
CHAPTER IV

COHEN EXTENSIONS OF ZF-MODELS

In this chapter we study Cohen's forcing technique for con-

structing extensions of ZF-models. This technique was introduced

in 1963 by Paul J.Cohen. Using this method Cohen has solved the

long outstanding problems of the independence of the Continuum-

hypothesis from the axiom of choice and the independence of the

axiom of choice from the ZF-axioms (including foundation):

P.J.COHEN: The Independence of the axiom of choice; mimeographed

notes(32 pages), Stanford University 1963.

[10] P.J.COHEN: The Independence of the Continuum Hypothesis; Proc.

Nat.Acad.Sci.USA, part 1 in vol.50(1963)p.1143-1148,

part 2 in vol.51(1964)p.105-110.

A sketch of the proofs is contained in:

[111 P.J.COHEN: Independence results in set theory; In: The Theory

of Models-Symposium, North Holland Publ.Comp.Amst.1965,

p.39-54.

In these papers the constructible closure is obtained by means of

Godel's F(a)-hierarchy (Godel's monograph [15] .of 1940). Dana Scott

has remarked that the constructible closure can be obtained in a

much more elegant way using Godel's Ma-hierarchy (Godel's paper

of 1939). The presentation of the independence proofs in Cohen's

monograph is based on these improvements:

P.J.COHEN: Set Theory and the Continuum Hypothesis;

New York - Amsterdam 1966 (Benjamin, Inc.).

Since the publication of CoheR's papers [9 ], [10] and [i1] the

forcing technique has been modified in various ways by several

authors. Using modified "Godel-functions F" W.Felscher and H.Schwarz

have studied systematically Cohen-generic models (see Tagungsbe-

richte Oberwolfach April 1965 and the dissertation of H.Schwarz:

Ueber generische Madelle und ihre Anwendungen; Freiburg i.Br.1966).

A topological approach to forcing has been developed by C.Ryll-

Nardzewsky and G.Takeuti:



77

[83] G.TAKEUTI: Topological Space and forcing; Abstract in the

J.S.L. vol.32(1967}p.568-569.

A detailed exposition of this approach is contained in:

[66] A.MOSTOWSKI: Constructible Sets with applications;

Amsterdam - Warszawa 1969(North Holland + PWN}.

That forcing can be understood as a boolean valuation of sentenCes

has been discovered by D.Scott, R.M.Solovay and p.Vopenka -see

the forthcoming paper by Scott-Solovay. or Scott's lecture notes

of the UCLA set theory Institute (August 1967) and

l7t] J.B.ROSSER: Simplified Independence Proofs; Academic Press

1969.

[86} P.VOPENKA: General theory of V-models; Comment.Math.Univ.

Carolinae (Prague) vol.8(1967}p.145-170.

For further litterature on V-models see the bibliography in [86J .

Some of Vopenka's papers have been reviewed by K.Kunen in the

J.S.L. 34(1969}p.515-516. -We shall present here the forcing me-

thod in a way close to P.J.Cohen. using ideas which are due to

D.Scott, R.M.Solovay and others. The following basic publications

will be useful:

[39] R.B.JENSEN: Modelle der Mengenlehre; Springer-Lecture Notes,
vo1.37, 1967.

R.B.JENSEN: Concrete Models of Set Theory; In Sets, Models

and Recursion theory, Leicester Proceedings 1965, North

Holland PublComp.Amsterdam 1967, p.44-74.

{80] J.SILVER: Forcing a la Solovay; unpublished lecture notes

(28 pages).

[51] Definability in axiomatic Set Theory I; in: Logic,

Methodology and Philosophy of Sci., Congress Jerusalem

1964, North Holland Publ.Comp.Amst.1965, p.127-151.

The main difficulties which arise when one wants to extend a given

ZF-model9ft by adjoining some new sets ao ,al, ... to m are that

thc sets a i may contain undesired information encoded by the in-

terior E-structure of a i. For instance, the interior E-structure

of ai may give rise to mappings which destroy the replacement axiom

in the extension. These "new" sets a i Which, when added tom ,
generate a ZF-model are called "generic sets". The forcing method
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is a technique to obtain generic sets. Herein the main idea is

that every finite part of the interior E-structure of ai has to

be inm, id est, a i has to fulfill finite amounts of conditions

which can be posed Then a determination of the whole in-

terior E-structure of d i is obtained in a way similar to Linden-

baum's completing process (see e.g. Mendelson[60]p.64) by choosing

a "complete sequence of conditions".

In this chapter tJe shall not construct socalled "endextensions ,'I

The extensions we are dealing with are those which contain the

same ordinals!

A) THE FORCING RELATION IN A GENERAL SETTING

The simplest general framework for constructing Cohen models of

ZF is provided by considering partially ordered structures. This

approach, a straightforward generalization of Cohen's original

work, is due to R.M.Solovay. We shall presenc here a slight gene-

ralization of Solovay's approach.

Let (M,EM) be a standard model of ZF (see p.25 for the

definition of "stanQard"). Let

C1L= (A;R. ). Ie:

be a first-order relational system in with domain A and some

ni-ary relations Ri (i ( I) defined on A. We assume that A is a

set in the sense of m. We want to extend m by adding to m
a generic copy of at . The properties which this copy has to ful-

fill in the extension n of 9ft are expressed in a certain formal

language L . The language £ describes 7t . Since l shall ex-

press in a very detailed way all that what "happens" in 'It , we

construct £ as a ramified language which has means to talk about

every v.Neumann-Stufe Va separately. Formally this is done by

introducing limited comprehension terms Ea (intended interpretation

of set of sets x of rank lesS than a satisfying the

E is taken from the french word "Ensemble") and limited quantifiers

va (read V as: "there exists an x of rank less than a such

that 1>(x)).

:The Alphabeth of the ramified language £

1) One sort of set-variables: vO , V 1 ," 2 , ... ,Vn , ... (ri e w). x,y,z, ..

are used to stand for these variables.

2) Set-constants x for eaoh set x of 9ft.
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3) Constants a. for each j £ A.
J

4) ni-ary predicates 'lT i for each i £ I and £ for membership.

S) logical symbols: I. v , \I (not, or, there exists).

6) limited comprehension operatirs Ea and limited quantifiersva for each ordinal aofm , and finally brackets.

It is possible to arrange that these symbols are sets of 9ft in

the following way: I = (0, a ) , v = (0,1 ). V = (0,2 ) ,

Va = (l,a), e = <0,3). Vi = <O,4+i), Ea = (2.a) x = (3,x),

a. = (4, j ) , 'IT. = ( 5, i) and ( = (6, a ) ,) = <6,1 ) •
]

The formulae: of.c are obtained from these symbols by concatena-

tion as usual by recursion. It follows that the collection of all

formulae constitutes a class of m .
Definition. The notions of a ranked (= limited) formulae and of a

limited comprehension term of £, are defined as follows:

(a) If UI ,U2 , ••• are limited comprehension terms, set-

constants or constants a. or variables, then UI £ U2
J

and 'IT i (UI , ••• , un.) are limited formulae.
(b) If and are lrmited formulas, then so are I

and VaiP (for a inm).
x

(c) If iP is a limited formula with no free variables other

than x, and a is an ordinal of on such that (i) 4' con-

tains no occurrence of \/8 with B > a, (ii) iP contains

no occurrence of E8 with 8 a, (iii) contains no

set-constant x for a set x of Mirimanoff-rank a, (iv)

if a A then contains no occurrence of aj • then

is limited comprehension term.

The notion of a free variable is defined as usual; a limited formu-

la without free variables is said to be a limited sentence. We shall

refer to the set-constants, constants of the form aj (j £ A) and

the limited comprehension terms as constant Remark that the

definition above of a limited comprehension term is given with re-

spect to the parameter most applications we choose A to be w

respectively w+l.

Definition. Let p(x) be the Mirimanoff-rank of the set x in the

sense of (see p.14). The degree oCt) of-a constant

term t is given by:

(a) = p.(x),

(b) o(aj)= A
(c) (x» = a
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Abbreviations. Let u and v be constant terms or variables; then

u = v stands for 1\ (x £ U X £ v) where x is a variable distinct
x

from u,v. For constant terms u and v, u v will stand for
j\«,x £ u X £ v) where a = Max{o(u),o(v)}. u v is thus a

x
limited sentence.

Next we define in ?fl a well-founded, localizable partial-orde-

ring between limited formulas by assigning to an ordinal

of m. Read as "the order of This then allows to define

in m the the forcing relation It- between "conditions" and limited

formulas by induction on Obviously instead of defining

to be the ordinal wZ.a + w.e + m we could define to be

( a, e ,m) and then taking the lexicographical ordering to these triples.

