.E.B.~Deutscher Verlag der Wissenschaften, Berlin 1955,

Since it was impossible to exhibit a subset of R of cardinality

strictly between B; and 2R°

(CH) o Lok,

called the "Continuum-Hypothesis", David Hilbert listed this

problem as the first problem in his famous list of unsolved problems

, Cantor conjectured in 1878 that

at the first international congress of Mathematicians in 1900
in Paris, Despite many attempts this problem remained for a long
time unsolved. It was however used freely in proofs since it turned



104

out to be a powerful assertion and also often symplified situations.
W.Sierpifiski deduced a large number of propositions (there called
Cy - C82) from (CH),

[?9] W.SIERPINSKI: Hypoth3se du continu. Warszawa-Lwdw 1934
(2nd edition, New York 19586).

In the lit erature there are many papers in which (CH) or the
generalized continuum~hypothesis (GCH) is discussed and proved
to be equivalent to other statements. W.Sierpifski contributed
many papers concerning the (GCH).

H.Rubin has shown, e.g., that the (GCH) is equivalent in ZF to:
"For all transfinite cardinals p and g, if p éovers g, then for
some v it holds that p = oTn,

(see H.Rubin, Bull. AMS.65(1959)p.282-283). B.Sobocifiski has published
a series of notes on the (GCH) in the Notre Dame Journal of formal
Logic (parts I, II, III. vol. 3 and 4 (1862,63). K.Gddel has

published in 19847 an article in which he gives a survey on results
around the (GCH) and in which he discusses the more philesophic
problem of the "truth" of the (GCH):

[26] X.GODEL: What is Cantor's Continuum Problem? Amer.Math.
Monthly 54(1947)p.515-525, Correcticns vol.55(1948)p.151.

Kurt Godel showed in 1938 that the (GCH) is consistent with
ZF, see chapter II of these lecture notes. Thus the (GCH) cannot
be refuted in ZF. We have presented here a proof, that (AC) cannot
be proved from the ZF-axioms. Since the (GCH) implies the (AC) -
see page 24 ~ it follows, that also the (GCH) is not a theorem
of ZF. Thus (GCH) is neither provable nor refutable in the systenm
ZF. But now the following question arises: if we are willing to
add the (AC) to the axioms of Zermelo-Fraenkel set theory ZF, is
then the continuum-hypothesis (CH) or even the (GCH) derivable?
P.J.Cohen [ 9 1-[12] has shown that the (GCH) is not provable in
ZF + (AC). Hence the truth or the falsity of thc continuum hypothesis
cannot be decided on the basis of the usual axioms of set theory,
including the axiom of choice.

R
Theorem (P.J.Cohen). If ZF is consistent, then ZF + (AC) + 2 ° 2 R,
is consistent too. Thus the continuum hypothesis (CH) is
not a theorem of ZF + (AC).

Proof. Let 3?1 be a countable standard model of ZF + (AC). We shall



105

construct an extension JU of 911,by adding generically so many
new subsets of w, such that 2Ro = Ry is violated in M . We shall
show below that it is sufficient to add B;-in the sense of ML -new
subsets of w to 7“,. Since YYU is countable, hence has only coun-
tably many (in the sense of the meta-language) subsets of w
(though in OrL these sets have cardinality & ®;), there is hope,
that we will find (®; )y = many subsets of w not yet in MWL, since
(xz%n% is countable outside of M .

Define in Oft a ramified language £ which has besides the
usual ZF-symbols, the limited existential quantifiers \/a, the
limited comprehension operators £% (for ordinals a in YL ), the
constants x for x €Y , a further binary predicate symbol a.
Define £ in such a way, sc that the correspondences x ® x, a * bl
and o ”‘\/a are all classes of 3TL {(use c¢.g. the standard trick
presented on p.73%). Define a condition p to be a finite partial
function from w x N, into 2 = {0,1}. Define the forcing relation
I in the usual way (sce page 81-82) containing the following
key-clause:

plhatt,t) ® (In€wi(IyeEXmI(plt, =nbplht =¥
pn,M) = 1).

This means in terms introduced in section A: We take as relational
system (. = (A,R) the very special case A = 1 = {0} and R = §,
and choose a generic copy of (7L in § = @ x ¥, . Thus by choosing
a complete sequence R of conditions and defining the valuation-
function as in section B, our Hauptsatz tells us, that the model
Y1 obtained in this way is a model of ZF which contains 7Ti,as a
submodel and contains a = val(EX x,y) a(x,y)) Cwx R , for
o = w{rc (the superscript MU indicates that the concepts are
understood in the sense of YYL).
By a theorem proved in section C, Yl is also 2 model of (AC), since
we have added tc>§Y1 , a model of ZF + (AC), only one new Cohen-
generic set. Thus it remains to show, that in O the continuum
hypothesis is wrong.

Since N is the ordinal wZYL in ?xTJand ordinals are preserved
by the transition from 7YL to 71,, w?m is an ordinal of Y{ . Thus
if we define for v < d?t = v

ay * {n; n€ w ~ {ny € a}

then a, Cuwand v v, > 2y, * ay, (as in the proof of the preceeding
theorem) and we get
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M =TT Ga YU,

Y is in UYL the second infinite cardinal: vy = ugrb ; We shall show
that cardinals are preserved in the extension, i.e. an ordinal
which is a cardinal in YU is a cardinal in JU and vice versa.
Then it will follow that Yy = d?‘ is also the second infinite car-
dinal in YL : v = J? , and hence 2N° >R, in ¥ as desired. To
this end we need some lemmata.

Lemma 1. If B is in MU a set of conditions such that its elements
are pairwise incompatible, then B is (in ¥YT{) countable.
(VB € cond)B € MU & (Vp1,p2 €B)(p1 #p2 +»p1 Ype & Cond)

g

= 5 < ).

Proof. Cond is the IWl-set of all conditions. Suppose the lemma is
false, and let B be a set of )L, such that pi1,p2 € B * (p1 = p, v
p1 V p2 € Cond) and gnx > w. Define B = {p € B; ; < n}. Since
é?an = B and B is uncountable, there is a number n € ®w such that

Bn is (in M ) uncountable.

There are conditions g € Cond such that {p € B,y g9 S pl is in
ML still uncountable, namely the empty conditicn q = # has this
property. On the other hand the cardinality of all sueh conditions
q is bounded by n, since q € p, Thus we may define m to be the
greatest natural number such that there exists a condition g sueh
that 3 = mand {p € B.s p 2 q} is in YYU uncountable. Let go be such
a-eondition of cardinality m having this property. Now choose in
{p € Bn; P 2 g} any condition p;. Since in B all conditicns are
pairwise incompatible, the elements of {p € B; p D qe!} are also
pairwise incompatible.

Pt1-qo 1is not emptv, since otherwise p1 = qo and pr would be
included in all conditions in {p € B; p 2 qo}, and hence compatible
with them. Thus we can find ({(k,v ,e) € py-qo such that ({k,v) ,1-e}
is contained in (in the sense of 7Yl ) uncountably many conditions
from B* = {p € B s p D go}. This follows, since p; is incompatible
with every p € B*. It follows that {p € B 53 p 2 q Y {{x,v ,1-e }}
is uncountable in the sense of WL and qo V {{{k,v ,1-&)} has
cardinality m+1, a contradiction to the choice of qoymaximal car-
dinality having this property. Thus lemma 1 is proved.“ﬁ%h

Lemma 2: If f is a function in Y[ , such that Dom(f) € N ana
Range(f) & x for some x € UYL, then there exists a funection
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g in YY such that Dom(f) = Dom(g), Range(f) C|J Range(g)
C x, and g(s) is in YU countable for every s € Dom(f).

Proof. Since £ € YU , there is by definition of YL a term te

of the forcing language £ such that f = val(tf). Thus the following
holds in YU (for x,z € M| ):

(*) /\h'/k/\h[(u,v> € te alu,w &ty > v =wl ~Dom(te) = 2 »
Range(f) € x.

Since JL is a generic extension, there is a condition pe in the
complete sequence & (which defines Y ) such that pe forces (*)

-see lemma P in section B, Using weak forcing and lemma A of section
A, this entails:

(**) (Vu,v,w €M) (Vg >podlag FCu,» e tp & q Hlu,w et =

v = wl.
Further, for every u € Dom(f) there is a condition p' in the complete
sequence & such that p' F(u,f(u) ¢ te (this follows since
Cu,fu) ¢ te holds in YU ). Since both pp and p' are in & and &
is totally ordered by C we obtain that pe U p' is a condition.
Hence,defining

gs) = ly; yE€Ex & (dp' > P (p'lE (s,y) € tf}}

for s € z = Dom(f), we obtain that f(s) € g(s). The funection
giz++ x is in M| by lemma I of section A, and Dom(g) = Dom(f) = z
and Range(f) C U Range(g) < x.

We claim that g(s) is countable in WL for s € z. For s € 2
choose in WY for avery y € g(s) a eondition Py 2 po such that
Py s,y € tg. We claim, that {py; y € g(s)} satisfies the
hypothesis of lemma 1. In fact, if yi1, y2 € g(s) and p . U py2 is
- ) py2 ?{»‘(_s_,x;) € te.
But (**) entails y; = ya. Hence p = p._ , since for every

Vi Va2
y € g(s) we have chosen one py. Now lemma 1 yields that {py;y € g(s)}

a condition, then Py, U Py, F(s,y1? ¢ te & P

is countable. This in turn implies, that g(s) is in )Yl countable:

§7577rt< w, quod erat demonstrandum.

Notice, that we could interpolate between Range(f) and x
only a "multivalued" function g, since the whole complete sequence
a is not in MWL, and could thus not be used in order to find the
interpolating function g (if & would be available in ¥l , we could
show YY{ =Yl , hence £ € Y[, but this is contradictory).
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But this defect is not too hcavy since g(s) is for s € z always
countable, as we have shown.

Lemma 3. Cardinals are absolut in the extension from m to % .

Proof. Let & be an ordinal of JU (and hence of m , by lemma T

Preed

gf section B), and let &-n be the cardinal of a in )1 and let
o be the cardinal of a in ML (i.e. the least ordinals equipotent
with ). Since 1 C T ., every function from ordinals B & o onto
o which is in MW is alse in N
n We shall show that also 2 holds.
Let f be a function inﬂ from 8¢ = a‘ﬁ onto §; = oezm't. If
o is finite, then £ € M and 6, = 6, follows trivially. Hence let
us assume that a is infinite. By lemma 2 there exists in JYl a

function g such that Dom(g) = Dom(f) = &, and §; = Range(f) C

Hence a < a

URange(g) C &, (hence =), and s € §, -+ g(s) is countable in Nl . Hence:
;‘-m

= 8; = Range(f) e = DRange{g)m < Dom(g) x mm = Dom(g)m

(since Dom(g) = Dom(f) is infinite and (AC) holds in Nl ).

—— — — - =N
Dom2g5m = Dom(f)(ym = aom = (a%)m =« .
Hence a = Em and the lemma is proved.

The lemma implies that in particular — the notion of being
®, (the second infinite cardinal) is absolute in the extension from
YL to YU . Thus the continuum has in JU power > R,. This proves
the theorem.

Theorem (P.J.Cohen). If ZF is consistent, then so is ZF + (AC) +
(GCH) + V ¥ L. Thus the axiom of constructibility is not
provable in ZF + (GCH) + (AC).

Proof. Let M be a countable standard model of ZF + V = L and let
Il be the model obtained by adding to ML one Cohen-generic real a,
YU = 9llal. Then V # L holds in Y], since the class of construc~
tible sets of ¥l depends only on the class of ordinals which are
in Y . But W1 and 1 have the same ordinals, hence M is in N
the class of constructible scts. Since a €M , we infer that a is
not constructible in ¥l . On the other hand (AC) holds in M by the
first theorem of ection C. Further the (GCH) helds in Yl since a

a Cw, and V = L(a) holds in m . To see this, use the correspon-
ding proof of L F (GCH) in chapter II, C"e"&'
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The continuum hypothesis can be violated in generic extensions
in various ways. R.M.Solovay has extended the result of Cohen and
has shown that 2 can be anything it ought to be. The only values
excluded for 2 ° are th.ose excluded by Kdnig's theorem, which
asserts that 2R° is of cofinality greater than ¥o.

{81] R.M.SOLOVAY: M can be anything it ought to be; In: The Theory
of Models, 1963 Symposium at Berkely; North Holland Publ.
Comp. Amsterdam 1965, p.u35.

Theorem (Solovay [61]): Let R, be an infinite éardinal in the
eountable standard model WU with B, < cf(8,). Then there
is an extension JU of YU such that the ordinals (eardinals)
of YU are precisely the ordinals (cardinals, resp.) of e

and 2N° = Na in YU .

Ro_ N

The (GCH) can also be viclated in various other forms. E.g. 2 1

for ordinals o < y and 287 #* NY+1 (Solovay {811, Derrick- Drake,
H.Schwarz et al.), thus answering a problem of Hajnal (Zeitschr.math.
Logik u.Gr.Math.vol.2(1956)p.131-136). For a proof of this result )
see e.g. Jensen [#0]p.68~74, the thesis of Sehwarz (cited on p.76)
and the article of Derrick-Drake in the same volume as Jensen [40].
Solovay has furthermore shown that there are generic extensions

in which 2 =B, is consistent where i <n; and no €m < ... < ny
i

(k € w) is any seduence of natural numbers. W.B.Easton has extended
this result. By means of foreing with a proper class of conditions
he constructs a Cohen-generic extension Y[, of a-eountable standard
model V| of NBG-set theory (with global choiee) in which:

o - . .
2% = xG(a) for every regular cardinal 8  holds,

where 6 is any function in )H, from ordinals to ordinals satisfying
the following twc requirements: (1) o < B implies G(a) < G(B) and

(2) Re(a}
This result is contained in Easton's thesis (Princeton 1964),

is not cofinal with any cardinal less than or equal to Na‘

published partly in:

[14] :W.B.EASTON: Powers of regular cardinals. Annals of math. Logic,
vol.1l (1970),

J.R.,Shoenfield has developed a method for obtaining generic exten-
sions of countable standard models of ZF without using ramified

languages. Dana Scott told us, that Shoenfield's approach is equi-
valent with the Boolean-valued model approach (see the forthcoming
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article of Scott-Solovay in the UCLA~set theory Symposium proceed=
ings, vol.2).
Shoenfield presents the result of Easton in his article:

[%%] J.R.SHOENFIELD: Unramified Forcing; Proceedings of the 1967~
set theory symposium at UCLA, to appear in the AMS-publi~
cations.

E) THE INDEPENDENCE OT THE (BPI) FROM THE ORDERING - THEQOREM

We consider the following statement:

(BPI) Boolean Prime Ideal Theorem: Every Boolean algebra has a prime
ideal.

A Boolean algebra B is a distributive, complemented lattice B =
(B, ,m, -~ ), where x &4 y is the join of x and y, x 1 y the
meet, and -x the complement of x. B can be partially ordered by
defining x €y ® x W y = y. Then x W z is the least upper bound
for x and z in B, and x M y is the greatest lower bound for x and
y. The maximal element in B is denoted by 1B and the minimal element
by OB' An ideal I in B is a subset of B satisfying the following
three conditions:

(i) Og €1,

(ii) x €I ~yS€x+y €I,

(i) x €I ~y €I +x 3 v €I,

A prime ideal is an ideal with the additional property:

(iv) x €1 # (~-x) € 1.

In a Boolean algebra the prime ideals ere just the maximal proper
ideals.

The Boclean Prime ideal theorem (BPI) has a considerable number
of equivalent forms in several branches of mathematics and in logic,
although by far not as many as the axiom of choice (AC). The (BPI)
is thus an interesting and natural principle of set theory.

Lemma. The following statements are all equivalent (in ZF) with the
Boolean-Prime-Ideal theorem (BPI):
(a) The Stone representation theorem: Every Boolean algebra

B is isomorphic to a field of sets.
(b) The Tychonoff-theorem for T;-spaces: The product of com-

pact Hausdorff-spaces is compact in the product topology.
(c) In every commutative ring with unit, every proper ideal

iz included in some prime ideal.
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(d) The Stone-lech compactification theorem.
(e) Alaoglu's theorem: The unit sphere of the adjoint of a

Banach-space is a compact Hausdorff space.
(f) In evary Boolean algebra, there exists a 2-valued measure.

(g) The principle of consistent choices.

st

(h) The completeness theorem for 1° --order languages: Let I

be a set of 1St—0rder sentences with arbitrary many non-
logical constants. If I is consistent, then it has a model.
(i) The compactness theorem for 15t-order languages: Let I

be as in (h). If every finite subset of I has a model,
then I has a model.

For a proof see the following papers: 4fos-Ryll Nardzewski: Fund.
Math. 38 (1851) and Fund. Math. vol. 41 (1954); D.Scott: Bull.AMS
60 (1854) p, 390, L.Henkin: Bull.AMS. 80 (1954) p. 3903

H.Rubin - D.Scott: Bull. AMS. 60 (135L) p-389: R.Sikorski:
Boolean Algebras (Springer-Verlag Berlin 1964), Appendix.

We are interested here in one of the consequences of the (BPI),
namely the ordering principle:
(OP) Every set x can be totally ordered.
We shall use the notions "totally ordered" and "linearly ordered "

synonymously (i.e. equivalently). A somehow stronger principle is
the following:

(OE) Order-Extension-FPrinciple: If x is a set and r a partial ordering

on x, then there exists a linear ordering t en x such that r C t.

The (OE) has been discovered by Banach, Kuratowski and Tarski (see:
W.Sierpifiski: Zarys terii mnogosci, Warszawa 1928, p. 158). The

first proof which appeared in print is due to E.Marczewski (Szpilrajn)
(Fund. Math. 16 (1930) p. 386-389). Marczewski used the lemma of
Zorn-Kuratowski in order to deduce (0OE). Los, Ryll-Nardzewski and
L.Henkin observed, that (L) is already a consequenee of the (BPI)
(proof either via the compactness theorem, or directly using the
ultrafilter theorem). Thus we have:

ZF F (AC) + (BPI) = (OE) + (OP).

We are interested in the problem, whether the converses of these
implications also hold. It is not known, whether (0OE) #+ (BPI) is
provable in ZF or not. In this section we shall present a result

of Adrian R.Mathias, which says, that (OP) + {(0E) is not a thecrem

of ZF. In the next section we shall present the procf of J.D.Halpern-
A.Lévy, that (BPI) does not imply the axiom of choice (AC).
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Preparatory remarks. Mostowski has constructed in his paper [641

a model‘zvt containing urelements (atoms) in which the ordering
principle (OP) holds while (AC) fails in it. Mostowski takes a
countable set of atoms linearly' ordered of type ne (i.e. the order
type of the rationals). A set is called symmetric iff it is mapped
onto itself by some finite-support subgroup of G, the group of all
order-preserving mappings from ne onto Ne. A set x is in the model
UICiff x is hereditarily symmetric. The proof that (OP) holds in
?Bi,is based on the fact, that every set x of"?{ has a unique
minimal support, supp(x), where supp(x) is a finite subset of ne
(the set of atoms). The correspondence x * supp(x) is in WTL and
hence the lexicographic ordering of supp(y) for y € x together with
wellorderings of the sets K, = {y € x; supp(y) = e} can be used to
obtain a (symmetric) totalordering of x.

This idea can be carried over to Cohen-generic extensions. The
rdle which was played by the urelements in Mostowski's model ?31,
will be played by generic reals in t+he Cohen-extension. However,
instead of adding a generic copy of no (the rationals) to some
c¢ountable standard model QYZ of ZF + V = L (in this case we would
not know, how to destroy (OE) in the extension 31/) we shall add a
generic copy of a certain partially ordered set (I,%)+to 911.

If {I,<)has sufficiently enough automorphisms, then the generic
¢opy of (I,€)will not have in the extension ?L a total ordering.
which extends € (the symmetry-lemma will be used here).

What are the properties, {I,<)has to fulrfill, so that in the
extension :yz,'the ordering principle (OP) remains true. The typical
property of ne, which was used by Mostowski in [6%] in order to
prove the existence of a unique, minimal, finite support of every
set x of his model YFL (the supports are sets of urelements!) was
the homogeneous ordering of Ne . We shall show, that, if we require
that {I,€})is a countable, homogeneous, No-universal partially
ordered set in WL, and 371,#:ZF + V = L, then in Y] (the extension
of WL ) every set x = val(E®x®(x)) has a unique, minimal, finite
support supp(x), such that the correspondence x " supp(x) is
3%,-definab1e. The verification of (0P) in J| is then standard.
We need here, that ?YL is a model of V = L for two reasons, first
in order to establish (using a2 theorem of B.Jénsson) that there are
in Ml homogeneous, universal partially ordered sets, and second
in order to ensure that X = {x; supp(x) € e}, e a finite subsect
of I, has a definable wellordering in ¥l . Finally let us notice



113

that, in contrast to Mostowski's permutation model 3§L, the fact,
that we have chosen a partially ordered set (I.<)and not a line-
arly ordered set (like Mostowski's me) will not cause any troubles
when we want to linear order lexicographically the supports, since
the generic sets a; (for i € I) are subsets of w and {ai; i € 1}
has thus in Y| a definable ordering (namely the ordering of the
real-line).

Having clarified the basic ideas behind the construction of
a model YU, of ZF + (OP) + 71 (OE) + 71 (BPI), we start to present the
details of the proof. First we define the notion of a homogeneous,
universal relational system. The notion is a generalization of
Hausdorff's notion of an ng-set. For more information we refer our
reader to the following publications:

{#1] B.JONSSON: Homogeneous universal relational systems; Math. Secand.
vol.8 (1960) p. 137-1u2,

{3} J.L.BELL - A.B.SLOMSON: Models and Ultraproducts; North-Holland
publ. Comp. Amsterdam 1969. {(chapter 10).

Definition. The type T of a relational system Ul = <A*Ri)4€; where

n;_f
of natural numbers such that for 0 € i < -1 the relation

 is a finite ordinal) is a sequence (mno,ni,...

Ri 1s n;=ary.

Definition. The relational system & = (B,Si)iec is a subsystem of
M = (AR (e, iff BC A and §; = R; O B"L (restriction
of R, to B).

Definition. Let ¥ be a class of relational systems all of the same

type 1., A system Ol is H~homogeneous, iff the follo-

wing holds:

(1) N ex

(2) If % = <B’Si>i€;’ L e X, ?nd %f % is a subsystem of
0= <A,Ri>iez such that B < A, and if ¢ is an iso-

morphism of & into (¥, then ¢ can be extended to an

automorphism of (L.

Definition. Let # be a clgss of relational syetems all of the same
type and let o be an ordinal, A system QL € ¥ is called

(By ,¥)-universal iff every system ¥ = (B,S) sueh

i€’
that B < B , is isomorphic to a subsystem of (1, and A
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has itself cardinality Ry.

Bjarni Jénsson has proved in [#1] under the assupmtion of the
(6CH), that under certain conditions on ¥ and B  there are (R,,¥)-
universal, homogeneous relational systems. It follows in particular
that there are countable No-universal, homogeneous partially
ordered sets (here ¥ is the class of all partially ordered sets).

Theorem (A.R.D.Mathias): Let 1l be a countable, standard model of
ZF + V = L; then 7YL can be extended to a countable standard
model YL of ZF + (OP) + 71 (OE). Thus the orderextension
principle (OE) and a fortiori the Becolean prime ideal
theorem (BPI) is independent from the ordering principle
(OP) in the system ZF.

This result is contained in

[S8] A.R.D.MATHIAS: The Order Extension Principle; Proceedings of
the 1967-set theory symposium at UCLA. To appear.

Proof. By the theorem of B,Jénsson [#4] there exists in WU a
countable, ®o-universzl, homogeneous parially ordered set (I,<)

. We shall extend YU by adding to JTL a generic copy of (I,<).
We emphasize that if we write 1 € j then i €3 and i # j. Thus <
is irreflexive, while & is reflexive: 1 € J ¢ (i < j v i = j).

We construct in M| a remified language £ with ihe usual limited
quantifiers \/a and limited comprehension operators % (for ordinals
a in W), the ZF-symbols, constants x for ecach set x of YL , indivi-
dual constants éi for each i € I and two further constants A and < .
The wellformed formulae and limited comprehension terms are defined
as usual, with the restriction that if A or < ceccurs in the L-formula
¢ then E®x®(x) is a limited comprehension term only if o > w + 1.

A condition p is a finite partial function from w X I into
2 = {0,1}. Define the (strong) forcing relation I as in section A
of this chapter. In our present case clause (3) reads:

pltea, ®(3n€wplhn=tsplnDd)=1)
where t is any constant term of £. Clause (7) reads:

pﬂ-teA»(Siezxle:éi)

2
o e
o

Plt, <t; ©(Ji, € )(Ti, € ID(ig <iy & p bt
p It

iy

e

R
~—r

iz
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Let again IF denote the weak forcing relation. It follows

. . *. o e

(1) i1 < iz = g} a; L aj,»

) (Vienw@lFa, i
Obtain a complete sequence & of conditions and thereby a valuation
valg(t) of the constant terms t of £, which defines the model YU .
Write a, = val(éi), A = val(d), 9 = val(< ), then a; Cw,

A ={ai;i € I} and Y is an irreflexive parial ordering (in O )
of A. By our Hauptsatz, 31, is a model of ZF. All what remains to
show is, that the ordering principle (OP) holds in YL while (OE)
fails in YU . To this end we need the following restriction lemma
and the symmetry - lemma which we have proved in its full generality
in section C (sece page 99), so that it is available in the present
situation.

Regtriction lemma: Suppose that p & and let occ(d) be the finite

set of elements of I such that i € occ(®) iff éi occurs
in &. Further let p/occ(®) = {{{n,i) ,e ) € p;i € oce(d)},
then p/occ(®) IF&.
Proof. Define cq = occ(®), d = {i € I ;\%e w \é e 2((n,i),e ) €Ep ~
i€ CQ}, and q = p/occ(®). Suppose ~ q I=*®. Then by lemma A (i) (see
section A) there exists an extension q' of g such that q' 71 ¢. q'
mentions names of reals in co, and also others, say those in the
finite set ¢; :

a = {i€ I3\£€ " \/e e ,(&n,D,e) €q' i€ o))

By defintion ¢ Nd = ¢ Mey = #. By the univerality of (I,<) we
can find a subset cy of T, such that {tp U d,<) and (¢ V o ,S)
are isomorphic, ci1M (ce Y d4) = #. and there exists an isomorphism

™ which is identical on co. By the homogeneity of (I,<), T can be
extended to an automorphism o of {I,€). Hence: 0(i) = i for i € co
and 0(3j) € ¢, for j € cy. By the symmetry lemma, q'lF"1 ¢ implies
0(q") Ik o( TW). But 0 is the identity on co = occ(?), hence 0(%) = &,
and we obtain o(q') |71 &. By construction of o, the domain of the
functions p and 0(g’') coincides only on a (finite subset of w X Co,
where both have the same values, since q € p and g € q', q € g{g").
Hence p U 0(g') is a function and therefore a condition. By the
first extension lemma (see section A): p U o(gq') |71 ¢. On the other
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hand p Ik & entails also p U o(q') I &, a contradiction to the con-
sistency - lemma (see section A). This proves q o, q.e.d.

Lemma: The Orderextension Principle (OE) does not hold in YU . In
particular V = val(< ) cannot be extended in YL to a total
ordering of A = val(A).

Proof. Suppose V can be extended in YU to a linear ordering of A.
Let R be such an orderextension of V. By the definition of T there
exists a limited conprehension term t = E%x®(x) of £ such that R =
val(t). Let ¥(t) be the L-sentence "t is a tctalordering of A exten-
ding < m Let ¢ = occ(t) be the set of indices i € I such that éi
occurs in t. Hence ¢ = occ(¥(t)). Let S(e) = {i € I; \/jEC (i €3V
j < i)} be the "shadow of ¢ in {(I,S€)".

By the universality of (I,€) we may embed the following partially
ordered set into I-S(e):

L o, o, . o,

1 12 13 14 1s

[all elements are pairwise incomparable, only ia

is smaller than isl.

Since R = val(t) is a linear ordering of A in, it holds in er that
. . . R o . . €
{all,alz,als} are ordered by R. Assume e.g. that (al‘,alz> R,.
(ai2°ai3) € R, Hence ve héve obtained six generic terms ail,...,ai6
such that: (i) 8 Fa; <a,
4 16
i i *WE, <A, 2. < a.
(ii) 8 W—T(aim alk\/ aik alm)
for m,k = 1,2,...6 with {(m,k ) # (4,6,
* . . . . - .
iii) @ Na, <a. Vva, <a: )
( =) i 3 3 in
form= 1,2,...,6 and J€ ¢ = occ(t)

(ivy JL Flaj hag) € R alag ,a;) €R.

Since everything which holds in Y|, must be forced (strongly or
weakly) by some condition in the correspanding complete sequence &,
we cbtain, that there is a condition p in f such that

" . . . .
p IHY(t) - <ail ,ai2) e t A (ai2 »as

By the restriction lemma, we may assume that p contains finitely

) e t
3

many ordered pairs «n,i) ,e ) (with n € w, e € 2) only with i€occ(t)

U {i,,1i,,i3} . Define
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p1 (oce(t) , iy ,i2) = p/occ(t) U {i;,i.1}

p2 (oce(t) ;12,15 = p/occ(t) U {i;,1is3}.

Then by the restriction lemma:

(+) p1locelt),iy,iz) F¥(t) ~ (ai;’éiz> € t

(++) raloce(t),ia,is) F¥(t) - ‘éi,’éi,’ e t.

Now define mappings T3 and T2 on occ(t) V {i{,i2,i6,3is} and on
occ(t) YV {i,,is,is ,i5}, respectively, by:

Ty 2 iy ®ig, iz ™ ig, Ty identical on occ(t),

T, iz ™ is, is » is, T, identical on occ(t);

Hence T, maps (occ(t) U {i,,i,},€) isomorphically on ¢occ(t) VU{is,
i6},<) and similar T, maps {occ(t) V {i,,i3},€) isomorphically on
{oce(t) U {i4,is},€). By the homogeneity of (I,<), 1; and T2 can
by extended to automorphisms 0y and 0; ,respectively, of (I,<),
Using 03 we obtain from (+) by the symmetry-lemma:

(0) a1 = p1(ocelt),ig,is) F¥(t) ~ <éi6,éis> et
and using o2 from (++):
(00)  qz = p2loca(t),is,is) E¥(t) ~ Ca; ,a;) €t

(notice, that the symmetry-lemma alsc holds with respect to weak for-

h . » ~ . . M )’ h .
cing ). Since q1 Y q2 is a condition and 8 Hfaid < a;, we obtain:

U * ~ A, <a. 3. . 1. L.
Q qs I Y(t) 25, a;, A<au’au> et A(al’,ah) €t

But t extends < , h?nce <&i4’éi¢> £ t. But ¥(t) says, that t is a
linear ordering on A, a contradiction! since what we have shown is
the following: p is in &, the complete sequence, which defines .
Define R* to be the sequence starting with p/occ(t), having p as its
second element, and containing then all conditions q of & which
extend p. Then ®" defines obviously the same model YL . Since
p/oec(t)&jW(t) we infer that every complete sequence & starting with
P/occ(t) must force ¥(t), and ¥(t) has to hold, hence alsc in the
model Y o defined by some complete sequence ® which starts with
p/oéc(t) and has q1 Y q2 as second element. But we have just shown,;
that i? this model valab(t) c§nnot define a total ordering on
valao(A) which extends va180(< ). In this way we have thus obtained
a contradiction. This proves the lemma.

Next we want to prove, that in 97, every set can be totally
ordered. The idea behind the proof is the following. It can happen
that for different £-formula ®:1{x) and & {x) we have that
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val(E%x®; (x))2 val(E%x®, (x)) where occ(®1) # occ(®:). We want to
show that for every x in YU there is a £-formula ¥(x) such that
u = val(E%x¥(x)) and

oce(¥) S.r\{occ(@); u = val(E%xe(x))}.
Then it follows, that every set u of YU is the valuation of a
limited comprehension term E%x¥(x) with minimal set occ(¥), called
the support of u. We then have to show, that the correspondence
u * support of u is definable in YL . Then the rest of the proof
that (OP) holds in YL is standard.
Notation: If t = E®x®(x) is a limited comprehension term and occ(®) =
¢, then we shall write t £ t(c¢) in order to indicate that t mentions
reals éi if and only if i € c.

Lemma. Let t(c,d;) and t'(c,dy ) be limited comprehension terms men-
tioning cnly reals éi for 1 € ¢c U dy, i € ¢ U dy respectively

where c,d, ,d; are finite disjoint subsets of I. Suppose that

T Ete,a) = t'c,d),
then there is a limited comprehension term t" # t"(c)
mentioning reals éi for i € ¢ such that

NEte,d) = t"e).

Proof. All what holds in Y[, is forced by some p in the complete
sequence . Hence there exists a condition p € & such that

p Ft(c,dy) = t'(c,dy).

By the restriction lemma we may assume that {{n,i} ,e} € p implies
i€ cVd Ud,.

[ more precisely, the restricted condition p/c Ug, YUag, - PO need
not to be in &, a priori, but the sequence % which starts with po,
has p as its second element and contains then all conditions gq of
® which extend p defines obviously the same model JU . Thus we may
assume, that we have already chosen & as the sequence which
defines J01.

Define py = pele) = p/c, P1 = p1(ds) = P/d, and pz = p2(dz) =P/d2.
Hence po U py U pp I tlc,d;) = t'(c,dy). A limited comprehension
term t"(c) will be found for which py U p, U D3W:t(c,d1) = t"(e).
It will be enough to consider the case when d: contains only cne
element, say i,. The general case follows by induction. .

We shall write 1 #/ y for i €3 Vv j €£1i) and similariy x ¥ vy
for the L-formula Ux < vV y <xvx= ).
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Let i,,i;,13; be elements of I, but not in c U d; U {ig},
such that i, < i, < i3y ~ i, f i, and such that for v = 1,2,3 there
are automorphisms 1; .153,7ts of (I,<) with av(io} = iv and
i€ cud -+ rv(i) = i. Then by the symmetry~-lemma (for v =
1,2,3):

Po () U py(d) U p, (i) Ftlc,dy) = t'(c,iy)
where 1,{(py (1)) = pz(iv) for notational simplicity. This together
with po(e) U py(d) U py(ig) IFtle,dy) = t'(c,ip) implies (using
the westriction lemma):

(*) Polc) U py(ip) U pa(iy) Pt (c,ip) = t'(e,1,)

for v = 1,2,3. We introduce the following notations. For a condi-
ticn g define Cq ("the content of q") to be the following £-sentence:

/QQ\{E € éj; “n,P ,1) € g} nAx&{ TOme éj; {m,3) ,0 ) € q},

where Ax\ denotes conjunction, Let Cq(%/x) be the result of replacing
the generic constant éﬁ in Cq by the variable x.

For a finite subset s of I let D, be the diagram of ({aj;jes},< )
.e

2M\{a, <a. 5 35, <42 ~ 31,92 € 8} A A, < oa.
a M\{a]l a:“) J1 J2 J1 972 s} /X\{ 1 3 ajz’
J1,32 € s Au]j] <jz}.

R

Let DS(%/X} be the result of replacing the constant éj in Ds by the
variable x. We now claim that the following continuity-property holds:
(**) po(e) UpaCio) KA Ix e &~ %0~ by (P >
t'{e,ig) = t'(c,2001,
where t'(c,x) results from t'{c,is) by replacing éio in t' by x.
Let k be a limited comprehension term. We have to show that, if
q is any.extension of polc) U py(ip) and q Fk ¢ AnacC 2(17&) A
DcU{io}(l?ﬁ)’ then there is a q' D q with q'Ft'(c,ie) = t'(c,k).
Assume that k and g are given such that the just mentioned
hypothesis is fullfilled. Since in particular q F'k € A we know by
the definition of forcing, that there exists a q' 2 q and a § € I
such that q'v* k = éj’ Pick v = 1,2 or 3, s~ that ({is,3},<? and
{ io,iv},< ) are isomorphic. We claim that there is an automorphism
T of (I,<) so that for this choice of v, T maps (e U {is,i,},<)
isomorphically on (¢ U {i;,3},€) in such a way that T restricted
to ¢ U {is} is the identical mapping.