Definition. For a limited formula define

= w2.a + w.e + m

where (i) a is the least ordinal such that contains

no quantifier VB with B > a and no constant term t of

degree;;;' a,

(ii) e = 3 iff contains at least one of the symbols ni,
e = 2 iff does not contain any n i but 9 contains at

least one of the symbols ai' e = 1 iff 9 contains no

symbol ni and no symbol aj but contains a subformula
v £ u where v is either a constant term with + 1 = a

or a variable which stands in the scope of a limited

quantifier I\a (for a defined in (i», e = 0 in all other

cases.

(iii) m is the length of

Let S be an infinite set in'ft such that x £ S + p(x) < A and =
sup{p(x);x £ S} where A ;;;. w. We want to find for each j E A (where

Ot = (A,R. ). I is the given first order relational system) a
:J. :J.£

gene ric subset a j of S and generic relations Bi for i E I between

these aj's such that in the metatheory Ot and ({aj;j E A},B i) iEI

are isomorphic. Id est: we want to find a generic copy of at.
The sets a j have to fulfill certain properties, or in different

words: they have to satisfy certain conditions p (like "7 £ a." for
J

instance, or others) which can be posed

Instead of defining the sets a. directly we first give a list
]

saying that the sets a j and the relation Bi have in ryt (the extension

ofm) only those properties which are "forced" by some finite

amount of information.
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Definition: A condition p is a finite partial function from S x A

into 2 = {O,l}.

Let P be the set of 9ft of all conditions and let be the partial

ordering in P defined by p q p C q.

The definition of forcing is given first for limited sentences ¢ by

induction on Ord(¢). Notice that p varies over the set P and that

for a given ordinal 6, all the ranked sentences ¢ with Ord(¢) < B
constitute a set Therefore (by the recursion theorem) the

definition of p by induction on Ord(¢) is permissible.

Definition of the (strong) forcing relation for limited sentences

if'. The definition takes inm. Let T be the

class of constant terms and let u be a variable ranging

over constant terms.

(1) p II- u e <? (.3 y Ex) ( p if- u "'" y).
(2) p II- u c <? (3t E T)(o(t) < ex & p u "'" t &

P if- <jJ (t» .

( 3 ) p II- u c a. ¢> ("3 xES) (p II.... x ce u & p«x,j» = 1).
J -

(4 ) p 11-""1 <jJ ¢> -( 3 q :;;. p) (q If- ¢) •

( 5 ) P II- <jJ v 'l' • (p 11- <I> v p II- 'l') •

( 6) P Vex¢ ( x ) .. (.3 u E 1) ( 0 (u ) < ex & p ¢( u ) .
x

(7) p n i (UI , ••• , un. ) <;> (3jt , ... ,jn' E A)«(jl ,··,jn)E R. &
l l l l

& P !j.... u, ce . & & p II- "" a. ) .a. . ..
JI I n.

l

To see that p II- is indeed defined by induction on Ord(<jJ), notice

that the formulae occurring on the side of ¢> have order

strictly smaller that the formulae occurring on the left side of ¢>.

Further remark that in the definition of Ord(ul "'" uz) we have
e =1 .
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The definition of p II- IP for arbitrary f.-sentencE!s will be

given in the Metalanguage (and not in'ft) by induction on the

(ordinary) length of IP. This definition will be valid since p ranges

over a set P and the collection of all formulae of f. constitutes

a se t in the sense of the meta-theory (since is a set in the

sense of the meta-theory). Again let u,v range over T and p,q

range over P.

Definition of p

(8)

(9)

(10 )

(11)

(12)

II- IP for arbitrary (unlimited) f.-sentences IP.

P II- u e v and p II- 'lTi (u, , •• ,un-) are defined as

p II-'" IP * -( 3 q ;;Jo p) (q II- IP).
p II- IP v 'I' .. (p n.. IP v p II- '1').

P II- IP ( x) * (3 u E T)( 0 (u) < (l & p II- IP ( u ) ) .

p II- VxlP(x) .. (:3 u E T)(p II-Hu».

above.

It is obvious that for limited sentences IP of £, p IP according

to this definition iff p II- IP according to the former definition.

The rest of this section is devoted to the study of the formal

properties of the forcing relation 11-. In the following three lem-

mata let IP be any f.-sentence.

Consistency-Lemma. For no pEP do we have both p II- IP and p II-'" IP.

Proof. If P II- IP and p II-'" IP for some pEP and some f.-formula IP,

then by (9) p II-'" IP + - p II- IP and we get a contradiction in the

metalanguage, q.e.d.

First Extension Lemma. If p II-IP and p <:q, then q II-IP.

Proof by induction on the complexity of IP (i.e. for limited sen-

tences IP by induction on Ord(lP) and for unlimited IP by induction

on the length of IP), see e.g. Jensen la']p.94-95.

Second Extension Lemma. For every pEp there is a q E P, p <: q,

such that either q II- IP or q II-'" IP.
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Proof. Suppose that for no q > p we do have q If. 4>. Then p II- I 4>

by (9). Suppose now that for no q ;., p we do have q II- I 4>. Then by
(9): p II- In 4». But applying (9) twice one gets

p II- I I 4> *' -( 3 q ;;;.. p )[ -( 3 q' ;;. q ) ( q' If- 4» J

*' ('r/q ;;. p)(:1 q I ;;. q)(q' II- 4»

Thus there exists q I ;;. p such that q I 11- 4>, q. e. d.

Remark that forcing does not obey some simple rules of the

propositional calculus. Exempla gratia, p may force I I 4> but not 4>.

Furthermore, the forcing relation If- has by definition (clauses (5),

(10), (12» a homomorphism property with respect to disjunction

(v,v) and existential quantification (V,3). If we introduce con-

junction A and universal quantification 1\ as usual, then one no-
tices that If- does not have the homomorphism property for conjunction
(A ,&) or for universal quantification ()\.'1). For example only

p II- 4> /\ II' ... (3 ql ;;. p)( 3 qs ;;. p)[ ql II- 4> & q, II- 11']

holds. We shall introduce a relation If-! (called weak forcing), which

has the property that p U..• 4> *' P 1f..!1 I 4> and the homomorphism proper-
ty for conjunction and universal quantification. not have
the homomorphism property for disjunction and existential quantifi-

cation and is, as we may say, dual to the strong forcing relation 11-.

Definition. p 4> *' P II-1(1 4» "p weakly forces cI>"

P II 4> *' (p II- $ V p II- I $) "p decides $"

p 11* 4> *' (p 4> v p I $) "p weakly decides 4>"

II- 4> *' (V'p E P)(p II- cI>).
PI and p, are compatible *' ( ;J q E P)(PI .;;;; q & p, .;;;; q ) ,

Lemma A:

(i)

(ii)

( iii)

(iv)

(v)

(vi)

The weak forcing relation has the following properties
(u,v are variables for terms and cI>,1I' are any £-formulae)
p 11-· cI> ... -( 3q)[p .;;;; q & q II- I $1 ,
pU-cI>=*plt:cI>,
p 11-·I $ *' p II-I e,
If 4> is of the form 11'1/\ 11', ,1JI 1 # 11'" A 11', AuII', u = v orx x
u Ill< v, then p II- cI> * p U-· 0 ,

p II-! cI> /'\ IJI *' [p 11-· cI> & P IJII ,

p 1\cI> ... ('if u E T)[ p 11-* cI> ( u) J ,
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(vii) p II-" <* (Vu E T)[ o(u) < a p
lie X III *

(viii) p 'I' [p 11-=<1> <* P 11-='1'],

(ix) (V'P' p)("3q p')[q 1\-*<1> <* q II-*'¥] => p '¥,

(x ) ('Vq p)[q 11-*<1> <* q II-*'¥] P 11-<1>" '¥.

Proof. Ad(i): Let '¥ be I ¢. By (9) of the forcing definition

-( 3. q p)[ q II- '¥] is equivalent to p II- I '¥ which is P II-I I
by definition of I\-* this is equivalent to p

Ad(ii): follows from the first extension lemma and (9).

Ad(iii): follows from (ii)' Now assume p <I> and suppose

that -p 11--1 <1>. Then by (9): q II-<I> for some q Thus by (ii)

q This is in contradiction with p ¢ by the consistency lemma.

Ad(iv): Notice that all the forms of <I> listed are of the form If,
thus the claim follows from (iii). The symbols" , ..,/\,/\0. are

introduced by definition for longer expressions in terms of

I, v , V, va only.