In fact, since q' extends q the first extension lemma (see
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page 82) yields:
q’ Hx = é] ~ sz(l"/j) ~ Dcu{io}(i%):

which means in particular, that q' (weakly) forces that ¢ U {i}
and ¢ YV {j} are isomorphic. Since already % W:Dcu{io}(l9ﬁ) (obvious-
ly) we obtain that in fact (c VU {io},€) and {c U {j}.,€) are
isomorphic such that there is an isomorphism 0; leaving ¢ pointwise
fixed. But by the choice of v there is alsc an isomorphism o, from
{c U {i,},€) onto {c U {is},<) leaving c pointwise fixed. Hence
To = 0102 is an isomorphism from (¢ U {i },<) onto {c VU {j},<)
leaving c¢ pointwise fixed. It follows that {c U {is,3},€) can be
mapped isomorphically on (¢ U {is,i},<) so that ¢ Y {is} is 1left
pointwise fixcd: Let T be such an isomorphism.
Since q! W3€p2(1?3) it must hold that p:(j) =o,(p2(ia)) C q’.
Hence

Polc) U pa(io) VY pa(i) _C_ q'
and applying T to (*) the symmetry lemma and the 15t extension lemma
entail:

Q' Ft'(c,ig) = t'(c,i).
Since q' Fk = éj, this gives us q° Wft'(c,io) = t'(c,k) as desired
and (**) is proved.

The limited comprehension term t"(c) can now be constructed.
Suppose that t'(c,ie) is anQ(y) where ¢ is a formula of £ containing
the constants éio and éi for i € c. Let ¢*(x,y) be the L-formula
obtained from ¢(y) by rcplacing éio by the variable x (at all places
of occurrence) - it is assumed, that x does not occur in $(y).

Then define ) .
t¥(c) = an(\/x{x € A A sz(l?;) - Dcu{io}(lﬂk) ~ ¥ (x,y01).

By (**), pelc) U py(ie) Ft'(c,io) = t"(c). Since pole) U py(ig) <
p € & and everything forced by p is true in Yl , the lemma is proved.

Lemma: The ordering principle (OP) holds in NI

Proef. Set up in Il a ramified language £* with a name a* for each
a € A, names A* (for A), V* (for ¢ = val(< }), names x* for each

x € WU, limited quantifiers \/a’ limited comprehension operators
E® (for all ordinals o of JU ) and the usual ZF-symbols. Do this

in a way so that {(a,a* ); a € A} is a set of YL and {(a,\JQ 3

a € o’ } and {€a,E"; o € 0n"™ } are classes of YU . Notice,
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that we assume here that le is 71,—definable ~-this assumption can
be made by the remarks of page 96-97. Notice furthermore that we
could not use symbols like a; for i € T as names for the elements

of A since the correspondence i »*ai (i € I) is not in IL  (for

each i € I we added a generic real a; = val(éi) to Wl , but we did
not add the correspondence {<i,éi); i € I} generically to WY0L).
Define an interpretation Q* for the constant terms of £* inductively

by setting:
Q*(a*) = a for each a € A,
Q*(a*) = A
Q*(¥*) = V , and
2*{x*) = x for each x € 7?1,

and then extending to all limited comprehension terms of £*, so
that @* is YU -definable. Now define supp*(u), for u € I , as the
finite subset, call it 4, of A of minimal cardinality such that
there is a term t*{(d) of £* mentioning only the names a* for a € 4
with @*(t*(d)) = u. Read supp*(u) as: the support of u. By the
previous lemma, supp* is always well defined. Notice, that there
is a clear one-to-one-correspondence * between constant terms t of
£ and terms t* of £* so that Q*(t*) = val(¥). Purther, supp* is
JU -definable. For each finite subset d of A let

Vg = {(x € YU; supp*(x) = 4}

Each class Vd has an 37,—definable wellordering: the symbols from
the alphabet of £*used to construct constant terms t* with
supp*(R*(t*)) = d have an Y| -definable wellordering and thus the
eonstant terms t* of £* with supp*(Q*(t*)) = d have an U ldefinable
wellordering (e.g. the lexicographic ordering as modified by Gddel
[{258]1p.36). Using the interpretation £* one obtains an induced well-
ordering of Vd' Each d is a finite subset of A, which is linearly
ordered, being a subset of the real line. The set of finite subsets
d of A can be linearly ordered e.g. by the usual lexicographic
method. [ For more details see the proof of the theorem on page 97-98}.

Hence let Lex be the lexicographic ordering of finite subsets
of A and for each finite subset d of A let Wa be the wellordering
of Vd' Now if u is any set of YU, then

{{x1,%27 5 %x1,%2 € u ~ [{supp*(x;),supp*(x2)) € Lex v

v (supp*(x1) = d = supp®(xa) ~ (%1 ,x? € WL

is a linear ordering of u. This proves the lemma and hence the theorem
of A.R.D. Mathias is proved.
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Let (ACwo) (in the notation of A.Lévy [39]p.223) be the following
consequence of the usual axiom of choice:

(ACWO): /\x[/\y(y € x+y FP ~y can be wellordered) +

f(Fnc(f) ~ Dom(f) = x ~ /\ yexf(y) € yl.

Theorem (A.R.D. Mathias): If ZF is consistent, then ZF + (OP) + (ACWO)
+ 71 (AC) is consistent too. Thus the Axiom of choice (AC) is

independent from (Acwo) + Ordering principle (OP) in ZF.

Proof ([58)): Take the model YU constructed above. A set z is in

JU wellorderable iff there is a finite subset d of A such that for

all y, if y € z, then supp*(y) € d. Hence, if z is wellorderable in

YU , then the D1,-definable linear-ordering turans out to be a well-

ordering. Thus, if x is a set o well-orderable sets, then there is

a function f in U which assigns to each z € x a wellordering. Hence
(AC, ) holds in IT. As it

was shown in preceeding lemmata, (OP) and 71 (AC) are true in TU .

This proves the theoren.

F) THE KINNA-WAGNER CHOICE PRINCIPLE

An interesting weakened version of the axiom of choice has been

considered by W.Kinna and K.Wagner in their paper:

{44] W.KINNA-K.WAGNER: Ueber eine Abschwichung des Auswahlpoctulates;
Fund. Math. 42(1955)p.75-82.

In contrast to the usual (AC) where the choice function selects one
element, the functions considered by Kinna-Wagner select non-empty,

but proper subsets:

(KW-AC): The Kinna-Wagner choice principle: If x is a set all of

whose elements have at least two elements, then there

exists a function f, defined on x, such that for all y € x,
g #F £(y) Gv.
/\x[ Ay(y Ex»2<y)> \/f(Fnc(f) ~ Dom(f) = x A /\yex(m * f(y) Cy
~y F I(yIN].

Obviously (KW-AC) is a consequence of (AC). W.Kinna and K.Wagner
have shown, that (KW-AC) implies the ordering principle (OP)

"Every set can be totally ordered":
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Lemma (Kinna-Wagnerf44]): ZF |- (KW-AC) + (OP).

Sketch of Proof. Let M be a given set and let f be a function,
defined on P(M), the power set of M, such that # # f(y) # vy,

f(y) C y whenever y € P(M) and y contains at least two elements.
Following the r\-ﬁethod of Zermelo's second proof for (AC) +"Well-
ordering-theorem" (sce: Math. Amm. 65 (1908)p.107-128) one starts
the proof with the following definition:

Let F be the least family of subsets of M satisfying:

(1) MeF,

(2) (XEF ~2<%x)» (£(x) €F ~x - £(x) € F),

(3) tcF+()terF.
Define an element e of F to be normal iff the following holds:

/\xGF[e Cxres#x+>eCflx)vecCx-flxl].

There are normal elements in F, e.g. M is normal. Fer e normal,
define:

g, * {x €EF; xNe = B Vixne#8 > (e Cx vxCf(e)VxCe-fle)]}.

One proves that'ge satisfies the conditions (1), (2), (3) and is
therefore (by the minimality of F) equal to F. This shows that if

e is normal, then

(+) /\XGF[X Ne=P Vixne#B AfleCxvxcfle)vxcCe=fle)]))

holds. Now, let N be the set of normal elemernts of F, then N satis-
fies conditions (1), (2), (3) and thus N = F by the minimality of F.
This shows that every element of F is normal. Intuitively this
means the following: by means of an iterated application of f to M,
then to f(M) and M-f(M), then to f(£f(M)), f(M)-Ff(f(M)), £{M-£(M)),
(M-f(M)) - £(M-f(M)), etc.... one obtains by transfinite induction
the following binary tree:

level 0

level 1

£CE(M)) fM-£CEM)) f(M-£(M)) M-£(M))-£(M-£(M)) 1lev.?2

/ /\ ‘
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where at each point x the tree splits into two branches, if x > 2,
where f(x) is the successor of x at the left branch and x - £(x)
the successor of x on the right branch. The information, that
every element is normal means that if e € T and x € T, then

either e and x are on different branches, or, if there is a branch
going through x and e then either the level of x is smaller than
the level of e (case: e € x) or x appears on the branch after

one of the two successors of e. With this in mind, it is not
difficult {o prove, that the binary relation p, defined on M by:

PPQeDE f(N1ix € F; p.ga € x} v q & f(N{x € F; p,qg € x}1).

is a linear ordering of M. This proves the lemma.

The proof shows, that a binary, wellfounded tree can be
embedded intn P(M), the powerset of M, such that the image forms
a chain C in P(M). The trece itself is equipotent with some ordinal
o, hence P(M) = &. On the other hand, if D(C) is the Dedekind
completion of C, then D(C) is a maximal chain in P(M), linking %

and M. Hence M < 2%, This proves the following:

Theorem (Kinna-Wagner {441) In ZF the statement (KW-AC) is equivalent
to the statement:
(KW-0): For every set M there is an ordinal o such that
there exists a one-to-one function mapping M into P(a), the

powerset of a.

(KW-0} is a strong form cof the Ordering-principle, since it asserts
that every set M has a linear ordering p which is a subset of the
canonical ordering & on P(a), for some ordinal o,defined by x Sy #
Min{(x U y) - (x N y)} € y. Since ZF } (AC) + (KW=AC) # (KW-0) =+ (OP)
we ask, whether the first or the last arrow can be reversed. It is
known, that both cannot be reversed. J.D.Halpern and A.L&vy have
first shown, that (AC) does not follow from (KW-AC) in ZF (see [35],
and:

[3%] J.D.HALPERN-A.LEVY: the Ordering Theorem does not imply the
axiom of choice; Notices of the amer. Math. Scc. 11
(January 1964)p.56.

The problem, whether (OP) - (KW-0) can be proved in ZF remained for
some years open, though Mostowki has shown already in 1958, that
in ZF® (id est ZF but without the axiom of foundation) (OP) does
not imply (KW-0), see:
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[67] A,MOSTOWSKI: On a problem of W.Kinna and K.Wagner; Coll. Math.
vol,.6(1958)p.207~-208.

The independence of (XW-0) from (0OP) in ZF® follows more directly
already from the fact, that (PW) holds in every Fraenkel-Mostowski=-
Specker model {(see p.62), hence in particular in Mostowski's model
of [64) in which (0OP) holds, while (AC) fails. If (XW-0) would hold
there, then (AC) would also hold. In 1989 y.Felgner has shown, that
also in full ZF, (XW-0) is independent from (OP).

[18] U.FELGNER: Das Ordnungstheorem impliziert nicht das Kinna-Wag-
nersche Auswahlprinzip. To appear.

Here we shall sketch the proofs for both results. But,in order to
prove that (AC) is independent fror (KW-AC) we shall not use the
model QTT,{ao,a,,...,A} (an generic reals for n € gy, A = {an;n € w})
which was used originally by Halpern and Lévy (for a more detailed
description of this model, see sections C and G). We shall use the
model of Mathias,described in section E, since this will give us the
additional information, that (KW-AC) does not imply the order-exten-
sion principle (OE).

Theorem. The choice principle (XW-AC) of Kinna and Wagner holds in
the model of Mathias. Hence, if ZF is consistent, then
(KW-AC) does pot imply the orderextension principle (OE),
though (KW-AC) implies the ordering principle (0OP).

Procof. We have shown in section E, that Mathias' model U has the
following features: for every set u of ¥ , the following relation
is a linear ordering of u:

{{%,5X,) 3 X1 9%, € U A [{(supp®(X,),supp*(x; V€ Lex w(supp*(x) =
= supp*(x,) = 4 ~ (X, ,X,) € Wd)}}

Here Lex was the lexicographic ordering of finite subsets of A, the
set of generic reals &5 and Wd was the wellordering of Vd = {x;
supp*(x) = d}. Since A C 2&0, every set u of Y, splits into < 2
many wellordered subsets. Thus we can compute an ordinal A such

that u can be embedded (i.e. mapped into, by a one-to-one function)
into NA b ZNO Ra o
for a sufficient large ordinal g. Thus (KW-0) holds in 7zv. The rest
follows from results, proved in section E, g.e.d. (take 2-3; “:?\'>

. Thus u can be embedded into 2%, the powerset of R

Theorem.{U.Felgner): If ZF is consistent, then (KW-0) is independent
from the ordering principle (0OP).
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Sketch of proof. Let Yl be a countable standard model of ZF + V = L.
Let Q be the set in 3TL of rational numbers and let € be the usual
ordering (of type np) of Q. Define in O?L a ramified language £
which contains besldes the usual ZF-symbols and the useful limited
quantifiers\/a and limited comprehension terms % (a € Onwz ),

constants a, . .
s a; 30 bl,

b
predicate ¥ . Let L further contain constants x for each x € ML ana
a unary predicate g, which will be used to make m an ?(,-definable

for 1 € Q and j € w, a constant ¢ and a binary

class.

A condition p is a finite partial function from w X Q X ®w into 2.
A forcing relation lb is defined as usual containing the following
key-clauses (here let t be any term of £):

pltea, .®*(Inewpln-=t &P((n,i,j)) = 1),
1,3 -

plFteBi°(3je(M®lFt=é Ys

i,3
pltec® (3i€ Qplt= zsi);

plt, €t: ® (Jir1,i2 € O(is <ip & plkty= faiia p Ik ta= 512>.

Obtain a complete sequence R of conditions and thereby a valuation
val of the constant terms of £, which gives the model Y . It holds
that ag 3 * val(éi,.) C w, by = val(ﬁi) = {éi,.; j € w?, c = val(é) =
{bi; i € Q} and val(EWt3x( \/yl \/yz(x = {yy,y2) ~ vy, €y2))) =R is
a linear ordering of c¢. Notice, that inside of M there is no
isomorphism between (Q,<) and {c,® ), but outside of ¥ both are
isomorphic.
Symmetries. Let be the group in DWZ of all orderpreserving
one-to-one mappings from Q onto Q and let ¥ be in Y1 the group of
all permutations of w, which move only finitely many elements of w.
(1 Cgt oper?tes on £ by setting: if = € , then n(éi,j) = éw(i),j’
m(b;) = bﬂ(i)l n acts as the identity on all other symbols of L.
(2) ¥ operates on L by setting: if (T1,i) € ¥ x Q, then define
5 ri(a ) if

T s (1,1 and then: Ti(éi,j) = éi,T 3 1,50 © ék,j
kx #i, Ty acts identical on all other symbols of £,

(3) If p is a condition, n € Q} » Ty = (1,1} € H x Q, then define:
7(p) = {{{n,n(i),§JY,er; {{n,i,j ),e > € p}

Ti(p) = {{{n,i,t (j)),éh((n,i,j),e)e pHu{{{n.x,3 ,e€ p; k #* i},

We have two symmetry- lemmata:

Fiprst symmetry-lemma: If n € CD/, then p Ik & * 7(p) IF w(®).
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Second symmetry~lemma: If 1. € ¥ x Q, then p IF¢ ® ©.(p) b 1. (®).
i i i

Restriction lemma: If p ¢ and pe = {{{m,i,5? ,e) € p; & 3
>

occurs in ¢}, then po IF 0.

For a £-formula ¢ define occ; (9) to be the set of ordered pairs

(i, ) € Q0 x w such that al,j occurs in ¢, and let occ: (®) be the

set of rationals 1 such that Bi ocurs in ¢. For a limited comprehen-
sion term t = E% x & write t = t(A;,A2) in order to indicate that

Ay = ocey (9) and Ay = ocez (8). Further, let pry(8,) = {i € Qi\/jew
(u,j) € Ay} be the projection of A; to the first coordinate . The
following support-lemma is a generalization of the corresponding

support-lemmata of Mostowski [6%) and Mathias [581}.

Support lemma. Let t(Ay,A2) and t*(Af,57) be limited comprehension

terms of £ such that
JU E a1 ,82) = £7(A7,09);
then there exists a limited comprehension term
£ = t°(aY,A%) such that A} = &y N AT and 4% =
(8 M A3)Y VU opri(A), and YU E t(8i,8:) = t°(87,88).

The proof is along the lines of the support lemma proved in section
E, but in the present case slightly more complicated. Now, it can
be verified, that the ordering principle (OP) holds in 7 -

define Vea, A2 = {x; suppi(x) = A1 ~ supp:i (x) = A2}, where

suppst (u), and suppz(u) are the finite sets such that suppx(u) ig of
minimal cardinality, supp:(u) is of minimal cardinality modulo
suppi (u), such that there is a term t = E%*®(x) with occy (&) =
supp: (u), occa ($) = suppz (u) and t is 1nterpreted by u. Each class
V(Ax, y has a definable wellordering, E’?ether with a linear ordering
of the ordered pairs (A;,B8;) can be used to obtain total orderings
for any set of Yl (see the corresponding proof in section E).

In a next lemma one shows that in Y] every subset of c = val(c)
is a finite union of open, closed or at one side open, at thc other
side closed intervals from {(c,g? (use the 2N4-symmetry-lemma and
the restriction lemma to see this). It follows, that in 37 every
subset of ¢ is definable by a formula #(x) of £ in which none of
the symbols al .3 occurs, since only <€ and names B for the endpoints
of the intervals are used. Now the argument of Mostowskl [6%] can
be used to show, that (KW-AC) fails in 71 by shewing, that there is
no function f in Yl selecting from each proper, closed interval ef
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<C,S5> a non-empty, proper subset. The arguments given above show,
that in a transscription of Mostowski's continuity argument, by

the restriction lemma, the forcing conditions do not pose additional
problems. This proves the theorem.