AdCv) : p '¥ is by Ci.v ) equivalent with p If- which is

by definition: p 11-1(1 v I '¥). This is, using first (9) and then

(10) of the forcing definition equivalent to

(V q) (p .;;; q * -( q Ii-- I <!> v q If- I '¥)] •

Using again (9) one gets equivalently p I & P I I '¥.

Ad(vi): The proof is similar to the proof of (v)

Ad(vii): Again the proof similar to (v) or (vi).

AdCvi i.d ) : Assume p II--*<!> .. '¥ and p Il-!<!> but -p !l-*'¥. By (i) there is

an extension q of p SUCll that q iI-I '¥. Since p .;;; q the first exten-

sion lemma yields q II- I I <1>. Thus by (9) of the forcing definition

( 'tj q t ) l q .;;; q I _( q ' II- I <!> q' II- '¥)] •

Using (10) and then again (9) of the forcing definition this gives

us q II- 1(: IP v '¥). Thus: q II- I( <!> .. 1jI) by definition of ... Using

(iii) and (v) one sees that this is in contradiction with p .. '¥.

Ad(ix): suppose that the conclusion does not hold and proceed

using (i) and (9), (10) of the forcing definition and the second

extension lemma. In this way one gets a contradiction.

Ad(x): follows directly from (ix). This proves lemma A.

Lemma B. Let p and q be elements of the set P of conditions and

let <!> and '¥ be I-sentences.

(i) If PI and P2 are compatible and PI If-. and P2 If-. '¥, then

q II- <!> A IjI for every q greater than both, PI and P2.

(ii) If P \I ¢ and p \I '!' then p II <!> v '!', P \I <!> .. '!', P II <I> A '¥

and p II <I> .. '!'.
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( iii) If P II and p II 'Y, then p II- /\. 'Y (p II- & p II- '¥) •

( i v ) If p II 'P and p II 'Y, then p 11- 'Y (p II- p II- 'Y).

Proof by direct computation.

Lemma C. Let p, and 'Y be as in lemma B.
(i) If P and p II·'Y, then p II·'" e , p 'Y, P

P II·'P • 'Y and p 'Y.

(ii) If P and p II·'Y, then p II • if> v 'Y (p II-*if> v p •

(iii) If p II *if> and p II*'Y, then p 11-* if> .... 'Y (p It-"'P p II-·Il') •

Proof by direct computation (use lemma A, (viii ) and (ix».

Lemma D. If P II 'Pi (i = 1, ... ,n), C is an n-ary sentential connective

id est: an operation which is an iteration of the primitive

sentential connectives'" and v) and C is the corresponding

sentential connective of the meta-language (id est: the

analog of - and V ), then:

(i) pile (if>1 , , if>n)' and

(ii) p II-C('P1 , ,On) *' C(p 11-if>1 , ... ,p II-if>n)'

Proof by induction on the number of times'" and v are used in C

(use lemma B).

Lemma E. Let C be a n-ary sentential connective. If , •.. ,$n) is

a tautology for all , ... , then for all p and for all
n

£-sentences 'PI , ••• ,'Pn it holds that

p C , ... , if> n) .

Proof. Use lemma A and C (see e.g. A.Levy [S1]p.141).

Lemma F. Let u, v and w stand for constant terms; then for every p:
(i) p II-u:: u ,

( ii) p II- u :: V => P II- v :: U,

(iii) l p U... U :: V & P II- v :: wI => p n... u :: w,

Lemma G. Again let u, v and w be constant terms, then for every p:
(i) p II- U Q< v p II- u :: v,

( i i) [p II- u e w & p II- u :: V I :> p II- v e w,

( ii .i ) [p II- w e u & P 11- u :: v] => p 11-*w v ,

For a proof of lemmata F and G see Levy [Sl]p.141 or Easton, Annals

of Math. Logic, vol.l( 1970) : (14-J.
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Corollary H: If p 11- 1T (UI , ••• , un') and p UI = VI , •• p un' = Vn' ,
... a

then p II-'JTi(vt , ... ,vn.).

This follows easily from the definition of forcing, clause (7),

and lemmata F and G.

Digression: The forcing definition p between elements p of

the set of conditions (of and limited !-formulae • was given

in the.. II groundmodel n m while the definition of p II..... for unlimited

• was given in the underlying meta-theory. We shall show in the

sequel that for each specific £-sentence • the forcing relation can

be defined because. is finite and the construction of the

class K. of pIS forcing. can be done in finitely many steps. For

each specific • the mechanism of constructing K. can be implemented

within 1ft but the mechanism is not universally applicable for all

sentences ¢ of £, so that within?rL we do not have the whole rela-

tion 11-. This is not too much surprising, since the definition of

forcing resembles very much the definition of truth, and by the

paradox we cannot define in ZF (or within the

the notion of truth for Levy [5t]
p.138, A.Tarski: Semantics, Metamathematies (Oxford 1956)

p. 248, Fraenkel-BarHillel: Foundation of Set Theory (Amsterdam

1958) p.306 and Kleene: Introduction to Meta-Mathematics (Amsterdam-

Groningen 1967) p . 39 ,42, 501, see also Mendelson [001 p.151] .

However we can define forcing for a single given sentence • or feT
some particular family of within 'ft.

Lemma I: Let .(XI , ••• ,xn) be an unlimited formula of l.There is a

class K. of the model YrL whose elements are the (n+1)-

tuples (P,UI , ... ,un> such th'1t p , ... ,un), where the

ui(l i n) are constant terms.

According to our remark on page 79 the constant terms ui are consi-

dered as certain special finite sequences of symbols which are in

m - for more details see Easton I s thesis, Annals of math. Logic,

vol 1(1970).

Proof by induction on the length of the formula •• Since the

atomic formulae are all limited formulae, the lemma is true for

atomic e. If I(XI , ••• ,xn) is "'I (XI, ••• ,xn) v "'2 (Xl ••• ,Xn ) and the

classes K"'t and K"'2 satisfy the lemma for "'I and $2 respectively,
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then = U is the required class for If is

Vyll}(y,XI , ... ,xn) and if KIl} satisfies the lemma for ,XI, ... xn),
then {<p,z}; v'<p,y,z} E K'I'} is the required class. The case that

V
a y

is y,¥(y,XI , .. ,xn) is similar to the previous one. If is

I Il}(XI , ... ,xn) and if K'I' satisfies the lemma for '1', then

{< p , z) ; p e P " I Vq eP (p q " <q , z) e K'¥)}

is the required class This proves lemma I.

Definition: A set 3C of conditions is dense (cofinal) in the

set of all conditions, iff for every p £ P there is a

q £ X such that p q.

Definition: A sequence of conditions is complete iff is well-
(0) (1)

ordered by C and of or-der-type w, = {p ,p , .•. ,

p(k) , ••. }, such that n 3C * 0 for every dense set 3C

of conditions.

Remark. Both definitions above are given in the meta-language (and

not in'1t). The notion of a dense subset of a partially ordered

set is due to F.Hausdorff who used the name "cofinal". The original

definition of "completeness" for sets of conditions of P.J.Cohen

was a bit more restrictive. The definition given above is due to

W.B.Ectston (Thesis, Princeton 1964, the main part appeared in the

Annals of math.Logic, vol.1(1970».

Lemma J: If R is a complete sequence of conditions, then for every

£-sentence there exists p(k) E fi such that p(k) " ¢.

Proof. Let ¢ be given. By lemma I there is a set K in 1r& whose

elements are just those conditions p for which p " ¢ holds. By :the

second extension lemma K is a dense subset Qf P, thus K n * 0,
and there are conditions p E <it such that p E K and hence p II
q.e.d.

The following lemma is the only place where we need the countability

ofm. Notice that the weaker assumption, namely the m -set of

of P is countable, is already sufficient. This was

used e.g. by R.Solovay in the construction of a model which

contains a non-constructible of reals.

Lemma K: There are complete sequences of conditions. Moreover, for

every condition p there is a complete sequence in which

p occurs as first element.
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Proof. Since is countable (in the meta-theory), there is an

enumeration of all sets of and in particular an enumeration

of the set of all subsets of P which are • Let {s ;n e wln
be an enumeration of the powerset of P in the sense
Take any condition p and define p(O)= p. If p(n) is defined)let

p(n+l) be any condition in Sn which extends p(n) if such an element

exists, etherwise put p(n+l) = p(n). We show that the so-defined

sequence = {p(O) , ... ,p(n) , .•. l intersects every dense set of

conditions. If is a dense set, then it has a number, say n, in
the enumeration, thus X = sn' By definition p(n+l) E sn and

P (n+l ) E dq.e ..

Definition: Let Z be any collection (in the sense of the meta-langu-

age) of conditions and let be an i-sentence. We write

JC If- for (3 p E JC)(p II- 4» and similarly JC 11-*4> for

(3 p E (p 11-*<1». Notice, that if is a complete se-

quence of conditions, then I"" (j\ and 11-*4> are equiva-
lent.

Lemma L: Let be a complete sequence of conditions and <1>(x, , ..• ,xn)
an £-formula. If 6{ Ii- Ut = VI' ••• U- un = vn for constant

terms UI , ••• ,un ,VI"" ,vn' then
If- cj>(UI , ••• ,un) * II- 4>(v, , ••• ,vn).

This follows by induction on the length of from lemmata F, G and
corollary H.

So far we have investigated several useful properties of the

forcing relation. In the next section we shall show that every

complete sequence of conditions gives raise to a valuation of the

predicates so that the resulting sets are generic.

B) COHEN '- GENERIC SETS

We shall use the terminology and formalism introduced in section A.

Definition: Let be a complete sequence of conditions. Define

the function (valuation or interpretation with
respect to on the set T of all constant terms of

the language 1 by induction on their degree as follows:

= vET & 6(v) < 6(u) & II- v e u}

Finally define:
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= (u);u E T}

(we shall usually omit the subscript from

and ntH).

Lenl'lla M: Let u and v be constant terms. If p II-- u E: v then there

is a constant term w such that o(w) o(u), o(w) < o(v)

and p II- u "" w, p II-- w e: v ,

(for a proof see e.g. A.Levy lS1Ip.141).

Lemma N: tR II- u = v II- u "" v valdl(u) valtH(v).

Lemma 0: is a transitive set. For each x Em, = x,

hence me 'ii;
Proof: The transitivity of Jla follows directly from the definitions

of val& and ntH. = x follows easily by induction on

using the definition of the forcing-definition and the

lemma N. Thus the witnessing constants x ensure that is con-

tained in JIL as a transitive submodel.-

existential quantifier

3.
E n with r Cy) < a

'it iff there are

E R. and Yl = val(a. ),
1. J 1

£. For each x E 1t let r(x) be the least o(w)

= x. Thus x,y E Jt & x E Y • r(x) < r(y) by

formulae of £ can be interpreted in in the

(v)

The semantics of

for which val(w)

lemma N. Now the

following way:

(i) A term u is interpreted in 11 by val(u).

(ii) u e: v holds in Jt iff val(u) E val(v).

(iii) The sentential connectives .." v and the

\I are interpreted as usual by -, and

(iv) holds in 1t iff there exists y

such that

Yl""'Yn. satisfy 'IT.; (x , ... ,xn.) in
1. 1.

jl , ... ,jn' E A such that (jl , ... ,jn'>
1. • 1.

... 'Yn. = val(aj ).
1. ni

One of the most important steps in showing that ?t is a model of

ZF is by proving that 1t can be described to a large extent

wi thin m . When one is dealing with inner models m."1 of some

structure in the verification of the axioms in one usu-

ally uses the fact that can be described entirely within jft"
thus reducing the validity of some axioms in to the validity

in Cohen-extensions 1t of countable ZF-models jft have

similar features. Though n extends cyn" n can be described to
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a good extend in JrL, so that again questions about the validity

of statements in Jt can be reduced to questions which can be

posed (and "answered") in m .
this is the content of the following lemma:

Lemma P: Let ¢ be an .f-sentence. Then ¢ holds in n 6{ iff 6{ 11- ¢.

For a proof See e s g , A.Levy lS1Jp.144 or Easton's thesis ['tit].

Lemma Q: p ¢ iff JL6{ F¢ for all complete sequences 6{ containing p.

Proof (see Levy or Easton, loc.cit.).

of all members y of Jt such that

¢(x) in Jt val(a].} = a. is the
• J

such that r(y) < A and y £ aj holds

val( E<lx¢(x)} is the set

r(y) < <l and y satisfies

set of all y E Jt
in n .

Lemma R:

Lemma S: For every j E A, val(a j} C Sand val(a j) thus the

sets val(Aj) = a j are "new".

Proof. a. C S follows easily from clause (3) of the foreing defini-
] -

tion and lemma R. We have to pr-ov-e that a. is "new". Suppose a.
] J

is not new. Then E Yrt and since a. = x for some x E 1tt,
] .

= x by lemma O. Hence val(x) = x = a. = val(a.) and lemma N- ] ]
yields: 6{ A. x. Therefore p a. = x for some p E 6{. Since p

] - J -
is finite there are sets s E S such that p is not defined for (s,j).

Now define qo = p U {«s,j> ,O>} and ql = P U {«s,j> ,1> }.qO and ql

are extensions of p. Proceed by cases.If s t x then 5 t = x

for every complete sequence 6{. Also, if ql e 6{, then 6{ II- s £ aj and

hence s E val6{(a j ) = a j by lemma R (since s £ S + p(s) < A and

o(a j) = A). Thus s E aj holds in Jt6{ for containing ql while

s £ x fails in n 6{' Hence 6{ If..."aj zI= x for every complete sequence
6{ containing ql (by lemma Q). Lemma A (iii) yields: ql It- a. zI= x ,

J -
If s £ x then proceed as above and obtain qe 11-' zI= x ,

Thus we have shown that every condition p has an extension q such

that q 11... a. zI= x , By lemma A (i) ,(iii) this implies that every
] -

condition p forces a. zI= x. It follows now from lemmata 0 and P
] -

that aj = Val(a j ) nt,q.e.d.

Lemma T; m and n have the aame ordinals.
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Proof. Since m n by lemma 0 every ordinal of 't'l is an or­

dinal of n (notice that since m and n are transitive E­models

the notion of "being an ordinal" is absolut). Now let a be an

ordinal of it . Since a = p(a) < 6(a), 6(a) E the transitivity

of m implies a Em.. Here oCc) " 6(a) holds since s,y E rt. and

x E y ­ r(x) < r(y), thus x E 1t • p(x) "r(x).

But by definition of r(x) we have r(x) " 6(x), thus p(x) " 6(x)
for all x E 1L , q.e.d.

Having proved all these various lemmata we are able to prove

the main­theorem of forcing manely that the structure is a
model of ZF.

HAUPTSATZ of the forcing technique

Let 'ft be a countable transitive E­model of ZF and let

0\= (A,Ri) iEI be a (1 s t ­ or der ) relational system in 1rt
If the forcing relation Ir is defined as in section A, then

for every complete sequence the structure is a coun­

table, transitive E­model of ZF which extends .

Proof: That is transitive and includes 7ft has been shown in
lemma O.

Ad.axiom(O): Since = 0 E 1t , the axiom of null­set holds
in jt .
Ad(I): Extensionality follows from the transitivity of 1t
Ad(II): If a and b are sets of 7t , then a = val(tl), b = val(t2)

for terms tl, t2 of.t. Let 6(ti) = ai, 6(t2) = a2 and a = maxl cr ,

a2} + 1, then t3 = Eax(x "" tl v X ""t2) is a term of degree a and

val(t3) is the unordered pair of a and b.
Ad(III): Similar to (II). Ad(IV): Since = w by lemma 0, the

axiom of infinity holds in Jt .
Ad(V): The power­set axiom holds in 1t (.see COH£N (11 Jp.lf.b-lfr)
Cohen's proof that the power­set axiom holds in the extension Jt
(see [101part II) follows the proof of Godel [tSl that V = L

implies the GeH. We follow, instead, an elegant proof due to
R.M.Solovay which avoids Godel's argument (see Easton's

We shall show, that for any constant term t there exists an

ordinal a such that if val(s) C val(t) holds in Jt (for some

constant term s), then val(s) = val(s*) for some constant term
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s· of degree less than a. Then the power-set of valet) in the

sense of JL is given by

val( Eax(x t».

Let t be a constant term. For each constant term s define

(p is any condition):

q, ( s ) = {( p ,w) ; 0 ( w) < 0 ( 't ) 1\ p II- w e s l

By lemma I each q,(s) is a set of jfL and the correspondence s * q,(s)

is a function of JtL. Let this function be represented by the

classterm G. We claim that q,(SI) = q,(S2) implies valet) n val(sl) =
valet) n val(s2)'

Proof. Suppose q,(SI) = q,(S2) and val(w) E vaLt t ) n vaLt s r L. Then

by the definition of the valuation val pen) II- w e t and

pen) £ SI for some pen) in the complete sequence Further w

may be taken so that o(w) < oCt). Thus (p(n) ,w) E Since

4>(SI) = q,(S2) we get (p(n) ,w) E q,(S2) and this entails pen) If- w c S2'

We conclude that val(w) E valet) n val(s2) [more precisely;

pen) 11- w e S2 implies by lemma M the existence of a term w· such

that o(w·) < e(s2), pen) Irw ""w· and pen) II-w· e: S2. By lemma N:

val(w) = val(w·), thus val(w·) E val(s2) implies val(w) E val(s2)'

Further, since val(w) E valet) we get val(w) E valet) n val(s2)

as stated above] .