Notice, that in contrast to all our examples of generic exten-
sions, here we have used a somchow different approach. We did not
add a Cohen generic copy of 0, as a subset of ZNO to the groundmodel
(this would yield a model, in which (KW-AC) hclds), but a copy of
n, as a subset Of the powerset of 2N°. Thus we have shown that
neither (KW-AC) + (AC) nor (OP) =+ (KW-AC) is provable in ZF.

G) THE INDEPENDENCE OF THE AXIOM OF CHOICE (AC) FROM THE BOOLEAN
PRIME IDEAL THEOREM (BPI)

In section E we considered the Boolean Prime Ideal theorem (BPI)

and noticed that in ZF the (BPI) is a consequence of (AC). Here we
shall prove, that the converse is not true, namely that (BPI) =+ (AC)
is not a theorem of ZF. As we mentioned proviously, this result is
due to J.D.Halpern - A.Lévy [35]. A short outline of this prove

is contained in:

{3141 J.D.HALPERN: The Boolecan Prime Ideal Theorem; Lecture Notes
prepared in connection with the Summer Institute on
Axiomatic Set Theory at UCLA, July 10 - August L, 1967
(informally distributed manuscripts ), 7 pages.

Historically Halpern first showed in 1962 in his doctoral dissertation
that in the model WYL of Mostowski [64#] the (BPI) holds, thus proving
that in ZF® (i.e. ZF without foundation) the (BPI) does not imply
(AC). Mostowski had shown in 1939 in [6Y%] that in 0L the ordering
principle (OP) holds while (AC) is violated in ¥JU . Halpern's result
appeared in print:

[32) J.D.HALPERN: The independence of the axiom of choice from the
Boolean prime ideal theorem; Find. Math. 55(1964) p.57-66.

After Cohen's invention of the generic ZF-model's in 1963, Halpern
proved in collaboration with A-Lévy and H.Liuchli (via generic models),
that also in full ZF the (AC) is independent from the (BPI) - sece
[35] ana [31].

According to the tradition of our lecture notes we shall start
te® explain the ideas behind the construction of a model of set theory
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in which (BPI) + 71 (AC) holds by discussing Halpern's original proof
[32), that in Mostowski's model 440 (BPI) holds. But first of all

we need two lemmata.

Lemma 1([32)p.62): Let B = (B, U4 , - ) be a Boolean algebra, Aut( B)
be the group of all automorphisms of B and let H be any
subgroup of Aut( B). If I is an ideal of B, closed under H,
and if b € B and J is the smallest ideal closed under H which
includes I and {b} and if 1
set S of H such that

q)rQS@(-b))e I.

Proof . r1{¢(-b); ¢ € S} is the greatest lower bound of the set of
elements é(-b) of B for ¢ € S. Let I(b) be the ideal generated by

I and {b}; then T(b) = {x € B;(3y € I)(x <y u b)}. Close I(b) under
automorphisms ¢ of H: Jo = {z € B; (Jy € I(bN(T¢d € Mz < ¢(y¥il
and let J be the ideal generated by Jo, id est: J ={ Lle; e is a

B € J, then there is a finite sub~

finite subset of Jo}. By assumption 1z € J, hence there is a finite
subset e = {Xx,...,xn} of Jo such that 1 = Ue. Since Xg € Jo,
there are y; € I and ¢; € H (1 = 1,2,...,n) such that x; < o, (y; U D).
Hence n n n n

1p = }:{Xi = §2%¢i(yi U b) = %;{ iy g;{¢i(b)
and hence by taking the complements:

_(Lzl¢ (v LSJ . = r% s ﬁH - = €

bl yid T Pi(b)) = i=1¢i( yi) M 1=1¢i( b) = 05 €1

Since I is closed under H, it follows that L}{¢i(yi)3 i=1,...,nt €1,
Since uft v = o implies v < -u in a boolean algebra, put
u = {¢i(-yi); 1 €i<n}andv = r]{¢i(-b); 1 €1 <n}, then
it follows v € -u € I, hence v € I and if we define S = {éi; 1 < i Sn},

then the lemma is proved.

Lemma 2 ([321p.62). If B is a Boolean algebra, X a finite subsct of
B and P is the set of all functions f on X such that f(x) €
{x,-x}, then

(r_}f(x)) =1

fep ‘xeX B

Proof by induction on the cardinality of X.

The (BPI) holds in Mostowski's model J4L. Take countably many atoms

{(urelemants of reflexive sets x = {x}) ordered of type n,. Let G be

the group of orderpreserving mappings and F be the filter of subgroups
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generated by the finite support subgroups. Mostowski showed in [6#],
that in J¥L = EﬁliG,F],(OP) holds while (AC) fails (see section E
of this chapter and chapter III for details and notation). J.D.Hal-
pern extended in [32] this result by showing that in JYL even the
(BPI) holds. He proceeds as follows. Let B be a boolean algebra in
Yl . Then HIB] = {$ € G; ¢(B) = B} € F and by the definition of F
there is a finite support subgroup Klel = {¢ € G; ¢ is identical on
el (e a finite set of atoms) such that Kle] < HIB}. Thus B is e-
symmetric and every ¢ € Kle]l is an automorphism of B. Halpern shows,
that among the e~symmetric ideals of B there is a prime ideal I.
In fact consider (outside of ¥IL) the set

Z = {J; J is an ideal of B ~ J €Wl » 15 ¢ J ~ kle] <HIJII.

Z is inductively ordered by C (see the proof of a similar situation
on p.65), and has hence by Zorn-Kuratowski's lemma a maximal elcment,
say Io. We claim, that Is is a prime ideal of B (Is is e-symmetric).
Suppose not, then there exists b € B such that b € I, and (-b) €& Io.
Let Iy be the smallest ideal of B which includes I, and b and is
closed under Klel, and let I: be the smallest ideal of B which in-
cludes I, and -b and is closed under Klel. Since both, I; and Iz,
are e-symmetric ideals, hence in ¥8l, they cannot satisfy the hypo-
thesis not to include 1gs since otherwise Iy € Z and I € Z, contra~
dicting the maximality of I¢. Hence 1y € Iy and 1p € I, and by lemma
1 there are finite subsets Si1, S: of Klel, such that

(1) M {e¢-b); ¢ € 8} € I,
and
(2) [M{e(p); ¢ € S3} € I,.

Let r = ;, then r determines r + 1 open intervals K. (0 €1i<r)of
A (in the ordering of typc of the rationals). We want to get (via
lemma 2) the contradiction that 18 € I,. To do so, we need a certain
finite subset X of B such that [] {f(x); x € X} € I, for all fuctions
f on X such that f(x) € {x,-x}; then lemma 2 entails that 1p € Ip.
Since one wants to derive [| {f(x); x € X} € I, by some permutation
arguments from (1) and (2), Halpern finds (using a combinatorial
theorem of R.Rado) a certain finite subset W of the set A of atoms
and takes then as X = {x € B; 3¢ € Klel: ¢"(b) = x ~ ¢(g) - e C W},
where ¢" is the unique extension of ¢ to an automorphism of the whole
universe (see p,53), and g is the support of b € B, Rado's theorem
gives only in dependence of 517 gz and ??“??E (1 €r + 1) a certain
finite cardinal number g. The property, that the atoms are
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totally ordered of type No is essentially used to conclude, that
between all points of W we can embed q points. W has a certain
partition property which is used to find an automorphism § of B
such that either all elements of {§(b); ¢ € S2} or {$(~b); ¢ € S}
can be mapped into {f(x); x € X}. Then []{f(x); x € x}< p(M{s(-b);
¢ €51h) or [T{f(x); x € X} € P([Ho(b); ¢ € 53}) for ¥ € Klel.
Since Io is closed under Klel, it follows from (1) and (2) that
VM {o(-b); ¢ €513) € Ip and v(IT{4(b); ¢ € S2}) € I,. Hence,
since Io 1s an ideal, r1{f(x); x € X} € Io for all f under considera-
tion. As indicated above, this yields 1y € Iy, a contradiction!
Hence Io is prime. For all details of the proof, the reader must
be referred to Halpern's paper [321].

It is possible to carry over these ideas to the construction
of a Cohen-generic model YT of ZF + (BPI) + 71 (AC). This has been
done in collaboration by Halpern, Lévy and L3uchli. The construction
of the medel has been carried cut by Halpern-Lévy [33]. In their
construction a combinatorial argument was used (different from Rado's

theorem), which has been established by Halpern and LZuchli in:

{33] J.D.HALPERN - H.LAUCHLI: A partition theorem; Transactions Amer.
Math. Soc. vol.,124(1866)p.366-367.

The model constructed by Halpern-Lévy is a boolean valued model. We
shall, however, construct @ Cohen-generic extension by means of
forcing. Qur remark, that in the case of permutation models the atoms
have to be linearly’ ordered of type Mo, suzgests that in the case

of Cohen generic models T +the generic reals éi (for 1 € w) have to
form a dense subset of the real line of 31 . Following this idea we
construct 3Z by adding to some countable standard model ?fl infinitely
many Cohen~generic reals éi (i € w) and generically a set A which
just collects these reals éi. We shall use the notation 31 = Wllao,
ar,...,Al. This model Y| has been described in section C of this
chapter on pages 101 - 103,

Theorem (Halpern-Lévy): Yllao,ai,...,Al is a model of ZF + (BPI) +
71 (AC). Hence, if ZF is consistent, then (BPI) = (AC) is
not provable in ZF.

Proof. A detailed presentation of Milae,a1,...,A]l has been given
in section C, where it was shown, that in this model A is an infinite,
but Dedekind-finite set. Hence (AC) does not hold in hold in this
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model. The proof, that (BPI) holds will require several lemmata.
First we remind our reader to the following (see p.99 and 102):

Symmetry-lemma: Let G be in ?Yl the group of all permutations of w.

for any 0 € G, any condition p: w X w ©® 2 and any
L-sentence ¢, p ¢ « a(p) -o(2).

Restriction Lemma. Let p be a condition, & a sentence of £, occ(9)

the finite set of natural numbers i such that éi
occurs in ¢, and let po = p/occ(@) be {{{n,i) ,e ) € p;
i € occ(9)}. If p =9, then po 9.

Proof. Suppose p ¢ and ~p, IF'¢. Then there is a condition q 2 po,
such that q I ¢. Define ¢y = occ(®),

4 = i€ w;V o Ve, (n,De) €p~ i€ oo}

4, = {i € w;\/n(:_w Ve, (tn,D ,e) €q~ i € cod)

Now let ¢ be any permutation of w which leaves ¢, pointwise fixed,

and maps d; in w~(cy U d;). Then Dom(q) N Dom(o(p)) C w X co.

Since both, q and o(p), extend p,, they coincide on the commcn part
of their domain. Hence o(p) U q is a function, hence also a condition.
Since 0 leaves ¢y pointwise fixed: o(®) = ¢. Thus the symmetry

lemma tells us, that o(p) - ¢. Together with q I"1 &, the extension
lemma yields o(p) U g l~% ~ 71 ¢, a contradiction. Hence po % must
be true.

The next lemma will say, that A = {ai; i € w} is a dense subset
of 2¥ in the product topology of 2%¥. The following relation < is
the usual linear ordering of 2%

s1 <53 ® Min((s; — s2) YU (s2 - s1)) € 52
Since 2“ is considered as the product of ¥ copies of the two-point
discrete space 2 = {0,1}, we may endow 2% with the product topolegy,
i.e. the basic open sets are of the form

by = {f € 2Y £ Dr}
where r is a finite partial function from w into 2. Hence b, is the
set of functions (=real numbers) from w into 2 which extend r.
The space 2% endowed with this topology is called the Cantor-space,
since 2% is homeomorphic to the Cantor-discontinuum (considered as
a subspace of the real line with the usual interval-topology)
~ see e.g. Ph.Dwinger: Introduction to Boolean Algebras, Physica-
Verlag Wirzburg 1961, p.49-50, or R.Sikorski: Boolean algebras,
Springer Verlag Berlin 1964, p.u4#3, and textbooks on Topology,
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e.g.Kelley. The space?u)with the topology as given above is a totally
disconnected compact Hausdorff-space and the basic open sets b, are

also closed, and hence regular open sets.

Lemma 3. Every basic open set b, of 2“ contains a generic real as s
or better stated: JL kﬂ"br N A # g for every finite partial
function r : w » 2",
Hence it holds in ¥ that A is a dense subset of 2%

Proof. suppose br N A # § does not hold in J1 for every basic open
set b . Hence, there is a finite partial funection r : w + 2 in
such that br N A = B holds in J{ . Since everything which holds in
T is forced by some condition in the complete sequence & (which
defined YL ), there is p € & such that

pikb,NA=¢

Since p is finite, there is a natural number i, such that for ecvery
n € w, {n,i,? € Dom{p). Define the following extension q of p:

q =12V {d{m,ia , 0 m € 0w ~ r(m) = 1} U {{{m,ie) ,0 ;m € wrr{m)=0}.
Identify subsets a of w with their corresponding characteristic

function
0 if m & a
Xa(m) =
1 if m € a

then q W‘P < al and hence q I+ a € b,. It follows, that in the

model ylo defined by any complete sequence ®, which has p as first
andqsecond element, it holds that br N A # ¢. This is in contradiction
to the assumption, that p (and hence & ) forces br N A = ¢. Thus,
every basic open set (i.e. every absolute interval) of 2% contains

an element of A and A is in Y1 a dense subset of 2%, q.e.d.

Continuity~Lemma. Let ¢(X1,---,Xn) be an L-formula with no free

variables other than Xiseos Xy and suppose that ¢ contains ncne
of the symbols éi (for i € w), but ¢ may contain constants x

for x € WYL or the constant A. Let g = <g;,...,gn> be a sequence
of different members of A, If ¢(g;,...,gn) holds in YU , then
there exists & sequence (br;”"’br ? of pairwise disjoint basic
open sets of 2%, such that gy € brvn (for 1 € v <) and the
following holds: if h = {hy,...,ky d4s any sequence of different

members of A such that h, € b, for’i < v € n, then
v

fnl:@(h,,...,hnL



134

Proof. Suppose that for sets Blseses8) € A the sentence @(g,,...,gn)
holds in YC . Let t;,...,tn be constant terms of £, such that gy =
val(t,,) for 1 S v < n. Consider the following L-sentence:

.

(0) | (8Cty,.eent ) ~ty €A~ il ~t e A
W
e [ k . .
\/rl \/fn ¢0§\1(rv € .~ b 27) ~ the ba31cnopen intervals
. . e N m ~
brv (for 1 €< vy € n) are pairwise disjoint M 1tv € b,

S xy €A Y B0y, x DT

n
AX: . /\Xn(vf?&(x\} € by

The continuity lemma is proved as socon as we have verified that
(0) holds in 71 . So suppose that the sentence (0) does not hcld

in 71 . Then the negation of (0) holds in 3L , and gince everything
which holds in Y1 is forced by some condition of the complete se-
quence ® (which defines J[ ), there exists p € &, such that

p *71 (0). The statement (0) has the form ¥; - ¥,. Hence p =71 (0)
is equivalent to p I~ ¥, ~W,. Thus p F¥ and p 71 ¥2. We shall
obtain a contradiction by showing that there exists an extension

po of p such that po W ¥.. First, p IHF'V¥, is:

T
() p ottt ) A ANt e A

It follows from the forcing definition, that there are i”""in € w

such that p' b t, = éi SUERRIR S éi for some extension p' of p.Hence:
1 n

(+*) p' &fé(éix,...,éiﬂ).
Extend p' to a further ;ondition p" such that
(1) If (m,i ) € Dom(p") and m' <m, then {(m',i » € Domép"),
(2) If 1 €v <n, then there is m € & such that (m,i,’ € Dom(p"),
(3) If j, # j, then there is m € w such that (m,j:?> € Dom{p"),

(m,jz) € Dom{p") and p"({m,j1) F P"({m,J2’), i
(4) p" extends p'.
It is possible to find conditions p" satisfying (1), (2), (3) and
(4). We shall not explicitely describe such a condition, but assume
that we have obtained such a p". Define interval designators (i.e.
functions from finite proper initial segments of w into 2) for
1 €v €n, called r,, by

r,(m) = p({m,i})

form € {m'; (m',1,)€ pom(p")}. By condition (1), r, is a function
defined on some initial segment of w. By condition (2}, r, is for
no vy with 1 € v <n the empty function and by (3) the basic open

sets b, = {(f €29 ¢ O ryl} are pairwise disjoint (in the sense
v
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of the meta-language). Hence this is weakly forced by every condition,

thus n /\
8 GZOE(FnC(rv) A r, # gy ~ f/> u{1 Sv,uSna.vFEu-=
(0() br\)(\bru = p).

Since occ(@(a1 sevesar ) = {i,,. ..,i } by our assumption on ¢,

i
the restrlotlon lemma, applled to (**) with p' replaced by p",

yields: ¢
((3} P1 li':@(éi ,...,a )

in

where p; is the restriction of p" to {i,,.,.,i,}, id est py =
{«m,i) ,e ) € p"; i € {i,,...,i }}. Now we claim that the following
holds:
(X) p" /\ “’/\xn[dcf\ (x,e A A X, € brv) > (x50 0% )]
We have to prove that if t/,...,t} are constant term of £ and q is
any extension of p" such that q I AQ\ (t"e A A t' £ b ), then there
exists a further extension q' of g such th&t q' é(t‘,...,t‘)

Hence suppose terms t;,...,tg and a condition ¢ are given,
where q extends p" and g (weakly) forces the conjunction of the
statements t) € A A té € br . Then there exists an extension q' of
g and numbers j,,...,j € EY such that

q Cq'F t) = ag, teee t) = éjn.

Hence q'l- a; € b, ~ ... ~ a: € b, . Thus, if we identify subsets
N 1 Jn Tn

of w with thelr correspondlng characteristic functions

' r, Ca 3, % e ” rn c a]n. This implies q; € q', where

{((m,jv

Define the following permutation o of w: o(i) = j, for 1 < v <n,

o(jv) = iv’ o(i) = i for all other mnatural numbers i, It follows
that

Q Y3 1 <v<nar(m = e}

g1 = o{p1)

Hence p1 S p" € q C q' and olp1) = @« € g', and it follows that
1 Y o(p1) is contained in the condition q'. Thus, p;y Y o(p1) is a
condition. Applying o to (B) we get by the symmetry-lemma
o{p1) = gyl oCa. ,...,a. )
I 3

n

Hence, by the extension lemma q'’ Wfb(éj ,...,éj ). Now, since q'
. . 1 n

forces t| = ag, toeee ® th = ay we infer that q' also (weakly)

forces @(t;,...,tﬁ). This proves (Y)
Both, (a) and (y), show that p" (weakly) forces that there are
non-empty, pairwise disjoint absolute intervals b, such that
v
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5 €5 , and if ¢(éil,...,a-

v Ty i,

(t;,...,t') with t! € A ~ t, € b (1 € v <n). Hence p" F¥,. Since
n AV \Y r,

p € p' € p", we have obtained the desired contradiction. This proves

), then Q(t;...té)for every seguence

the continuity-lemma.