Thus we have shown that valet) n val(sl valet) n val(s2).

The inverse follows in the same way, and we have proved that

q,(SI) = q,(S2) implies that val(si) and val(s2) are equal modulo

v e.Lf t ) .

Let Te(t) be the set (inm) of terms of degree less than

oCt). Then q,(s) c P x Te(t)' where P is the set of all conditions.

For every k P x Te(t) let (T is the class of all constant terms)

1jI(k) = Ls, sET .... +(s) = k .... /\ [SI E T .... q,(s1) = k+Q(s) E; O(SI)]}'
SI

(1jI(k) may be empty but in any case 1jI(k) is a set of ). By the

axioms of powerset and replacement in m , {y; VkVs(k P x Te(t) ....

s E 1jI(k) .... y = o(s»} is a set of J1t . Let 80 be the supremum of

the ordinals of this set and define 81 = 80 + 1 and a = 81 + 1.

Now suppose that x and yare sets of yt such; that y = valet)

and x y holds in Jl . Then x = val(u) for some constant term

u and val(u) valet). Thus q,(u) = k P x To(t) and 1jI(k) is not

empty, since k is represented as a q,(u) for some constant term u and
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contains those terms of minimal degree. Hence let So be some
element of = Then

val(u) = val(t) n val(u) = val(t) n val(so).

Define St = EtA X E so). Since o(t) ao < at and o(so) <
at, St is a constant term of degree at and val(u) = val(st) is

true in n (by lemmata M,N and RL Moreover o(St) = < at + 1 =0..
Thus we have obtained an ordinal a (of1Yt) with the required pro­
perties, q.e.d.

Notice that the proof given above similar to the proof that
the powersetaxioms holds in L ­ see page 28. Also the proof that

the replacementaxiom holds in will be inspired by the correspon­
ding proof for L. We need two lemmata.

Lemma U: Let ,Xt , ••• ,xn) be an unlimited formula of t. Then for

every ordinal a of there is an ordinal a of 1ft such
that for every condition p and constant terms tt , .•• ,tn
of rank less that a,

p II- V ,tl, .. ,t ) p Hxo ,tt, .. ,t ).
Xo n Xo n

Proof. Let be given and suppose that ¢ has no free variables other

than xo , ... ,xn' By lemma I (see section A) there exists in 1ft a

class K whose elements are the n+2­tuples (p,to ,tt , ... ,tn) such
that p. , ... ,tn). Hence

C = {(p,to , ..• ,tn); p II- 4>(to, ... ,tn) " &(t i) < a for 1 <;; i <;; n I
is also a class of 'tL. By the axiom of foundation in the
following collection C· is a set of m :

c· = {( p , to , .• , t ) ; (p , to , •. , t > E C '" [p II- V ¢ (xo , t t , •• , t n) +
1\ n n • Xo

+ I , ( t· t t > E C( 0 (to) " 0 (to ) )] }
P,o,t""'n

Thus C· contains only those n+2­tuples (p,to , •• ,tn) from C for

which to has minimal degree whenever \I ¢(xo ,tt , .•. ,t ) is forcedXo n
by p , By the replacement axiom inm,

D = {Y; V( ) E • ( y = 0 (to ) ) }p, to , .•. , t n C
is again a set of m , and using again the replacement axiom inm ,
there exists an ordinal e such that y E D + Y < Then it is easily

seen that the equivalence stated in the lemma holds for this e, q.e.d.

Lemma V: Let , .•. ,sn) be an unlimited formula of t and a be an
ordinal of • Then there exists a limited formula
V(Xt , •.• ,xn) such that
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.. , .. ,xn ) ....17(XI , •.. ,xn)]
holds in "Jt.

by induction on the length of
Case 1. If is atomic, then we can let be

Case 2. is I , .•. ,x ). By the induction hypothesis there is
'i1 n A"a limited formula 1J! (XI, ... ,X ) such that ex ... 'V(XI , ... ,Xn)'i1 n x.. 'iJ

(XI , ... ,x )J is true in n . Hence, we can let be 1(1f! ).

Case 3. W is •.•. ,xn,y). Let y = max{o"o}. By the induction

hypothesis there is a limited formula 1f!'iJ(XI , ... ,xn'y) corresponding

to If! and y such that:

N. ... 1\YAY[ 'V (XI , .•. ,x ,y) 'i' 'iJ (Xl , •.• , Xn ,y) JI Xn"y n
holds in 11;. It follows that

is also true in Jt . This shows that we can define to be

Vo 'iJIfI (XI,'" ,X ,y).y n

Case 4. is \I , ... ,x ,y). By lemma U there is for given 0
y n

and a an ordinal B such that for each condition p and constant

terms tl , ... ,t of degree less than ex,
n VBp If- VIf!( t I , ... , t ,y) ¢> p II- IfI ( t 1 " •• , t , y) .y n y n

This means by lemma A, (vii) of section A. that every condition

p weakly forces
Ao, ... 1\.0, [V 'i'(Xl , ... ,x ,y) <& VB'¥(Xl , ... ,Xn ,y ) ]I\Xl xn y n y

Hence also every p in the complete sequence weakly forces this

formula, dnd therefore also strongly forces the formula.

By lemma P of this section, this formula holds in . Let

Y = max{a,B} and proceed as in case 3 (using 6 rather than 0),

q.e.d.

Using lemma V we are able to prove, that the r-epLac emerrt.axi.om

(VI) holds in the structure n . Notice that our proof ressembles

very much the proof that.. (VI) holds in Godel' s model L.

Continuation of the proof for the Hauptsatz

Ad(VI): The replacement-schema holds in 1t . Let tl be a constant

term of degree ex and let be a formula of £ such that it

holds in jtL that for every X £ tl there is precisely one y such

that By lemma U there is an ordinal S such that

11. l= ... V .



95

By lemma V, there is a limited formula such that

( + ) n 't=. A; x , y) # V(x , y)] ,

where = max{a,S}. It fOllows from (+) that:

(0) # Il\I7(x,y)].

Let s = EAy( y = z X 8 t A Il\V(x,y) ). then s is a constant

term of £, where A = max{a,B} + 1 = t + 1. It follows that val(s)

is the image of vaLf t ) under the function in n , q s e s d ,

Thus we have proved the Hauptsatz.

Digression. What have we done so fap? Our main question was whether

the independence results we have obtained by means of the Fraenkel­

MQstowski­Specker­method for the system ZFo (without the axiom of

foundation, but assuming the existence of reflexive sets x = {x})
are also true for ZF = zro + foundation. Obviously not all indepen­

dence results carryover to independence results in ZF, since e.g.

(Ae) and (PW) ­ see p.62 ­ are equivalent in ZF while (Ae) is

independent from (PW) in ZFo alone. The general procedure in the

construction of a permutation model of ZFo was to define some

relations Ri (i E I) between a set A of atoms (i.e. reflexive sets)

and then to construct the permutation model over the structure

cn.= (A,R i ) i E r.
In order to obtain independence results which apply to full

ZF­set theory (including foundation) our general idea was to add

to a given countable model YrL of ZF a copy of a structure

at = (A,Ri > i E t· Obviously, we cannot construct within our
meta­theory (which is ZF + (Ae» a model ab ovo, since this would

give otherwise a contradiction to Godel's theorem. But what we can

do is to construct from some given model 1rt of ZF another model

Jt of ZF in which some interesting statements t are true while

others fail, thus proving that Il\ is not derivable from ZF.

Again by Godel's theorem, we have to use the fact that JrL is a

ZF­model when proving that the extension is a ZF­model. This

we have done by reducing questions about n by means of lemma P to

questions which can be posed in YrL. This is the most astonishing

fact, that the extension can be described in the groundmodel 1ft
(see lemmata I and P). It was the aim of the forcing definition to

determine the interior E­structure of the "new" generic sets aj(jEA)

in such a way that in 1tt we have evough information what properties

these sets a. have. These finite amounts of informations were called
]
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"conditions". Not.ice that since we are dealing with finite condi­

tions, the sets a
j
generic aver JrG. determined by these conditions,

are called Cohen­generic overYYt. The name "Cohen­generic" was

chosen in honor of the illan who first invented forcing with finite

conditions. Forcing with perfect­closed subsets of the real­line

is usually called Sacks­forcing and the generic sets obtained

by this way of forcing are called Sacks­generic. Forcing with

Borel­sets is c2l1ed Solovay­forcing and the corresponding

generic sets Solovay­ ­ see Silver I s Seminar notes [SO)

and the articles of Sacks and Solovay.