\be

Lemma 4. Let rja function from some finite ordinal into 2. Then
b,MN A is infinite. Further, A is Dedekind-finite (though

infinite in the usual sense).

Proof. By lemma 3 every absolut interval b, = {(f € 2% f D r}

® . .
{f €2 r, £f <r;} contains a generic real, where ry, =

{{m,e>:(m € Dom{r) ~ e = r(m)) Vv (m € Dom(r) ~ e = 0)} and 1y
Um,e); (m € Dom{r) ~ ¢ = r(m)) v (m & Dom(r) ~ e = 1)},
Since every absolut interval includes countably many pairwise disjoint
absolute intervals, it follows that b, N A is infinite. Hence A is
infinite. That A is Dedekind-finite was proved in section C, page 102.
Notice, that the Dedekind=finiteness alsc follows from the continuity-
lemma (see e.g. [35], th.10).

Remark. Since we want to be able to prove that every class Vd of

sets u of YU such that there exists 2 constant term E® x §(x) with
u = val(E® ¥ &(x)) and occ(d) C d, where d is a finite subset of w,
has an ]Z,-definable wellordering, we proceed as in the proof of
Mathias' theorem (sce p.120-121) and define in Y. a ramified language
£*. The alphabet of £* contains besides the usual ZF-symbols and

the useful limited existential quantifiers‘va and limited comprehen-
sion operators E® (for ordinals o of 7 ), a name a’ for each a € A,
a name A* for A and names x* for each x € 7%1. Define an interpreta-
tion Q@* for the constant terms of £* by induction: Q*(a*) = a,

Q*(A*) = A, G*(x*) = x and then extending to all limited comprehen-
sion terms of £*. Hence 2° is giz—dcfinable (for more details see

the analoguous situation on page 121). In order to obtain Yl -defina-
ble wellorderings of the 31/-classes Vd = {x EfYI; supp*(x) C 4}

we need a support-lemma. The proof of the support-lemma will depend

on the following generalization of the continuity-lemma.

Lemma 5. Let ®(X1,...,xn) be any L-formula with no free variables
other than xi,...,x and let ¢* = {a;; éi occurs in @},
If Bl 28 is a sequence of different members of A-c*

and if Q(gx,...,gn) holds in Y[ , then there exists a

sequence br ""’br of absolute intervals of A, pairwise
1 n
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disjoint and disjoint from c*, such that gy € b,
v
(1 <v <n) and ¢(g;,...,gﬁ) holds for every sequence
1 1 3
8150+ 18) of different members of A such that gs € brv
for 1 £ v < n.

Proof. Let ?(x,,...,xn, y,,...,ym) be the formula obtained from £ by
replacing each occurrence of éi by the variable Vs where different
variables are used for different constants (it is assumed, that the
variables Viseoas¥n do not occur in ¢). If we suppose that &(gi....
.,,gn) holds in 71 for different members of A-c*, then Y(gl,...sgn,
ail,...,aim) holds in Y1 for different members of A. By the continui-
tv lemma there are pairwise disjoint absolute intervals brl,...,br s

n

Ppoyqse+obp o of A, such that“@(g{,...,gé+m
g% € by, for 1 < v < n+m. Hence 9(g,...,g’) holds whenever g} € by,
v n v

) holds, whenever

for 1 € v < n, since W(g;,...,gg,ail,..u,ai ) holds in 91,. Since

aiv € b, for 1 € v <mand all b, (1 < v < n+m) are pairwise
PS5 5 J

disjoint, it follows that the b

and disjoint from c*, g.e.d.

Vv . . . s
r for 1 € v €n are pairwise disjoint
v

Support-lemma. Let t; = E® x P1(x) and t = % x P, (x) be limited com~-

prehension terms, and suppose that 71 b t; = t;. There exists
an L-formula ©; (x) such that occ(®3;) = occ(d;) N occe(?P;) and
and for ts; = E* x 9;(x) the following holds: I{ Ft1 = t3.

Proof. Since p IK't; = t, for p € &, we may assume by the restriction
lemma, that (m,i) € Dom(p) only if i € occc(®d; ) VU occ ($;). Define

c = occ(®d;) Moce(dy), d; = ceccl(d) - ¢,
and assume (without loss of generality), that d; = occ(@2) - ¢ = {io}
has only one element (the general case follows by induction). Split
P into subconditions pe = pefc)y = p/c, pr = p1(dy) = p/d; and
Pr = D2lig) = p 7/ds. Let jo € w, j0 € c Udy U {is} and let T be a
pernmutation of which leaves ¢ U d; pointwise fixed and maps i, onto Jo.

Then the symmetry-lemma applied to po(e) U pr{dy) U pa{ie) =P ¢

p It {e,d1) = t3(c,ie) yields

pel2) U pi(di) U pa(3o) Rty (e,dy) = talc,de)
where py{jo) = 1(p2{ie)) and 4 = t,(c,ds), . talc,jo) = % x 1t(2(x)).
Hence both relations together,using the restriction lemma entail:

P' = Pole) U palio) YU pa(Jo) Htalc,io) = tale,de).
Obtain an extension p" of p' as in the proof of +the continuity lemma,
such that p" satisfies conditions (1), (2), (3) and (4) (listed on
page 18h), where condition (2) reads in the present context as follows:



138

(2) If 1 € ¢ U {i5,j0}, then there is m € u such that (m,i) € Dom(p").

Define r; by: r;(m)) :p"({m,1Y) and b, = {f € 2% r; C f}. Then
1
the b, are pairwise disjoint and a; € b, for 1 € ¢ U {is,30}. In
i i
particular b, b = 8§ and b, ~as well as b, are disjoint from
. 1, Jo ie Jo
{a.; i € ¢}, see lemma 5.

It was shown in the proof of the continuity-lemma, that
() p"iK /\ [y €A ~ y € b 7 tale,io) = = ta(c,y)]

where ta(c,io) = t2(c,x) is %o be taken as ®(x). Now define ¢;(y,x)
to be the £-formula obtained from ®;(x) by replacing éio by the
variable y at all places of occurrence (it is assumed, that y does
not occur in &;(x)). Define

ts =Eax(\/[y£AAy€b R HTRIIDE
10
By (#): p" F'ty(c,ie) = t3, where occ(t;) = c. Since p" can be chosen

to be included in L)ﬁ, hence in some q € &, it follows that q I+ =
t3, and the lemma is proved.

Lemma 6. The ordering principle (OP) holds in 31 .

Proof. For u € JU define supp®(u) as the finite subset of A of
minimal cardinality such that there is a term t° of £* mentioning
only names a* for a € d with 2*(t*) = u. By the support-lemma,
supp*(u) is always defined. Put

Vg = {u €J; supp*(uw) = d}
then the I -class V4 has an I -definable wellordering. Together
with the lexicographic ordering of the set of finite subsets of A
one concludes, that in J{ every set has a total ordering (for all
details see the corresponding proof in section E, page 120-121).
Notice, that every Y{ -class Vg = {ue€ J1; supp*(u) € d} has also
an Yl -definable wellordering, namely the one inducec (via 9%) by
the YU -definable well-ordering of the constant terms t of L* with
oce(t) € d. Notice further, that the proof of lemma 6 shows that more
that (OP) holds ijxyz,namely the Kinna-Wagner ordering principle
(KW-0) holds in JL. Next we want to show that also the Boolean
Prime Ideal theorem (BPI) holds in jz . First we need the following:

Lemma 7. Let ¢(xo,x1,...,xn) be a formula of £ with no free variables
other than Xo s+ ..,X, and suppose that occ(®) € d. If ty,....t,
are constant terms of £ such that \/ (X0 ,T15eesrty ) hoids
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in YU and if val(tv) € Vd for 1 € v € n and some finite
subset d of A, then there is a constant term t, of £ such

that ®(to,ti,...,t ) holds in JL and val(te) € V,.
Proof. Since \/ Q(Xg st1 504 ,tn) holds in 31,, there is a constant
term t of £ such that ¢(t .t,,...,t ) holds in JYU (sincc sets of
I are valuations of terms of £). Suppose val(t') & Vg. Let ¢ =
{1"""lm} be the set of numbers such that éiv occurs in t' and
1 €v<mand a; é d. Hence ¢ # #. Let t'= EO x ¥(x) and let
y* (x,yl,...,y ) be the formula obtained from ¥(x) by replacing the

constants a v DY Yy for 1 € v €< m, different variables for different
constants. Hence t!' = EO x W*(x,éi!,...,éim). By lemma 5 we find
absolut intervals bz,l,..,bpm such that aj, € by, (1 € v <m) and by
lemma 3 generic sets ay, such that aj, € bp, and a3, *az, (1<v < m)
and further the b, are pairwise disjoint and all are disjoint from d.
Hence YU k E® x ¥*(x, a; ,..,alm) = E% x ¥*'(x, »as se++5a3,) and by

the support lemma there 1s a term to such that TZ# t'=t, and to mentions

only generic reals in d, hence val(ty) € Vd’ and lemma 7 is proved.

Lemma 8. If B is a Boolean algebra in 31 , then there is a prime ideal
J of B in J| such that
supp*{(J) C supp*(B).
Hence the (BPI) holds in I

Proof. Let B = {B,r,- ) be a boolean algebra in YL , where n is the

meetoperation (i.e. product, op greatest lower bound) and - is the

complementation operation {( U is definabbe by means of m and -).

Let & = supp*(B), hence B € \F Since the operations: projection to

the 18% (2nd, 3rd pesp.) coordinate, are single valued it follows from

lemma 7, that B, and - are sets of Vd' FTurther 1B and OB (the lar-

gest and the smallest, resp.) are in Vd, since they are unique.
Consider the set Z of all proper ideals of B, which are in V3.

Since {0g} € 7, Z # . Since V4 has an Y{, —definable wellordering

and 2 C V4, it follows that Z has maximal elements. Let I be a

maximal proper ideal of B with I € V, (id est: I € 2). We want to

prove that I is prime ¢
Suppose I is not prime. Then for some b € B, b € I and (-b) € I.
Since b € g , There is a constant term ty of £, such that b = val(tb}.
We shall derive a contradiction by showing that 1B € 1.
It holds that supp*(b) - 4 # #, since otherwise the ideal genera-

ted by I and {b} would be in Z, contradicting the maximality of I.
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Hence let t_ a constant term of £ such that b = val(tb) and, if
ty, = E® x ¥(x) then occ(¥) = {i € w; éi occurs in ¥} is of minimal
cardinality. Write

oce(¥) ~ d = {i € ccc(¥); i & 4} = {i”""ik}
The case k = 1 is especially simple, and, as an illuminating example
for the proof-procedure, is discussed in detail in Halpern-~Lévy [35]
and Halpern [31]. We, however, shall start directly with handling
the general case, but recommend our reader to look at the disgcussion
of the illuminating example k = 1 in [35] and [31]

We shall need a combinatorial theorem of Halpern-Liuchli ([331,
theorem 2). Before we formulate a particular case of that theorem,
we have to introduce some notation.

A tree T = {T,S) is a partially ordered set such that for
each x € T, {y € T; y < x} is totally ordered by <. The cardinality
of this set is called the order of x, or the level at which x occcurs.

A fan (Facher) is a non-empty tree such that all elements of it bave
finite order and each level is a finite set. Hence, if ord(x) is

the order of x in the tree (T.,< ), then

{T,€) is a fan ¢ /A\XGT(ord(x) € w A /\new(x € T; ord(x) = n} is finite).

Define T/n (restriction of T to n):
T/n = {x € T; ord(x) < n}.

Definition. Let D; and D, be subsets of the fan (T,<).
D: dominates D, /\XED2\/;ED1(X < y).
D; supports D, « \eD, yEDl(y < x).

A subset D of the fan (T,€) is called (m,1)-dense if there is an
element x of T, such that ord(x) = m and {y € T; ord(y) = m + 1 ~ x <y}
is dominated by D, Let (Tl’\i> be fans for i <k € v and let D; be
a {m,1)-dense subsct of T (with respect to \l) for i < k. Then the

cartesian product ingi is called an {(m,1)-matrix.

Theorem (Halpern-Liuchli). Let (Ti,<i), for i < k, be finitely many
fans without maximal elements. There is a positive integer
n such that for every 2-partition Q = ¢Qi, Q )of ,J (T,/n),
id est iLfchi/n) = Q YQ, @ NQ = #, either Q1 or Q

includes an (m,1)-matrix for some m < n.

For a proof see [3%]. (Correct in [33],p.364, the following two
misprints: in lemma 1 the second quantlfler on the left side of
k:d is an existential quantifier, and té‘\below in 1.1. the third
quantifier on the left side of t:d is a wuniversal quantifier).
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Notice that in {33] and [35) the terminology "finitistic tree" is
used. We do not like this philosophically sounding word "finitistic"
and use the word "fan" which is also used in Intuitionism.

Now we return to the proof of lemma 8. Let tgs th and t_ be
terms of £ such that val(tB) = B, val(ty ) = M (the meet operation
of the boolean algebra B) and val(t_) = = (the complement operation
of B}, such that occ(gg) € d, oce{t, ) € d and oce(t_ ) C 4.
Further, let tb = E% x ¥ (x) be the term obtained above, and let
t; be the L~term with occ(tI) C 4 such that val(tI) = I. Define:

&(x,,...,xk)
to be the L~formula obtained from (ty e tg ~ 71 tb.s tp) o~ (2 () e tg °
~ 1 t_(ty) e t;) by replacing each occurrence of a, in t (i.e.
E® x ¥(x)) by the variable X, for 1 € v € k. In thevformula used
above t_(t,) de?ctes the "complement” of t., id est val(t_(ty)) = (-b).
Since &(ai,""’éik) holds in JL , there exists k absolute

intervals br,"“’bfk which are pairwise disjoint and disjoint
from d, such that

3
(1 A&El(xv e A - X, € brv Y E(X %))

holds in fU (this follows by lemma 5). We put Si = {brv}’ for

1<€<vs<k, and 8® = (Sf,...,S;). We continue and define k-termed

sequences of absolute intervals, S¥, for every n € w. Simultanously

we prove that the sequences S" have the following properties (SS

denotes the v-the coordinate of the sequence sty

(P1) S% is a finite set of absolute subintervals of the members of
S@-l form 21 and 1 € Vv < k. Therefore, by the definition of
S° and by induction on m, the members of Sh, are subintervale of
brv for 1 € v <k,

(P2) Every member of S$‘1 has at least two subintervals in Se for
m=21and 1 €v €k,

(P3) The members of S% are pairwise disjoint, form =0, 1 € v <k,

(Py) If ZE€1II Sm-l and 6 is a finite set of elements of A which
containsg exactly one member out of each member of L}Range(Sm),
k
then rX{val(tb(u,,..,uk));(u,,..,uk> en (2% NGy €I, and
r1{-val(tb(u,,..,uk)); (u,,..,uk ) svﬁl( Rf\G)} € I, where
tb(u,,..,uk) results from t,, by replacing éiv by u, for 1 € v < k.
The only one of (P1),...,(P4) which applies in the case m = @, is

(P3); but this holds since the by, 's are pairwise disjoint.
v
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Induction. Let us assume now that for m < n, s™ is defined and
(p1),...,(P4) hold. We shall define S™*! and prove that (P1),...
.+, (P4) hold for m = n+l. By (P1) the members of SS are subinter-
vals of by, (for 1 < v <k). Therefore, if L€ T s, then NI C Is*
where S* = <bP1""’bPk)' {The symbol II is used to denote the car-
tesian product and sequences are understood to be 1-1-functions with

domain some element of w). Hence, if I € ns” then by (1):
(2) E€ IS" ~ Cup,..u) € MCE MA) = &(Up,...suy)

Consider the ideal J generated by I U {val(tb(u,,...,uk));
Cupseeosud € ICE, NA)}. Since J € Vy and I is a maximal proper
ideal in Vd and T € J we must have 1B € J. Hence, by lemmari, there
is a finite subset G;( D of N(Z, N A) such that FI{-val(tb(u,,..,uk));
<u,,...,uk) € G, (I)} € I. By (2) G;(I) has at least two members.
By considering, in the same way, the ideal generated by
IV {—val(tb(u,,...,uk));(u,,...,uk) £ II(ZV N A)} one obtains
a finite subset G; (X} of T(EZ, N A) which has at leat two members
such that [] {val(tb(ul,...,uk));(u‘,...,uk) e G, (D)} € 1.

Define GL(Z) to be the set of those elements which occur on some
place in an k-tuple of Gu(Z), po= 1,2, Gé(z) is a finite subset of
A and it has at least two members in common with each g, for
1 € v <k. Put

=J{6] () vegl(y; £ e sl

Then G* is a finite subset of A which has at least two members in
common with each member of | JRange(s™). Since GU(X) c u§1(zv ng*)
for 1 < < p € 2, we get

k
(3) £ € os" > t MH{-valltyCur s e ou ) ) shug e,y €v§1(zv NG*)} €I
and r]{val(tb(u,,..,uk));(u,,..,uk>evgl(2v ne*)rel,

since ¥; €Y, CB~>[]¥; <[]Y,, and I is an ideal. By lemma § we
obtain from (3) that there are absolut intervals b,,...,bx, pairwise
disjoint (and disjoint from d) such that, if G* = {aj‘,...,a },
then a for 1 < v <X and
(4) 2 G ns” AQXI(xv € A ~ x, € b, ) - .

n{-val(t (ul,.‘.,u‘)) (u,,...,u Yy € v§1(zv N {x,,...,xx})}e I

A r]{val(tb(ul,...,uk));(u,,...,uk) € vgl(zv N {x,,...,xk})} € 1I.

We can assume that each b (for 1 < v € A) is a subinterval ef some
member of LJRange(Sn) since this can be attained always by taking
appropriate intersections. Moreover it follows from our construction
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of G*, that if s € LJRange(Sn), then s includes at least two sub-
intervals out of the sequence {bi,...,by) .
Let us define now the k~sequence g+l by (for 1 < v < k):
SS+1 = {bY; 1<y <€A~ bY is a subset of a member of SS}.
What we just said concerning the sequence {by ,...,b)) shows that
s™*1 satisfied the requirements (P1), P2), (P3) and by (4) also (Pu).
Notice, that we defined the infinite sequence S°,81,...,Sn,...
by induction in 31, where at each step we made arbitrary choices,
namely by selecting GD(Z) for u = 1,2. But at each step we made
only finitely many of them and each set s™ is in Vd which has a
definable wellordering (in terms of members of d) as we have shown
previously. Hence the construction of 807815-5.,Sn..- as given
above can be performed inside of .
To apply the Halpern—L%uchli theorem we define the following trees.
T, = newsg
< is the converse of the inclusion relaticn €.

(for 1 <V 2 k). It follows from (P1),...(P4) that the n-th level
of {T,,S) is exactly s} and (T,,S) is a fan and by (P2) has no
tree-tops. Hence all the requirements of the Halpern-L&uchli theorem
hold in the present case. Let n be a natural number as in the conse-
quence of that theoremn.

Let H be a choice function on the finite set W = L){SS; m<n A
1 € v < k} such that Range(H) € A. Let y be the k-sequence given
by v, = {H(s); s € Lj{Sgg m € n}} for 1 € v € k. We shall show that
for every z € Ily either

(5) fW{val(tb(ux,...,uk));{ux,...,uk> € 2} € 1,
or rT{—val(tb(u;,...,uk));(ul,...,uk) €z} €1I.

Once (5) is proved then we shall obtain the desired contradiction
1B € I. Let us prove(s)

k
We define the following 2-partition of vgl(Tv/n):
Q; = {g € vﬁl(Tv/n);(H(g;),...,H(gk)> € 2z}

Qp = vﬁi (Tv/n) - Q1>
where g is the sequence (g;,...,gk). By cur choice of n the Halpern-
Liuchli theorem asserts that there exists a positive integer mp < n
such that either Q; or Q; includes an (mo,1)-matrix M. Suppose M € Q.
By definition there are (my,l1)-dense subsets A of T,, such that

we K.

Since all the sets Av are (mg ,1)-dense, we may choose a k-sequence
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of intervals (Tl,...,Tk) such that LN € S§° and for all s € S€°+1,
if s E T,, then r C s for some r € A,,. With this choice of
(Tx,...,Tk) define a function f on L}Range(snw+1) (using lemma 3) by:
if for all v with 1 S v <k, s $ T,> then let f(s) be an
arbitrary member of s N A,
if (I <v<k~rsCrt), then take an arbitrary member
r of A, for which » & s holds and let f(s) be H(r).
Thus for every s € L}Range(8m°+1), f(s) € s. Define

G = {f(s); s € L}Range(Sm°+1)}.
By requirement (P4) for me+l we get

f(g) =

k
(6) MvalctyCur,.. ,u ) 3€u,....u) € gty ney e,

We shall now prove that v§1(7v N 6) € z. Once this is proved, then
(5) obviously follows, since x; S x2 € I,? x; € I is a property of
ideals. Hence let us prove that the cartesian product of T, NG is
included in z, and let h = (hx,...,hk> € vg (1, N G). Since
h, € 1N G, there are s € {JRrange(sMo*1) for 1 € v € k such that
f(sy) = h,. Since f is a choice function, h, € 8y
Since also h € 1 € S§°, it follows from (P1) and (P3) that
sy & t,- But in this case h, = f(s,) = H(r,) where r, € A,. Thus
h = {H(r },...,H(rk)> where (rx,...,rk} € v:1AV C Qi . But by definition
of Qi this implies h = <H(r1),...,H(rk)) € z ard hence Ni(1, N G) C =
holds.

To deal with the other case, namely M C Q;, let us write z*
(ly) - z and proceed exactly as in the case M € Qi , replacing z
by z* and Q1 by Q:. Where (P4) was used to obtain (86), we use (Pu)
now to obtain rT{-val(tb(ux,...,uk));....} € I and get
r\{-val(tb(ux,...,uk));(ul,...,uk> € z*} € I, so that (5) holds.

Thus we have shown that for every z C Iy, (5) holds. This will
be used to obtain by means of lemma 2 the desired contradiction
that 1B would be in I.

Let P be the set of all functions ¢ defined on

X = {val(tb(u1,...,uk));(ul,...,uk) € Ty}

such that for x € X, ¢(x) € {x,-x}. Consider

z = {fux,...,uk) € Hy; ¢(vallty(ur,...,w)) = val(tb(u;,...,uk))}.
Then z € Ny and by (5): rw{va;(tb(Ux,...,uk));(ux,...,uk) € 2} €1
or r]{—val(tb(u,,...,uk
elements is in I, their intersection is in any case in I. Thus
r}{¢(x); x € X} € I for every ¢. Since P is finite, the union of
these intersections is again in I. It was shown in lemma 2, that this

n

));(u,,...,uk) € z} € I. Since one of these
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union equals 1. Hence 14 € I. The assumption, that I is not prime
leads, hence, to a contradiction, id est: I ig prime. This proves
lemma 8.

This proves the theorem, that Mllao,ai,...,Al EZF + (BPI) +
1 (AC). The axiom of choice (AC) is therefore not provable from
(BPI) in ZF.

.

o

We may use the model constructed above in order to obtain a
further independence result. We consider the following two defini-
tions of continuity:

Definition (L.Cauchy): The function f from reals to reals is conti-
nuous at xo iff for every € > 0 there is a 6§ > 0 such
that |x - xo| <& implies |f(x) - f(xo)]| <e.

Definition (Heine - Borel): f is continuous at xo¢ iff %3g f(xn) =

f(xe) every sequence {x_}
fo n

n€w convergent to Xg.

In elementary analysis one proves, that both definition are equiva-
lent, but the proof uses the axiom of choice. That the equivalence
is no longer true if we drop (AC) has been discovered by Halpern-
Lévy in [35] and independently by

[3F] M.JAEGERMANN: The axiom of choice and two definitions of Conti-
nuity. Bull.Acad.Polon.Sci.vol.13(1965)p.699-70u.

Theorem (Halpern-Lévy; Jaegermann): It is not provable in ZF, that
every function from reals to reals which is continuous (at
Xo ) in the sense of Heine-Borel is also continuous (at Xg)
in the sense of Cauchy.

Notice, that it is obviously provable in ZF that every Cauchy-conti-
nuous function is also Heine-Borel continuous.

Proof. By lemma 4 (see page 136) A is dedekind-finite, while infinite
and by lemma 3 (see p.133) A igs a dense subset of 2% (in the sense
of the product topology). The function

=l

1
: » I
0 x n=g0 on+]

for x € A, is a one-one mapping of A into the interval 10,1} (right
closed, left open). ¢ is one-to-one since no x € A is finite (finite
subsets of w are all in the groundmodel YY{ ). Since absolut intervals
of A are non-empty, the image ¢(A) is a dense subset of {0.1], and
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$(A) is a dedekind-finite, while infinite, subset of the closed inter-
val {0,1]. Define the following function f:
0 if x € 6{A)
f(x) =
1 otherwise
for x € [ 0,11, Then £f(0) = 1, since 0 € ¢(A). Since ¢(A) is dedekind-
finite, every sequence {x_}

n’ n€y
contain at most finitely elements from ¢(A). Hence lim(f(xn)} = 1=

convergent to 0, for 0 < X, <1, can
£(0) and f is continuous in the sense of Heine-Borel. Since ¢(A)
is dense in { 0,1}, f is obviously not continuous in the sense of

Cauchy. g.e.d.

H) THE AXIOM OF DEPENDENT CHOICES

In his paper "Axiomatic and algebraic aspects of two theorems
on sums of cardinals" (FundiMath.35(1948)p.79-104, in particular
p.96) A.Tarski considered the following axiom, which was first formu-
lated by P.Bernays (J.9.L. 7 (1942)p.86):

(DC) AXIOM OF DEPENDENT CHOICES: Let R be a binary relation on the
set x such that (Vy € x)(Jz € x)({y,z22 € R), then there exists
a countable seguence Yo oY1 50 e sene (n € w) of elements of x
such that (yn’yn+1> € R for all n € w.

The name "dependent choices" is used, since (DC) asserts that there
exists a choice sequence where Yn iz chosen in dependence of the
choice of Yne1* Bernays mentions that (DC) follows from (AC) and that
(DC) implies the countable axiom of choice (AC®) obviously (see p.100
of these notes for the formulation of (ACY)).

Both axioms, (AC*) and (DC), are powerful weakened forms of
(AC); e.g. in analysis (AC%) is sufficient to prove most of the
"positive” results such as the first fundamental theorem of Lebesgue-
measure. In addition, (DC) is sufficient to prove such results as
the Baire category theorem. Further, we mention, that A.Lévy has
shown in his paper "A Hierarchy of formulas in set theory " ¥81],
that (DC) is equivalent (in ZF) with some forms of the L3wenheim-
Skolem theorem (see [#81p.72-74),

In the formulation of (DC) the choice of Yy is made in dependence
of the choice of V-1 In this formulation, (DC) can not be generalized
to yield the existence of sequences of length larger than w (if
certain hypothesis are fullfilled), since e.g. y, can not depend on

a "predecessor". But we get the idea to let depend Y, on the set
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{yn; n € w}. More generally we formulate for cardinal numbers o
(i.e. finite or an aleph):

(DCa) Dependent Choices: Let R be a binary relation between subsets

and elements of a set x, such that for every y € x with
card(y) < a there is an z € x with {y,z) € R, then there is
a function f : o + x such that (f"8,f'B} € R for every ordinal

B <o,

Here f'B = £f(B) and £"8 = {f(y); y < B}. The formulation of (DC*) is
due to A.Lévy:

[62] A.LEVY: The Interdependence of certain consequences of the
axiom of choice; Fund.Math. 54(1964)p.2135~-157.

Lemma 1: Lévy's axiom (DC®) is in ZF equivalent with Bernays’ axiom
of dependent choices (DC).

Proof. (1) Suppose Bernays’ (DC) and let R be a binary relation defi-
ned between subsets and elements of a set x such that (\fy < x)
(card(y) <uw + {3z € x)({y,z? € R). Consider S = {u; u is a finite
subset of x} and define the following relation R* on S:

(uy ,u? € R*&=>(Fz € x)(uy Y {2z} = u; ~ (u,22 € R).

By Bernays’ (DC) there exists a sequence Uo UL e v e sl sens (n € w)
of elements of S such that {un,un+1> € R* for all n € w. Define a
function f : w +» x by: f(n) is the only element of U ,q ~ M. then

f satisfies Lévy's (ncy.
(2) Now suppose (pc®) and let R be a relation on x such that

for every y € x there is z € x such that (y,z) € R. Define

s, = {<zo,...,zn);<zo,z1) € R ~{2zy,2:) ER~ ,.. » <zn_1yzn) € R}
and § = LJ{Sn; n € w}; Define the following relation R* between
subsets T and elements t of S by:

(T,) €ER* ® (J2 € x)(Fte € TI(E = to (2
where to *{(z) denotes concatenation, i.e. te *(2)= (V03-.9Vn,3) if
to = {vo,...,v) . By (DC¥) there is a function f : w - § such
that for all n € w: (f"n,f'n) € R*. Since f(0) = f'0 = (Vo,..,vk) € 3
define g : w + x by g(0) = vo,...,g(k) = vk,g(n) = the last coordi-
nate of f(n-k), for n # k+1. Then g satisfies Bernays’ (DC), g.e.d.

Lemma 2 (A.Lévy [521): 28 | N\ (pc®) + (ac).

Proof. Let x be any set. Define W = {y C x; y is wellorderable} and
a binary relation R between subsets of x and elements of x by:
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{(y,z) ER®(y EW A~z €x ~z Ey).
Let o = ®(x) = sup{A; X is an ordinal and embeddable into x}.
@ is a cardinal number. Suppose x is not well-orderable; then R
satisfies the hypothesis of (DC®), and hence, by (DC%), there exists
a function f from o into x such that {f"8,f(B)) € R for all ordinals
B < a., By definition of R this implies, that a is embeddable into
x. Hence o € ®(x) = o, a contradiction, since ordinals are allways
well~founded, q.e.d.

Corollary 3. ZF® | /\Q(DCQ) < (AC).

Next we shall discuss another family of weakened forms of the
axiom of choice and investigate the interdependences, resp. indepen-
ces between them and the family of statements {((DC%); o a cardinal}.
Let ¢ be an ordinal: (ACG): if x is a set of non-empty sets, such
that card(x) = ¢, then there exists a function f defined on x such
then f(y) € y for all y € x.

A.L&vy has obtained in 1521 {among other things) the following
results:

Lemma 4: Let @& be an aleph, then (in ZF): (DC*) + (AC%). Let a; and
a2 be alephs such that a; < a3, then (in ZF) (Dca’) -
(0c® ) and (AC*? ) + (ac®t).

For a proof see Lévy [52]p.138, p.140 and p.1u2.

The following nice result was obtained by R.B.Jensen in 1965
(unpublished). We are grateful to A.R.D.Mathias for telling us Jen-
sen's proof.

Theorem (R.B.Jensen): ZF }—/}(Ac") + (pc”).

Proof. Suppose, this is not true. Then there exists a set X and a
binary relation R on X such that (Yv € X)(3z € X2 y,22 € R), but
there is no sequence Ko 5X1 50 e e 5K 5ene (n € w), such that
(xn,xn+1) € R for all n € w, (Notice, that we consider Bernays’
(DC) rather tham (DC*)). Consider

W={Y; Y CX ~Y is wellorderable}.
Then for all Y € W we get that (Y,R’if Y} is well-founded and we
can introduce a rank-notion Py on Y by induction on the well-founded
relation R_1 (restricted to Y). Since UW = X (since all singletons
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are in W) we can define for every z € X:
A(z) = sup{pY(z); Y € w}.

S8tep 1: If z € X, then w < A(z).

Proof. Suppose not; then A(z) = n < w for some z € X, and hence
A(z) = pY(z) for some Y € W. Thus there are elements Xt ge e sXy
in ¥, such that {xs ,x3} € R-i, (xs,x3) € R'l,...,(xn_i,xn) € R
where x_ = z. But for given xi1 € X, there exists xo € X such that
(x,,xb)E R, and hence {(xg,X;) € R™1. Hence for Y* = Y U {xo } we

get pY.(z) = n+l, a contradiction.

-1

Step 2: For every z € X there exists Y € W such that A(z) = pY(z).

Proof. For ordinals v < i(z) consider the following sets:

T, * (Y, ; Y €W A M wellorders Y . py(z) = v}
and define K(z) = {Ty; y < A(z)). The set K(z) is wellordered of
type < A(z) + 1. Hence by (AC)‘(Z)+1
which selects from each T one element. Write f(T ) = (Y ,M), and
define Y* = LJ{YY; Y € A(2)}. We claim that Y* is wellorderable.
In fact, put Yo = Aes A = Yy = Yorenes A, =Y, - (U{YB; B <vY})sun.

Y
for vy < A(z) and Ny, = Mo,...,NY = My N (AY X AY); then N, wellorders

Y
Ay, and Y* = L){AY; ¥y < 2(z)} and the AY are pairwise disjoint.
Define
M* = {Ca,b ; \/Y\/G(aGA_Y ~ b€ Ag
[y <& vy =6 (a,D € NI},
then M* wellorders Y*. Hence Y* € W, and DY*(Z) is defined. It

follows that pY:(z) = x(2), g.e.d.

) there exists a function f

Step 3. The final step: Take an element 2z € X such that A(ze) is
minimal in {A(z); 2z € X}. By the Hypothesis on R, there exists
zy € X such that (2,2, € R. For any Y € W such that z; € Y define
Yt = yu {z6}. Then always Oy+(ze) = OY+(21) + 1. By the result of
step 2, there exists ¥ € W, such that x(z;) = QY(Z;). Hence for
this ¥Y:

Mzi) = pyalzi) <pyelzi) + 1 = pyylze) < A(z0).
A contradiction! A(z¢) would not be minimal! This proves Jensen's
theorem.

Independence Results

Mostowski has shown in 1948 by means of models containing
urelements that (DC) does not imply (AC) in ZF°, or even:
ZF° _J(DC”) + (ac™):
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[68] A.MOSTOWSKI: On the principle of dependent choices; Fund.
Math.35 (19u48)p.127-130.

We shall describe briefly Mostowski's model. Consider a set theory

in which there are ®; many reflexive sets. Let A be the setjof
reflexive sets x = {x},of cardinality 8;. Define Re = A,

Ry = U {P(Rp); B <y} and V = &)YRY' Take an enumeration of the set

of reflexive sets (called "atoms" in the sequel): Ro = A = {ay;y < wy k.
Every ordinal Y can be written (in a unigque way) as B + n, where 8 is
a limit ordinal and n € w., Write vy £ 0 iff v = B + n with n even, and
write ¥ = 1 iff v = B + n with n odd. A permutation f of Ro (i.e.

one-one-mapping of Re onto Ro) is called admissible iff f preserves

H

pairs, id est:
Def. f admissible # /\

0 - f(aY) ay+1)v
1~ flay) = ay—l)ll’
by € mp~ vy = 0}

[f(aY) *ay > [y
(y
Hence admissible permutations on Re leave B = {{aY

Y<uy

s d
Y+1
pointwise fixed. Let @ be the group of all admissible permutations on

Ro. Call a subgroup H of G a countable support subgroup if there is

a countable subset e of Ro such that H = {f € G; f leaves e pointwise
fixed}. Let F be the filter of subgroups of G which has the set of
countable support subgroups as filter basis. Define T = Flie,r]

as in chapter III, section B, page 54. Then T obviously violates
(AC), since e.g. B e'nﬂ, but B has no choice set in ¥l . Moreover
(AC¥') is false in ¥, since B is wellorderable in Ul of type w;.
Mostowski shows that (DC), id est (DCw), holds in zﬁl . In fact, if

R is a binary velation in ¥¥l , such that R satisfies the hypothesis
of (DC). Choose (outside of Yl ) a countable sequence Xp ,X1,... such

that (xn,x ) €R for all n € w. Each x, has a countable support

n+i

S,- Since égLSn is again countable, the subgroup H = {f € G; f leaves

\)Sn pointwise fixed}l is in F and fixes the segquence X0 53Xk 50 s sXpyene
which is hence in‘MR,, q.e.d.