We have developed Cohen­forcing in a general setting and

have obtained for infinite sets S Cohen­generic subsets C S.
'j,lIoke

In many cases we shall,w as S. The Cohen­generic subsets of w will

be called simply Cohen­generic reaIs, Slnce every subset of w

determines a real number.

Instead of proving one independence result after the other

we shall first collect some additional informations about the

generic extensions 1t . We have shown (see lewma T) that

and the extension Jt have the same ordinals. We ask: do they

have the same cardinals? id est: are the ordinals A which are

initial ordinals in the sense of Jt just the initial ordinals

of m? or better; under which conditions is this true? Another

question: Under whac conditions on Ot = (A,Ri) i E I is the axiom

of choice (AC) true in the extension?

Further, what are the conditions en has to fullfill inm in

order to ensure that the extension 't satisfies the ordering
principle? In the following section we discuss these questions

and give some solutions.

C) ORDERINGS AND WELLORDERINGS IN GENERIC EXTENSIONS

We start with the presentation of a theorem which says chat, if

is a countable standard m?del of ZF + (AC) and ot is finite, then

the model n obtained from m by adding a generic copy of ot to
YYL, satisfies ZF + Axiom of choice.

A necessary remark. In section B we have shown, that the model n
extends m (see Lemma 0), but m need not to be a n ­definable

subclass of 7t . This, however, can be attained by adding to the for­

cing language £ a further unary predicate symbol g. The intended

interpretation of g(v) is "v is in the gr­oundmodeLm".
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The forcing-definition has to be enriched by the clause:

(.) p II- g(t) .. (j x E rmHt x ) .

for conditionsp and constant terms t. The interpretation of £ in

1t, id est the semantics for £, then has to be enriched by:

"y satisfies g in Jl iff there is a constant term t such

that y val(t) and 6111- g(t)".

It follows that is defines ')tt, in Jl , more precisely,

x Em} is n -definable by means of g. \;Jhenever we shall need

the fact that JiL is Jl-definable we shall assume that forcing

was done in a way including clause (-). This assumption is made

e.g. in the following theorem, the proof of which is close to

Godel's proof that (AC) holds in L.

Theorem. If m is a countable standard model of ZF + (AC) and a

is Cohen-generic over m, then the extension crt ml a]

is a countable standard model of ZF + (AC).

Proof. (R.B.Jensen [4-0]p.69). Set up in 11" a ramified language l.

with a name a for a, names x for x in (this is possible in

1t , since a-and mare ,i"-definable), limited quantifiers v-,
limited comprehension operators EO. fOI all ordinals of 1L , so

that {< a, va) ;0. E On'ft. } and {< a,Ea)
;<l E On'ft } are classes of n

£ has furthermore all the symbols of ZF. Obtain by recursion (as

usual) the well-formed formulae, so that t, the collection of all

these wff's, is a class of'l. Define an interpretation Q for the

constant terms of £ by setting

O( = a, = x (for x Em),

and then extending to all constant terms of £ by recursion on 6,

the degree (defined here as on p.79). Since the correspondence

x was by definition Jt-definable (see e.g. the conventions

on p.79), it follows from the recursion theorem, that the function

n = {< t,S1(t» ;t E T} is n -definable (T is the class of all

constant terms). Let T be the set (of 1t ) of constant terms t
<l

of degree less than a. Define No. = {S1(t);t ETa}' It follows that

UaNa the 11. -class of all sets of Tl .
After these preparatory remarks. let us prove that in

every set x can be well-ordered. Let x be any set of n ; then

there exists in 1t an ordinal such that x eN.- a.
We claim that Ta can be wellordered in 't . In fact
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Ka = {25.,X Em" 0(25.) < cd is a. set of JL. and included in Ta .

Since Ma = {n(t),t E Ka} is a set of)tL, this set Ma can be

well-ordered in m and induces hence (via n- 1) a well-ordering

of Ka• By definition (see p.79) constant terms t of degree less

than a are constructed as finite sequences of symbols taken from

S = Ka U {Ef3 ; f3 < cd v {Vf3 ; f; :s' a}v {the ZF-symbols}.

The set of ZF-symbois is countable, hence wellorderdble. Thus

the set S (of JL ) is wellorderable, and the set Ta can be well-

ordered, e.g. lexicographically. Let Wa be a well-ordering of Ta.
For y E Na let t y by the first t E Ta (in the ordering Wa) such

that y = net). The function {(y,t/;y E x} is 'Yt-definable and

hence so is the well-ordering

{{Yl ,Y2> ;Yl ,Y2 E x A {t ,t >E Wa }
Yl Y2

of x. This proves the theorem.

Corollary 1. Let m be a countable, standar·d model of the NBG-set

theory r + (E) and let a be Cohen-generic over .

Then 'Jt:o: ml a] is a countable standard model of

I: + (E).

Here I: is the set of axioms of groups A,B,C,D in Godel's crange

monograph [2Sl and (E) is the global version of the axiom of choice.

Corollary 2. Let Jtl be a countable standard model of ZF + (Ae) and

al, ••. , be finitely many sets which are Cohen-generic

over Jtt. Then J1:o: JrL[al , ... ,a 1 is a countablen
standard model of ZF + (AC).

Corollary 2 was obtained by S.Feferman using ideas of Godel and Cohen:

S.FEFERMAN: Some applications of the notions of forcing and

generic sets. Fund.Math. 56(1965)p.325-345. See

also Feferman's article (with the same title) in

the "Theory of Models"-Symposium volume, North

Holland Publ.Comp. Amsterdam 1965.

Symmetry Properties of Generic Extensions. Let be a countable

standard model of zr and let at= (A,R i > iEI be a relational system

in m. Let OJ- be the group in m of automorphisms of <.n. Let l be

the ramified language having constants x for each x E , constants

aj for each j E A i'l.nd -ary predicate symbols 1T i for each i E I
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(as defined in section A). Let be the forcing relation as defined

in section A. For 0 E and i-formulae t let be the formula

obtained from ¢ by replacing every occurence of d j in by dO(j)'

For conditions p (id est: finite partial functions from S x A into

2 = {D,l}, see p.81) define oCp) by:

«s,j> ,0> Ep*«s,oCj»,D> Eo(p)

« s ,j> ,1) E P * « s ,a Cj» ,1) E a (p)

By definition a formula of £ may contain some particular terms

like or but contains never variables for terms. Thus if

occurs in then occurs in aC¢). According to

the forcing-relation defined on p.81-82 the following holds:

Symmetry-Lemma (P.J.Cohen).Let be any i-sentence and let p be any

condition. Then for every a E OJ we have p II- *
.. a ( p ) II- aC<:> ) •

Proof by induction on Ord(t) for limited formulae and then for

unlimited by induction on the length of t. Exempla gratia, suppose

the lemma is true for limited formulae of order < a. If ¢ has

Order a, proceed by cases. If is u then

p u s * (3y E x)(p II- u .. y) * c:;ly E x)(o(p) II- a(u)'" l.» since

y E x - p(y) < p(y), hence Ord(u y) < Ord(u

The latter is equivalent to (3 y E x)Co(p) a(u) .. l.) which in turn

is by (1) of the forcing definition equivalent to a(p) o(u)

id est aCp) o(u E One proceeds .similar in all the other cases.
>
The has the following consequence, if p II- and p

is in the complete sequence which defines7t , then by lemma P,

o holds in'.Jl . If 0 is an automorphism of CJL and oCp) = p, then

p II- o(c!», hence 0(<1» holds in ')t as welL Since D} Ls in m we

can handle symmetry-properties of n in the ground model m.
We shall use the in order to prove that there are

models Jt of ZF in which choice fails, thus proving Cohen's

theorem, that the axiom of choice (Ae) is not deducible from ZF.

However, we shall not present COhen's original proof [9 ], [ii].
In the proof given here a Cohen-extension 1t of a countable

standard model Jrt is constructed in whiqh there exists an infinite,

but Dedekind-finite set A. This construction is due to J.D.Halpern-
A.Levy:
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[35] J.D.HALPERN-A.L£VY: The Boo Lean Prime Ideal theorem does not

imply the axiom of choice; Mimeographed Notes, 93 pages.

To appear in the Proceedings of the 1967-Set Theory Sym-

posium at UCLA (AMS-Publications).

(see also Jensen's lecture notes

Definitions. A set x is called finite, iff x is equipotent to some

member n of w. A set x is infinite, iff it is not finite. A set x

is called iff there does not exist a function f

mapping x one-to-one onto some proper subset of x (This definition

of finiteness was used in 1888 by R.Dedekind in his famous monograph

"Was sind und was sollen die Zahlen"). In ZF it holds obviously that

every finite set is Dedekind-finite. In order to prove the converse

one needs the axiom of choice; the following fragment of the axiom

of choice turns out to be already sufficient:

(AC
w):

The countable axiom of choice: For every set x of non-empty

sets such that x is countable, there exists a function f

such that for all y E x it holds that fey) E y.

Lemma: ZF + (ACw) infinite set x has a denumerable subset.

Proof. Let x be infinite. Define S = {y C x; = n} for nEw.n
Then T = {Sn; 0 < n < w} is denumerable. By (ACW). t her-e exists a

function f defined on T such that f(S ) E S for all n, 1 n < w.
n n

Hence f(S ) contains n elements. Define g(n) = fCS ) for 1 n < w.n n
The set {g(n); 1 < nEw} = G is countable.Thus using CAC

w) one obtains

a function h defined on G such that h(g(n» E g(n). Define h*(n) =
h(g(n», then {h*(n);l n < w} is an infinite countable subset of x.

This set is since x is infinit2 and therefore every Sn

for 1 n < w non-empty, q.e.d.

Corollary. ZF + (ACw) A set x lS iff it is Dedekind-finite.

Proof. Let x be Dedekind-finite and suppose x is not finite. Then

by the preceeding lemma x has a countable infinite subset y =

{Zl ,Z2 ,Z3 , ... I . Define a function f on y into y by: f(zn) = zn+l'

then flly = {Z2 ,23 ,Z4 , ••• }. Extend f to a function f* defined on the

whole of x by f*eu) = u iff u y and f*(u) = feu) iff u E y.

Then f* is a one-to-one mapping from x onto (the proper subset)

x - {Zl}. Thus x would be Dedekind-infinite, a contradiction, q.e.d.
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Now we shall construct a Cohen-extension 1t of some ZF-

model in which (AGw) fails by showing that in 1t there are

infinite sets which are Dedekind-finite. The model used is due

to Halpern-Levy [3S] as indicated above.

Theorem. If ZF is consistent, then

"ZF + there exists an infinite set which is Dedekind-finite"

is consistent too. Thus (ACw) is not provable in ZF.

Proof. Let 1fG be a countable standard model of ZF. Consider the

following structure CJl = (A,R) inm , where A is wand R is

the unary predicate which holds for every x E A; thus dt= (w,w).

Define a ramified language £ in 'tt which has besides the usual

ZF-symbols also constants for every set x of JrL, constants ai
for every i E w = A, a constant b and Va and

limited comprehension Ea for all ordinals a of JYt, so

that the sequences {( CJ., Va) ; 0. E Onm } and {( (l,Eo.) ; a E Onm }
are section A for details). Define a condition p to be

a partial finite function from w x w into 2 = {D,l} and define

the forcing relation as in section A. Thus the key-clauses (3)

and (7) read in the present context (t is a constant term):

P II-t e a.
]

p II- t e b

(3n e; w)[p Il-t "'!l & p({n,j» = 1]

(3 j e w)[ p II-- t '" aj ] .
Obtain a complete sequence of conditions and thereby an interpre-

tation of the constant terms of the language £, which defines

the model Write a. = val(a.), b = val(b); then a. C w for all
] ] ] -

j e; wand b = {a.; jEw}. By our "Hauptsatz", n is a model of
]

ZF. We want fa prove that in Jt , b is infinite while Dedekind-

finite. This is done in several steps.

1 Step. ai * a j if and only if i * j.

Proof. Suppose there are integers i and j such that i * j and

a· = a. holds in YL . Then.(by lemma P) a· = a. is forced by some
:l. ] l ]

P in the complete sequence iR, which defines Jt . Hence p II" a i = a j.
Since p is finite there exists a natural number n such that

{n,D p and (n,j) ¢ p. Since i * j, we can extend p to a condition

q by defining:
q = p U {{ ( n, i) ,1) ,{ ( n ,j) ,0) } •

By the f'or-e i ng definition q II- n e a. and q lhol n e Q,. where p .,.:;; q .
:l. ]
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Thus, by the 1s t we have obtained a

2.Step. It holds in 1t that b = {a.; jEw} is infinite.
J

Proof. Otherwise there would be a one-to-one function f in 1t map-

ping b onto some member n of w. This is impossible by the result
proved in the first step.

3.Step. It holds in 1t that b is Dedekind-finite.

Proof. Let f be any one-to-one function in 1L which maps b onto

some subset c of b. We claim that (fUb =)c = b. It is sufficient

to show, that there exists a number mEw such that f(a.) = a. for
] ]

all j m,

By definition of jt , f is a limited comprehension term

= t f. By our assumption it holds in 1t that f is one-to-oae;
thus by lemma P:

I -1p Ir- Fnc(t f) A FnC< ) A Dom(t f = b A Range(t f) b

for some p in the complete sequence B. Let be the -set

of numbers j such that occurs in where t f = Let k

be any (sufficient large) natural number such that k and

Dom(p) w x k. This means: all j E are smaller than k and

if «i,n) ,e) E p for some i E w, e E 2, then n < k.

We claim that p II-*'( a. ,a.) e; t f for j m = k + 1.
] ]

Otherwise there would exist an extension q of p (by the definition

of forcing) and natural numbers nl ,n2 such that nI * n2 , m nl ,
m n2 and
(0) q II- ( a ,.3. ) e t

fnl n2
Choose hEw such that « n ,j) ,e) E q implies n < h , j < h and such

that nl * h, n2 * h. Define a permutation 0 on w by o(h) = n2 ,

o(n2) = h, o(i) = i for i E w-{h,n2}' An application of the symmetry-
lemma to (0) yields:

c Cq ) II- (.3. ,a
h
) c t

f. nI
since oco Ce) C k < m"'; n, ,n2, hence = ell, thus o(tf) =

= = = t f. By definition of 0,

q U cr(q) is a function and hence a condition extending both q and

cr(q) . Therefore by the first extension lemma and lemma B:
-1

£ t f A Fnc(tf) A Fnc(t f ).

since t f is a function. This

e t f " (a I a.,)nl 'I

(ani) = ah ,

q U o (q) If.. ( ani 'c}n2)

Hence q U cr ( q) II- a
n2

=
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contradicts the result proved in the first step. Thus in fact

11* ., .....P I"" tf(aj) = a j for all j p m and f must be surjectiv. This
finishes the proof the theorem.

D) THE POWER OF THE CONTINUUM IN GENERIC EXTENSIONS

If we assume the axiom of choice (AC), then every set x is

equipotent with prectsely one aleph K . If ffi is the set of all_ a

reals then = Ky for a certain Is it possible to __

determine this ordinal? It follows from Cantors theorem "x < 2X )

that v > 1. G.Cantor has spent many years in order to solve this

problem without arriving at the determination of the value for v.
The natural approach to this problem is to determine the

cardinalities of various of Cantor showed that every

perfect set has cardinality 2Ko a set is perfect iff it is a

compaet subset of non-void and every element of it is an
aceumulation point of it). Moreover, the

asserts that every closed subset of is either countable or the

union of a perfect set and a eountaple set. Thus no closed subset

of ffi has a strictly between Ko and !Ko • Some further

results of classical descriptive set theory read as follows:

(a) Every uncountable n-set of reals contains a perfeet subset.-(b) Every rrl-set of is the disjoint union of K1 many Borel sets.
- K

It follows that every has power Ko or = 2 0 • Since

Borel-sets are (Sou;lin' s theorem), hence it follows that

every [I-set of reals has cardinality K1 or = 2Ko (For the

notion ,tl, etc, •.. see chapter II, page 44). For a treatment of
these results see: ['t8] and :

[55] A.A.LJAPUNOW: Arbeiten zur deskriptiven Mengenlehre;

V.E.B.-Deutscher Verlag der Wissenschaften, Berlin 1955.

Since it was impossible to exhibit a subset of of cardinality

strictly between K1 and 2No , Cantor conjectured in 1878 that
(CH) 2Ko = K1 ,

called the "Continuum-Hypothesis". David Hilbert listed this

problem as the first problem in his famous list of unsolved problems

at the first international congress of Mathematicians in 1900

in Paris. Despite many this problem remained for a long
time unsolved. It was however used freely in proofs since it turned
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out to be a powerful assertion and also often symplified situations.