Thus we have proved the following:

Theorem (A.Mostowski [68]): There exists a permutation model of ZF°
containing atoms in which (DC¥) holds, but (ACY!') is violated.
Thus (DC) = (AC), or better (DC) = (AC®!'), is not a theorem
of ZF°.

A.Lévy's paper [52] contains further independence results. Since
Lévy's paper is "pre-Cohen", as Mostowski's [68], the results apply
only to ZF® and the method is by construction of Fraenkel-Mostowski-
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Specker models.

Lévy asks in [521p.137 and in [%9]1p.224, whether (ACY) + (DC%)
is provable. R.B.Jensen has solved this problem in 1965 (unpublished).
We are grateful to F.R.Drake for sending us his abstract of Jensen's
proof.Jensen presented his result during the Logic~Colloquium 1965
in Leicester. He first gave a permutation model containing urelements
in order to illuminate the basic idea in his independence proof, and
then translated the method to the construction of a Cohen generic
model. We follow Jensen and present first his permutation model. In
the sequel we make, of course, the tacit assumption, that zZF® is
consigtent.

Thecrem (R.B.Jensen): There exists a permutation model T of zr°
containing atoms in which (AC%) holds, while (DC¥) is not
true in U0 . Hence (AC®) + (DC¥) is not provable in ZF°.

Proof. Take a set theory with choice in which there is a set Ro of
reflexive sets (called atoms), such that Re has cardinality Ni. We
want to define a certain tree-ordering on Ro.

Consider first the well-ordered set w; and consider

ol = {<X1,...,xm); Xy <xp <... < X € w}
and H = Utw?; 1 <m < w}. There is a natural partial ordering << on H
defined by: s1 << g2 ® the sequence s; is an initial segment

of s;. More precisely one defines first s:<' s; to express that s
immediately prececeds s;:
81 < 87 ¥ (8 = (x;,...,xm) A 87 = (xl,...,xm.y))
Hence s; < 81 ¢ (3 v € w)(s2 = s;*{y}) if « denotes concatenation of
sequence. Now define
sy W s, ® there are finitely many elements of H, say
h ""’hn’ such that sy = hi1 < hy < ..<-hn = 83,
Since H has cardinality N, , there exists a one-to-one mapping f from
Re onto H. Via f one carries the tree-structure << over to Re by:
a<be® fla) << f(b).
Hence < is a strict partial ordering on Ro and (Ro,<) is a treec.
Notice that (Ro ,< ) has no tree-tops, that the order of each element
of R is finite and that for every a € Ry the set of immediate
successors {b € Ro; a < b A ord(b) = ord(a) + 1}has card:’naeif] N .
Let G be the group of all orderpreserving one~to-one mappings
from Ro onto Ro. In order to define an interesting filter F cf
subgroups we define the notion of a "small subtree". First:
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B is a complete branch in (R ,S ) iff (B,<) is totally ordered

and if a < b € B, then a € B and there does not exists an
element d € Ry such that a <d for all a € B.

Definition. If T is a subset of Rp,then {T,€)is a small subtree of
{Ro,<) iff T is countable, (T,<) is a subtree (id est:
a<b €T inmplies a € T) and no branch in (T,<) is a
complete branch in (Re ,€ ) .

Definition. A subgroup H of G is called a nice subgroup iff there
exists a small subtree (T,<} such that
H = {n € G; 7 leaves T pointwise fixed}= K[T]

Define F to be the set of those subgroups of 6 which include a nice
subgroup. F is a filter of subgroups. Define HIx] = {7 € G¢; =n(x) = x}
and let TC(x) = {x} Ux VU ij U ... be the transitive closurec of x.
Define as in chapter III, p.5u: WL = Wlic,rl = {x; /\y(y € TC(x) -
Hlyl € F)}. Specker's theorem (see p.54) shows that Wl is a model of
ZF°. We shall show that (AC®) ~ 7 (DC¥) holds in T .

Lemma: The axiom of dependent choices (dC”) does not hold in YL,

Proof. Since for a € Ro, a has finite order, and hence {b € R; b & a}
is a small subtree it follows that Klal = Hlal € F and hence Ro,
every clement of Ro and the tree-ordering < is in YY( . Obviously <

is a binary relation satisfying (Vx € Ro)(Jy € RoI(x< y). If
(Dcw), and hence (DC), would hcld in KFL, then there would be a
countable sequence S = {ao,a;,...,an,...} of elements of R in?TL,
such that as < a3 < ... < a, < ... . 1If S is in W, then there is a
small subtree T of Re such that if m € K[T} = {0 € G; ¢ leaves T
pointwise fixed} (by def.see p.57) entails 7(S) = S, id est

KIT] <H[SI. But S* = {b € Rg; (3a € S)(b € a)} is a complete branch
in {Re,<). Since T is small, T N S" is finite (or even possibly
empty). Hence there exists be € S with be € T. Define the following
permutation T of Re: pick any element co € Re ~ T such that, if

b: is an immediate predecessor of bo, then bi < co and ord(ce) =
ord(bi) + 1 (hence ord(es) = ord(be) and cp and be are in the same
set of immediate successors of bs). Let T be the identity on

{x €Ro; T(xZbo vx 2 o)}l and T(bo) = co, T(co) = be and T maps
the subset {x € Ro; x 2 be} onto {x € Re; x  cs} and reversely.
Hence T € KIT] and since X[ T} < H[S], it follows that T(S) = S.
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But bo € S implies co = T(be) € T(8) = S, a contradiction. This
proves the lemma.

Lemma. The countable axiom of choice (ACw) holds inlzyl.

Proof. Let z = {xi; i € 0w} be a countable set in WL such that

i#3 2% Nx: =8, x; #0 for all i € v and the sequence
{(xi,i); i € w} = Lis in Y. Hence there is a small subtree T such
that KIT] <KI[Z] € HlZ] < H[z] (since I is a wellordering of

Z, see p.57~58). Write T = TZ. Proceed outside of L . Since (AC)
holds in the surrounding set theory, there exists a choice set C =
(yi; i € w} such that i € X for all i € w. The set C need not be
in W, but C < WL by the transitivity of Jfl . We are looking for
mappings (not in G) which transform C into some choice set C* which
is in M.

Since y; € UL, there are small subtrees T, of {Ro ,€ ) such
that K[Ti] < Hly;l for i € w. Proceed by cases.

Case 1. T* = L){Ti; i € w} is a small subtree. Then obvicusly
KIT*] S H®lcl £ulcl and C is in UP and we are done since we have
obtained a choice-set C for z in Wl .

Case 2. T® is not a small subtree. We shall construct a sequence of
permutations 7, € KT ] such that ™ = L){ﬂi(Ti); i € w} is a small
subtree. We construct these permutations T, by induction on 1i.

I) Let m, be the identity on R,.
II) Suppose that for 0 < 1 < n permutations my; € K[TZ] are defined.
III) Construction of L

Of course, the construction of T takes place outside of 331 . Remember
that the tree structure < on R, has the property, that the set of
immediate successors of any element of R, has (outside of TYL 1)
cardinality B, while small subtrees always have cardinality < Ry -
Hence we may shift (displace) the tree Tn into a tree nn(Tn) so that
T, 0T, =T, 07 (T ) but m. (T ) - T, is disjoint from L){ni(Ti);

0 <i<n}. In details:

For a € Ry let [a] be {x € Ry;a < x}. Further call the cardinality
of {y ERy3 y <a ~y # a} the order of a, in symbols ord(a). Hence
ord(a) is for a € R, always finite. Define L(k) to bc the k-th level:

L(k) = {x € R,; ord(x) = k}
For y € L(k) let I(y) be the set of immediate successors of y:
I(y) = {x ERy3 v € x a ord(x) = ord(y) + 1}
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and L(y)

Thus yi # vz, V1, V2 € L{k) implies I(y,) N I{y;) ::E\always has
cardinality R; and further L(k+1) = k){I(y); y € L(k)}.

When we consider {[a]l ,£) we mean of course the ordered pair
consisting of [a]l and < restricted to [al. If ar, a2z € L(k), then
(la;1,<) and ([a;],€}) are isomorphic (and isomorphic with
(Ro,<)). Let GZ; be such an isomorphism which maps [ai] one~to-one
onto [a2] in an orderpreserving way. If ord(a:) # ord(a:) then
OZ; is undefined.
For m < ord(x) define A{m,x) to be the element z € Ro with
ord(z) = m and z < x. Since € is a tree-ordering of height u,
A(m,x) is unique.

With this amount of notation we are able to define by induction
(on k € w) a sequence of permutations gﬁ € G which approximate "

gg is the identical mapping on Ro . Suppose g? is defined for

k-1
. n
¢ which we are going to characterize:

Since T, T, and L}{ﬁi(Ti); 0 €£4i<n} are all countable and
each set I{y) for y € L(k-1) is uncountable we may find a function ¢
from L(k) onto L(k) which preserves the partition {I{y); y € L(k-1)}
id est ¢"I(y) = {$(x); x € I(y)} = I(y) for all y € L(k-1), and
leaves L(k) N T, pointwise fixed and n-1
{g(x)s x € LK) NT ~x&T}N{x€LK;x€ET, U i=0ﬂi(Ti)} = f.

0 €S m < k. Define gﬁ by means of g ,0 and the following function

Now define gﬁ : let x be in Ro:

g0 if orat) <k,

k - -
&) = 14" e if orato = x,

Alk,x) .
T4 (Aii,x)) ¥ if ord(x) > k.

Thus the sequence gi for k € w is defined by induction for all k € w
and we define Tt let x € Ro:

_ ord(x)
ﬂn(x) =8, (x)

€ - e A s s (T,
It follows that T K[lzl and T (T ) is "disjoint from izﬂﬂl(Tl)
modulo TZ" . Since we have defined the sequence Ws,ﬁ:,...,ﬂn,...
by induction it follows that every branch B which is included in

T° =kw){ﬂi(Ti); i € w}

is either included in T, or in one of the small subtrees ﬂi(Ti).
Hence T® itself is small. Hence KIT°] € F,

Define C° = {ﬂn(yn); n € w}; then KIT°] < Kim (T )] S HT (y)]
since KIT ] <Hly 1. Thus KIT°] < k[ c"} <HIC’] and it follows
that C° is a set of WL .
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Since m_ € K[TZ] < Klz] it follows from v, € %, € z that
ﬂn(yn) € ﬂn(xn) = x, € z. Hence ¢® is a choice set. This proves the
lemma and Jensen's theorem is established.

Discussion. The function ord can be given in WL and {L(k) 3k € w}
is a countable set in UL . By (ACY) in Wl , W contains a choice set
C for this set. It follows that {x € Ro; (Jy € C)(x < y)} is a small
subtree!

Another point is, that the method of proof given above can be
used to yield the following generalization:

Theorem: If o is an aleph, then (AC*) + (DC”) is not provable in ZF°

{provided ZF® is consistent).

The proof is analoguous to the one given above. Instead of defining
H to be (){w?; m € v} one takes UJ{(a™)™; m € 0} as H, where at is
the successor aleph of o. Small subtrees of (Re,< ) are subtrees
without complete branches of cardinality € 0. Notice, that here Rg
has cardinality a*. The proof can be carried over to the present case,
since at is a regular cardinal.

This generalization shows, that the other result of Jensen,
namely 2F° } AQ(ACG) + (DCY) is the "best possible" result.

Translation to a Cohen-generic model

Theorem (R.B.Jensen 1965): Every countable standard model MWL of
ZF 4+ V = L can be extended to a countable standard model 31
of ZF such that:
(2) The ordinals of Y1 are exactly the ordinals of M ,
(b) the alephs of Il are exactly the alephs of YU ,
(o) (ac”) holds in I ,
(a) (0c®) does not hold in JL .

Proof. Let ML be a countable standard model of ZF + V = L. We extend
371 by adding to N a generic copy of H (the tree defined on pA5H
and generically all small subtrees T of H together with wellorderings
on each T.

Hence take the first uncountable ordinal m?n' of 3?[ and define
H in N and the tree-ordering < on H as before. Next define a ramified
language £ in N which contains besides the usual ZF~symbols, the
limited quantifiers \/a, the limited comprehension terms % (for
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ordinals o offﬂi ), constants x for each set x of X1, , constants
éh for each h € H, a binary predicate < and binary predicates éT
for each small subtree T of H.

A condition p is a finite partial function from @ X H into 2.
Define a strong foreing relation - containing the following key-
clauses:

plhrteag®(In€w(pht=nspn,h):=1),

plkts £+ ® (I hy,he eﬁ)(hx Sh &plits "—‘éhl

p kS (t1,t2) ® (Ih€@mhe€Tapiht =a &plht=n.
where t, ti1, t: are constant terms of £. Obtain a complete sequence

& piF t2 zéhz),

R of conditions and thereby a valuation val(t) of the constant
terms t. By the Hauptsatz, UL = {val(t); t constant term of £} is a
model of ZF which contains ){], as a complete submodel. Further e
and U have precisely the same ordinals (by lemma T, see page 90);
hence (a) holds.
Notice that
oy = val(éh) < w,
2) € = val (€ ) is a tree~ordering the field of which is
just the set {ah; h € H},
3) Sy = val (50 = {a ,nd5 n €T CH]
more precisely < is the valuation of Em+1x(\&7\g(x = {y,2 ~y<z))
and similar for ST. Since we took symbols ST into £ only for small
subtrees T which are in N and N satisfies V = L, hence (AC),
there is in MWL a wellordering WT for T. Since ST is a one-one-function
from {ah; h € T} onto T, and val (WT) = WT is in 71 it follows that
in YU the sets {ah; h € T} (T a small subtree of H in N ) are
wellorderable.
Let G be the group (in WU) cf all orderpreserving one-to-one-
mappings 7 from H onto H. For a condition p define
m(p) = {({n,m(h),e; ({n,h) ,e) € p}
and define the action of G on £ in the following way: if ™ € G and

h € H, then ﬂ(éh) = éﬂ(h)’ ﬂ(éT) = .W"T , Wwhere .

T = {m(h); h € T} Geiaineé
and for an £-formula @ let T(®) be result[?gaawg/;y replacing any

occurence of éh by ﬂ(éh) and of ST by ﬂ(éT) (the other symbols of

% remain unchanged). Then the following holds:

Symmetry-Lemma: If 7 € G, p is a condition and % an f-sentence, then
pl-d « w(p) Ik m(d),
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Proof by induction (see page 99).
This lemma enables us to prove:

Lemma: The countable axiom of dependent choices (pc®) does not hold

in JU .

Proof. One shows that no condition p can force that {ah; h € H},
partially ordered by ¥, has a complete branch. See the proof of
71 (DCY) in the preceeding FraenkelMostowski-Specker model.

In order tc show that (ACY) holds in J| we need a lemma
which says, that any set of ML which is Y1 -countable (i.e. coun-
table in JT ) is also m-countable. More generally we shall prove
that cardinals are preserved in the transition from ML to I ,
thus proving (b).

Combinatorial Lemma. Let B be in W a set of conditions. There
exists in M a subset B' of B such that B' is in WL coun-
table and for every p € B there is a p' € B' such that p

and p' are compatible.

For a proof see e.g. Jensen's lecture notes {391 (Springer~Berlin)
page 147, or these notes page 106~107. The lemma implies obviously
that if B is in Jfl a set of conditions whose elements are pairwise
incompatible, then B is countable. We have shown on p.106-108
(these notes), that this implies that cardinals (i.e. alephs or
finite ordinals) are absolut in the extension from JY], to 31;

thus we have shown:

Lemma. For every ordinal y of J{ (and hence of W[ ) the cardinality
of y in the sense of Y is equal to the cardinality of ¥

in the sense of M .
:'YYL :w
Y =y )

hence m and 97 have precisely the same alephs.

In order to show that (ACm) holds in 1 we introduce the following
notation: for a small subtree T of (H,<) 1let V(T) be the I -class
of sets which are explicit definable from T. Since £ is W[ -definable
and M is a complete submodel of M (see the necessary remark on
p.96-97), £ is Y[ ~definable. Since the correspondence h = a, is

not in Y (for all h € H), we cannot interpret £ inside of J7 ,

but what we can do is to interpret certain sublanguages £(T) of £
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in I . Namely let for a small subtree T be £(T) the language
which contains besides the ZF-symbols, the symbols Va and Ea,
further x for x € M ana &, only constants &, for h € T and
symbols S, for small subtrees D for D C T.
Notation: we say that the set s of ¥{ is explicit definable from
T if there is a constant term ty of L(T) such that s = val(ts).
Now let V(T) be the collection of all sets of 9{ which are explicit
definable from T. We claim that V(T) is Y{ -definable and has an
YU -definable wellordering.
In fact, since £(T) is m—definable, hence JI -definable, and the
correspondences a, > h for h € T and Sy > D (since D = Range(SD))
for D C T are in 9 we can define an interpretation @ for constant
terms t of £(T) in TL by setting
Q(éh) 3y Q(éD) = SD for h € T, D C T, D small subtree,
QUL ) = € and Qx) = x,
and then extending by induction to all t's of £(T). Thus
V(T) = {Q(t)itis a constant term of L(T)}
and V(T) is an J -definable class.

h

Lemma. If T is a small subtree of (H,€), then V(T) has an
¥l -definable wellordering.

Proof. Since T and {D € T; D a small subtreel}l are wellorderable in
Nl and further {x; x a set of Nl 1}, (V% o € on™ }  and

{Eo'; o € Onm } have m-definable wellorderings, it is clear,

that the alphabet of £(T) is wellorderable in WL . Hence the class
of all constant terms t of £L(T) (considered as finite sequences of
symbols from the alphabet of L(T)) has a (lexicographic) wellordering
which is carried over to V(T) via Q.

Notice, that & can not be defined for all terms of £, but only for
tarms of £(T); but this is sufficient in the present case, gq.e.d.

Lemma. For every term t of £ there is a small subtree T such that
for every condition p it holds that p IF't # 6 = t N C(T) # 4.

Sketch of Proof. C(T) is the unlimited term of £ so that V(T) =
val(C(T)). For given t consider B = {q € Cond; q \/X x € t},
where Cond is the N[ ~-set of conditions. Now apply the combinatorial

lemma and obtain a JI{-countable subset B' of B so that for every
q € B there is g' € B' with q Y q' € Cond, and construct the tree T.
Then for p' € B' there is t' of L(T) sc that p' Wt #8 > t' ¢ t.
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Lemma. (AC®) holds in JU .

Sketch of proof. Let z be a countable set inJl , z = {zi; i € w}
so that each z; € z is not empty. Let t,, ty (i € w) be constant
terms of £ so that z = val(tz) and z; = val(ti). By the preceeding
lemma there is a sequence of small subtrees T, such that

) W’ti Ll ad t; A C(T,). Obtain a sequence of permutations m;
leaving t, invariant but such that T* = kj{ﬂi(Ti); i € w} is a
small subtree (use the construction presented in the Fraenkel-
Mostowski-Specker version of the model). Hence in J( : z; O V(T #* ¢
for all i € w. Since V(T*) has an J[ -definable wellordering we
obtain a choice sequence in U] . This proves Jensen's theorenm.
Again, as in the case of the permutation model, the theorem can be
strengthened to

Theorem (Jensen): Let a be an infinite cardinal in a countable
standard model N1 of ZF + V = L; then I can be extended
to a countable standard model Yl of ZF in which (ac%y is
true but (DC¥) is false and furthermore O‘n‘wL = Ongi' and
MU and L have the same alephs.

The Independence of the Axiom of Choice from the Principle of

Dependent choices

Mostowski showed in 1948 that (AC) is independent from (DC) in
ZF° . W.Marek in Warsaw translated Mostowski's construction of a
model YIL of zF° + (DC) + 71 (AC®!) to yield a Cohen-generic model
YU of ZF plus (DC) + 71 (AC). Thus (pc¥) » (AC) is not provable in
full ZF.

{S7) W.MAREK: A remark on independence proofs; Bull. Acad. Polon.
Sci. vol.14(1966)p.543-545.

Marek just immitates Mostowski's model by adding to a given countable
standard model YL of 2F + V = L generically a set X of By many
unordered pairs Bu (¥ € 1) where each By contains two Cohen-generic
reals Uy and Uj. The extension J{ is obtained as the constructible
closure (using ordinals of WL ), but besides G8del's eight fundamental
operations Marek takes a nineth one which will serve to add countable
sequences. Unfortunately the proof in [5%] is only briefly sketched.

We shall consider in the sequel Feferman's model QTL[ao,a:,-.an..}.
Feferman showed that in this model the (BPI) fails and Dana Scott pointed
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out that even the axiom of choice for unordered pairs (AC:) is
violated - see Feferman [16] (we cited this paper on p.98). Several
people observed that (DC) holds in Feferman's model. Probably
R.M.Solovay was the first who made this observation. A proof is
published in:

[¥3] G.E.SACKS: Measure - Theoretic Uniformity in Recursion Theory
and Set Theory; Transactions Amer.Math.Soc.vol.142(1959)p.3§%-

The proof is presented in [?3] in the language of measure-theoretic
uniformity rather than in the forcing approach. The results of Sacks
[#3]1 are announced in: G.E.Sacks: Measure Theoretic Uniformity;

Bull. Amer. Math. Soc. vol.73(1967)p.169~174, and (under the same
title) in the Gddel-Festschrift (Springer-Verlag, Berlin 1969)p.51-57.

FEFERMAN'S MODEL M lao,a1,...1.

Let M be a countable standard model of ZF + V = L. Define in )L a
ramified language £, which contains besides the usual ZF-symbols
{ ,v,V, =, eand variables), limited existential quantifiers\/a
and limited comprehension operators E® (for ordinals a of 1),
constants x for each set x of ] and unary (generic) predicates éi
for i € w. We suppose that this is done in such a way that the cor-
respondences x > x, 1= &;, a > \/a and a +E* are all1 Nl -definable.
This can be attained e.g. by the standard-method - see page 79.
Define conditions p to be finite partial functions from w X w into

= {0,1}. The (strong) forcing relation IF between conditions p and
L~sentences is defined as usual. The definition contains the following
key-clause:

plha(m*(An€w)phkt=nsplnd) =1
where t is a constant term of £. Obtain a complete sequence & and
thereby a valuation val(t) of the constant terms t of L. Let
71,= {val(t); t a constant term of £}, then Yl is a countable
standard model of ZF. It holds that a; = val(4,) € w. We use the
following notation
ﬁgm[ao,al,-..]
ie. U results from W by adding countably many Cohen-generic
reals a; (i € w) to N . Notice, that the correspondence as =i,
id est {(a ,i?3; 1 € w}, is not added and that we did not add a set
Cﬂmﬂt

A which just collects these generic reals a. t\Thls f% the main diffe-
rence to the model of Halpern-Lévy: ?TL[ao,a.,...,A] (see pages 101-
103 and p.131). Halpern-Lévy's model satisfies the (BPI) and since
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(BPI) = (OP) = (AC2) (in ZIF),
where (BPI) is the Boolean prime ideal theorem, (OP) the ordering
principle and (AC2) the statement which says that every set of un-
ordeped pairs has a choice-function, it follows, that (AC;) holds
in Q?L[ao,al,...,A}. We shall show in the sequel that (AC;) does
not hold in N{ao,a1 ,...l. Moreover it will be shown that there
is no set in Nllap,ar,...)] which just collects the reals a@o,ais..»
Bpsees - Though the models of Feferman and of Halpern~Lévy seem
to be very similar, they are considerably different and have extre-
mely different features.

Symmetry-properties of Feferman's model

Let G be the group (in M ) of all one-to-one mappings m of
w onto w. Let (%) be the result of substituting éw(i) for éi in
the £L-formula ¢, and define w(p) = {{{n,m(i)’),e’; ({n,id,e) € p}
for conditions p. Then the "classical"” Symmetry-lemma says:

"If r € G, & is an L-sentence and p a condition, then

pi-e iff w(p) b w(PO"

Feferman considers in [16] p.330-331, a different kind cf trans-
formation {we use Lévy's notation in [§11 p.1u7-1u43).

If r is a set of [ and r Cw x w , then r defines a trans-
formation:

Definition: Let Q be a function on a subset of w ¥ w into 2 (in

particular Q may be a condition). We define
{r,Q) = {{{n,id,e} 3 ({n,id,e’ € g ~ (n,i) € r) v
v{{n,D ,1-e) € Q ~ {n,1i) € m}.

Definition. Let & be an L-formula. We write [{r,®] for the result of
replacing each occurrence of éi(c) (where ¢ is a variable
or a constant term of £) in & by

[P;C] e w ~ (éi([P:Cl) “’([I‘,C} ,i) € 1),

where [r,z] = ¢ if ¢ is a variable and ([r,z],i} e r
stands for:

\/?[xer*/\;’(yex‘*(Ag(zay*’z

/\;(z ey ez ={r,z] vz

14

{r,z]1) v
inmn

13

(the Kuratowski-definition of an ordered pair as a limi-
+ed sentence of £) and z = [r,z] for‘A 2(v ezevelr,gl).
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It follows, that if p is a condition (in Ny and r Cwxw, rin

DYZ » then [r,pl is a condition (in L ). Further if ¢ is a limited
L-formula, then [r,®] is a limited £-formula; if @ is uniimited, then
so is [r,8l. If + is a limited comprehension term, say E®x®(x),

then [r,t] = E%[r,8(x)) is a limited comprehension term (this is
used above for {r,z] if ¢ is a constant term).

Lemma I. Let Qi and Q: be functions with Dom{Q:) C w X w,
Dom(Q2) C w X w and Range(Q:s) € 2, Range(Q2) € 2 and
let r € w x w and suppose that Qi, Q2 and r are in n .
If Q1 € @, then [r,01] C[r,Q]. Further it holds that
{r,[r,Qi}} = Q; (for i =1,2). If &(x) is an £L-formula
and ¢'(x) = {r,0(x)], then [r,0(W)] = ¢'Ur,ul) if u is a
variable of £ or a constant term of £. Further it holds
that 6l r,t] = 8(t) for any constant term t of £,

{see p.79 for definition of 8).

Lemma II.If & = (po,pl,...,pn,...) is a complete sequence of conditions
and if »r C w X w is a set in ML , then

{r,.8 gDef ([r,pO],[r,pli,...,[r,pn},...)

is a complete sequence.

LemmalIIl,For every constant term t: vala(t) = val{r R}([r,t}) for
>

r and R as in the preceeding lemma. For every L-sentence ,

T ke 58 F_ g Elr,el.

For a detailed proof see Lévy's paper [S511p.148. Lemma IIT can be
strengthened to:

Lemma IV.(Feferman [161): Let ¢ be an L-sentence, p a condition (in
jmt) and » Cw X w, r a set of N . Then
ple iff [r,pl W [r,0}].

Next we shall present Feferman's lemma, which says, that (BPI) does
not hold in 31 . We need some lemmata.

Lemma V. Let P(w) be the powerset of w and I a prime ideal in P(w).

If I is not principal, then I contains all finite subsets
of w.
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Proof. Suppose, there is a finite subset S = {b""”bn} € w such

that S€ 1. Then w - S € I since I is prime. Write By = w - {b1},B2 =

w - {bz},...,Bn z w - {bn}. Then (\{Bi; 1<i<n}€1I and since I

is prime there exists i with 1 € i < n such that B, € I. Since I is

a proper ideal, I = {x Cw; x C Bi}’ Hence I is a principal ideal,
q.e.d.

Lemma (Feferman {161p.3u3): Let Pji“
sense of ¥, . Every prime-ideal I € U in the Boolean algebra

{w) be the powerset of w in the

(E’jt (w), €% is a principal ideal.

Proof. Suppose there exists in I a non-principal prime ideal I of
(r7 (W, €. Thus I contains all finite subsets of w. Let t; be

a constant term of £ such that I = val(tI) and ty = E%%®(x).

Let occ(®) = {i € w; éi occurs in ¢} and n € w such that i € occ(®)
implies i < n. We shall show that neither a, nor w - aj is in I

(a, generic). Proceed by cases:

Case 1. Suppose a, € I holds in Y] . Since everything that holds in
71 is forced by some conditions in R, the complete sequence which
defines 37, , there exists p € & such that
p I @(én).
Let ko be chosen so that for all k 2 ke ; (k,n) € Dom(p).
Define in T :
r={km;mFnwvim=nark<k)} Cwxow.
It follows that [r,pl = p. Let @'(x) = [r,8(x)}. Lemma IV implies
p Ik [r,@(én)], hence Yl E [r,@(én)] since [r,p] = p € &. But
YL E [r,¢(én)] - @'([r,én]). By construction of r:
Tk ¢'([r,én]) * ¢([r,a ]). Hence
NnE e(lr,a_ 1)
and therefore val(lr,4,1) € I. But
val([r,én]) = {(an Nke) U (0w - an)] N (w - koo
Since prime ideals J satisfy: al b € J then a € J or b € J, it
follows that either (an N k) U (e - an) or (w ~ ko) is in I.
But I contains all finite subsets of w, hence in particular kp.
Hence w - ko cannot be in I since otherwise ko U (0w - k) = w € I,
Thus we get that (an N k) U (w -~ an) € I. Hence w ~ a, € I. But
by our assumption ay € I, a contradiction, w would be in I.

Case 2. ¢ = a, € T holds in YU . Proceed in a similar way and obtain
a contradiction. This proves the lemma.
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Corollary: The Boolean Prime Ideal Theorem does not hold in 71 .

Proof. It is well-known that (in ZF) the (BPI) is equivalent to the
statement: "Every infinite Boolean algebra has a non-principal prime
ideal"” (see e.g. Tarski's abstract in the Bull. AMS 60(1954)p.390-
391). It follows hence, from the previous lemma, that (BPI) does not
hold in J{ .

Remark: Dana Scott showed that in Feferman's model ?{ even there
does not exist a choice set selecting reals from the cosets of the
rationals in the reals - see Feferman's paper [461p.3u3-3uy,

Let C(a,éi1,éi2,...,éik) be the M -set of all constant terms
t of £ such that 6(t) < a and symbols éj occur in t only for
j € {i;,...,ik}. Let 3ﬁr[a,ail,...,aikl be the XL -set of those
sets (of I ) which are dencted by members of C(ot,éi1
It is clear that L has a constant term £<a’éil""’éin) which denotes
3r£{a,ai1,..,aik}. Define

Clay ».vehdyy) = L){C(a,éil,...,éik); a € On
and let E(éi ,...,éik) be (an unlimited) constant term of £ denoting

4
bird
L}{jn,[a,aix,...,aik]; a €on "} = fﬁl{ail,...,aikl

,...,éik).

m oy

Lemma. For each finite subset {ig,...,ik} of w, j”L[ail"‘°’aik}
has an JY -definable well-ordering.

For the proof use the techniques presented on pages 97-98, 1338 and 15% .

Lemma. Let ®(x) be an L-formula whose cnly free variable is x such
that occ(®(x)) = {i € w; 4; occurs in ¢(x)} € k € w. Then for
every condition p:

p I V200 © (V%00 A x & £(a,d0 58150005800,

The idea for the proof is the following: if u is a constant term of
L, say ngW(x), with B < g, such that ¢(u) and u mentions (names for)
generic reals &3 at most for j € {0,1,...,m}, then transform u into
a term u* = EBXW*(x) such that 9(u*) and u* mention (names for)
generic reals éj at most for 7 € {0,1,...,k} = k + 1. This can be

achieved by replacing a in u by pairwise disjoint subsets

k2?4120
of a - More precisely one defines (in WL > the following function r
from constant terms to constant terms (assume k € m):

r(E%x4, (x)) = B4, (x) if 0 < i <k,

r(E¥x4 .

1) = EVxE ((n-k#1) -x#1)  if 0 € i < m-k,
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r(E¥x4. (x)) = E¥a. (x) if o0 < i.

i+m+1 i+k+1

Extend r to act on all constant terms of £ in the following way.
If EVxT(x) is any constant term of L, then replace first in T(x)
every occurence of aj(x) by x € o3t za (z) and call the resulting
formula I''(x). Then replace every occurrence of E¥ zaj(z) in T'(x)
by P(széj(z)) and call the resulting formula r(T(x)). Finally
define r(EYxT(x)) to be E'xr(T(x)). With these definitions let u*
be BBXP(W(X)), id est r{u). It follows from the construction, that
u* mentions (names of) generic reals éj at most for J € k + 1.
Hence val(u*) € 9?C[ao,a1,...,ak]. A symmetry argument shows that
¢®(u*) holds.

Lemma (R.Solovay): The axiom of dependent choices (DC¥) holds in
Feferman's model 31 = 3Tﬁ[ag,a;,...,an,...].

Qutline of proof. Let ¢(x,y) be an £-formula whose only free variables
are x and y, such that if &. occurs in ¢, then j < m. Let us assume
for simplicity that m = 1. Suppose Ea(xay)é(x,y) defines in J] a
binary relation R on a set s such that for all x € s there exists
y € x with {x,y? € R in Y] . We intend to find in J1 a function f
from w into s such that for all n € w, {(f(n),f(n+1)) € R and
£ € 3TL(ao,a;).

By the previous lemma it holds in ¥U that the following two
formulae are equivalent:

A, \/[x £ £(d0 41 50054 ) > 00,1,

/\ \/ € £(doA1,ee 8 ) 2 (00GLY) Ay € Ll rdiye.nhd 0],
Consider the following transformation roe1t
v (E%d0 (x)) = E¥xd (x),
r +1(meéi+1(x)) = waé,(2i+1~x + Zi - 1)y for0<i<n,
e (EOxAL o (x)) = ¥, (2" hex o+ 2™ o,
n+1(meé +.(x)) = waé1+j(x) for 3 €4 € u.

This transformation r can be extended to act on the whole JfL -class
of constant terms in the same way as it was done in the preceeding
proof. A symmetry argument yields that

(33 /\x Vy{x e

0 A VIx e v, (Elhose 8 0) > 000,y) ~ y & v (£,

n+1(£(éo,...,én)) -+ o({x,y)l, and

Nl

]
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are equivalent (namely, apply r o4 TO (1) ® (2)). Notice that

rn+1(£(éo,...,én)) and rn+1(z(éo,...,én+1)) mention (names of)
generic reals &, only for j = 0 or j = 1. Hence vall(r  ,(t(d0,..,3)) C
- Mlag,a;] for kx € {n,n+1}. But Nllao,a:] has an Y -definable
wellordering. Hence there is in YU a function £ : w » s such that
f(o) € m[ao,ad‘,

£(n + 1) € vall(r_, (t(do,.. .54 ;) € Mlas,ail,
and /\new(f(n),f(n + 1)>€ R holds in Y0 . We can insist that
f € 3Tl[ao,a1], since the constant-terms that denote the well-orde-
rings needed in the definition of the term te (for f = val(tf)) are

members of C(ae,air ). This proves the lemma.

Theorem (R.Solovay): If ZF is consistent, then so is ZF + /\(}<Ac“) +
+ (dCc) + T (nc¥).

The model used by Solovay is the Cohen-generic extension
ytfﬂ:yﬂ/(ao,...,aY,...}Y<w¥L of a countable standard model MNlof
ZF + V = L which results from Yy by adding w; many (in the sense of

M) generic reals a, (y < wi®) to YL but no set collecting these reals.

¥
Ancther result in this area is due to Tomds Jech from Prague:

[38] T.JECH: Interdependence of weakened forms of the axiom of choice;
Comment.Math.Univ.Carolinae, Prague, vol.7(1966)p.359-
371, Corrections, vol.8(1967) page 567.

Theorem (J.Jech [381): Let NIl be a countable standard model of
ZF + (AC) and o a regular infinite cardinal in NL . Then
there is an extension YU of Ml with the same ordinals
such that Y| is a ZF-model satisfying (ACB) and (DCS) for
every B < a but neither (AC*) nor (D) hold in Y .

H.C.Doets asked, whether there is any interdependence between (oc®
and the (BPI). The answer follows from results presented in this
chapter. In fact, Halpern and Ldvy showed that M la¢,ar,...,Al
satisfies (BPI) + 71 (ACY) and hence 71 (DC¥) -~ see pages 100-103 and
section G, p.131. On the other hand (pc®) + 71 (BPI) hold in Feferman's
model 3TL [agra;seeal.