W.Sierpinski deduced a large number of propositions (there called

C1 - C82) from (CH),

(191 Hypothese du continuo Warszawa-Lwow 1934

(2nd edition, New York 1956).

In the lit erature there are many papers in which (CH) or the

generalized continuum-hypothesis (GCH) is discussed and proved

to be equivalent to other statements. W.Sierpihski contributed

many papers concerning the (GCH).

H.Rubin has shown, e.g., that the (GCH) is equivalent in zr to:

"For all transfinite cardinals p and q, if p q, then for

some r it holds that p = 2r".

(see H.Rubin, Bull. AMS.65(1959)p.282-283). B.Sobocinski has published

a series of notes on the (GCH) in the Notre Dame Journal of formal

Logic (parts I, II, III, vol. 3 and 4 (1962,63). K.G6del has

published in 1947 an article in which he gives a survey on results

around the (GCH) and in which he discusses the more philosophic

problem of the "truth" of the (GCH):

K.GODEL: What is Cantor's Continuum Problem? Amer.Math.

Monthly 54(1947)p.515-525, Corrections vol.55(1948)p.151.

Kurt G6del showed in 1938 that the (GCH) is consistent with

ZF, see chapter II of these lecture notes. Thus the (GCH) cannot

be refuted in ZF. We have presented here a proof, that (AC) cannot

be proved from the ZF-axioms. Since the (GCH) implies the (AC) -

see page 24 - it follows, that also the (GCH) is not a theorem

of ZF. Thus (GCH) is neither provable nor refutable in the system

ZF. But now the following question arises: if we are willing to

add the (AC) to the axioms of Zermelo-Fraenkcl set theory ZF, is

then the continuum-hypothesis (CH) or even the (GCH) derivable?

P.J.Cohen [9 ]-[12] has shown that the (GCH) is not provable in

ZF + (AC). Hence the truth or the falsity of the continuum hypothesis

cannot be decided on the basis of the usual axioms of set theory,

including the axiom of choice.

Theorem (P.J.Cohen). If ZF is consistent, then ZF + (AC) + 2Ko K2
is consistent too. Thus the continuum hypothesis (CH) is

not a theorem of ZF + (AC).

Proof. Let be a countable standard model of ZF + (AC). We shall
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construct an extension 1t of '1tby adding generically so many

new subsets of w, such that 2Ko = NI is violated in 11 . We shall

show below that it is sufficient to add .Kz -in the sense of m -new

subsets of w to Since J1t is countable, hence has only coun-

tably many (in the sense of the meta-language) subsets of w

(though in 'Tt these sets have cardinality there is hope,

that we will find - many subsets of w not yet inm, since

(Kz)m is countable outside ofm .
Define in 'ft a ramified language £ which has besides the

usual ZF-symbols, the limited existential quantifiers \la, the

limited comprehension operators Ea (for ordinals a in 1rL), the

constants x for x EJil , a further binary predicate symbol a.
Define £ such a way, so that the correspondences x x, a * Ea

and a .. va are all c Las s e s of m (use c. g. the standard trick

presented on p.79). Define a condition p to be a finite partial

function from w x into 2 = {O,l}. Define the forcing relation

II-- in the usual way (see page 81--82) containing the following

key-clause:

p II- ';'Ctl ,tz ) >¢> (3 n E w)(:J'lI E N2 ) Cp '''''tt '" El &I P II--tz '" &

pC(n,,\,» = 1).

This means in terms introduced in section A: We take as relational

system at = (A,R) the very special case A = 1 = {a} and R = 0,
and choose a generic copy of en. in S = w X Kz . Thus by choosing

a complete sequence of conditions and defining the valuation-

function as in section B, our Hauptsatz tells us, that the model

n obtained in this way is a model of ZF which contains m as a

submodel and contains a = valCEa'x,y)aCx,y» C w for

a = w;rt Cthe superscript 'ft indicates that the concepts are

understood in the sense of

By a theorem proved in section C, n is also a model of CAC), since

we have added tom, a model of ZF + CAC), only one new Cohen-

generic set. Thus it remains to show, that in the continuum

hypothesis is wrong.
Since Kzm is the ordinal in m and ordinals are preserved

by the transition from YrL to , is an ordinal of yt . Thus

if we define for 'V < w;tt- = y:

a
V

= {n; nEw A (n,'lI) E a}

then a
V

w and *V2 + aV1 Cas in the proof of the preceeding

theorem) and we get



106

(in yt, ).

y is in Jrt the second infinite cardinal: y = We shall show

that cardinals are preserved in the extension, i.e. an ordinal

which is a cardinal in Jrt is a cardinal in 1t and vice versa.

Then it will follow that y = is also the second infinite car-

dinal in Yt y = and hence 2Ko K, in rt as desired. To

this end we need some lemmata.

Lemma 1. If B is in Yrt a set of conditions such that its elements

are pairwise incompatible, then B is countable.

(V B C Cond I] B E m & (\} PI ,p, E BHpl *" ps .. PI U p, 1:. Cond )
--- =m"* B EO;; w] •

Proof. Cand is the 1ft-set of all condiTions. Suppose the lemma is

false, and let B be a set of m, such PI,P' E B .. (pI"'" P v=m . - ..
PI U p, Cond) and B > w. Define B = {p E B; PEO;; n}. Since

-- n
= Band B is uncountable, there is a number nEw such that

Bn is (in m ) uncountable.

There are conditions q E Cond such that {p E Bn; q p} is in

uncountable, namely the empty condition q = 0 has this

property. On the other hand the cardinality of all sueh conditions

q is bounded by n, since q p. Thus we may define m to be the

natural number such that there exists a condition q sueh

that q = m and {p E Bn; p 2 q} is in )ft uncountable. Let qo be such

of cardinality m having this property. Now choose in

{p E B ; p qo} any condition PI. Since in B all conditions aren -
pairwise incompatible, the elements of {p E B; P 2 qo} are also

pairwise incompatible.

pI-go is not empty, since otherwise PI = qo and PI would be

included in all conditions in {p E B; P qo}, and hence compatible

with them. Thus we can find « k ,.,,> • e> E PI -qo such that « k ,'1/> ,1-e>

is contained in (in the sense ofm) uncourrtab Ly many conditions

from B* = {p E B ; P go}. This follows, since PI is incompatible
n -

with every p E B*. It follows that {p E Bn; p 2 qo U {«k,'I/> ,1-e)}}

is uncountable in the sense of m and qe U {( (k,""> ,1-e>} has

cardinality m+l, a contradiction to the choice of car-

dinality having this property. Thus lemma 1 is proved

Lemma 2: If f is a function in , such that Dom(f) E JrL and

RangeCf) C x for some x E 'fl. then there exists a function
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g in m such that Dom(f) = Dom(g). Range Cf ) URange Cg)

ex, and g( s ) is in m countable for every s E Dom( f) .

Proof. Since s e Tt. ,there is by definition of n a term t f
of the forcing language £ such that f val(tf). Thus the following

holds in Jt., (for x s z Em):

(*) 1\ e t f '" <u,w> It if -+- v = wl " Dom(tf) = "-
RangeCf ) z-

Since yt is a generic extension, there is a condition Po in the

complete sequence (which defines 1L ) such that po forces (*)

-see lemma P in section B. Using weak forcing and lemma A of section

A, this entails:

( ** ) ( t' u •v,w E m )( \i q ;> Po )[ q 11-* { £ t f & q 11-* ( 0 £ t f ...

v = wl.

Further, for every u E Dom(f) there is a condition pi in the complete

sequence 6t such that p' i.. t f (this follows since

E t f holds in n ). Since both Po and p I are in 0t and 0t

is totally ordered by C we obtain that Po U pi is a condition.

Hence,defining

gCs) = {V; y E x & (:3 pi ;;;. po e t f)}
for s E z = Dom(f), we that f(s) E g(s). The function

g:z ...... x i!l in m by lemma I of section 1\, and DomCg ) = Dom(f) = z

and Range (f) U Range ( g) x .

We claim that g(s) is countable in yYt for s E z. tor s E z
choose in for every y E g(s) a P po such that

y -
Py e: t f. We claim, that {Py; y E g(s)} satisfies the

hypothesis of lemma 1. In fact, if YI , Y2 E g(s) and p I U P
YZ

is
a condition, then pUp II-*{s,'ll> : t f & pUp f(..*(S,Y2> e t f.YI Y2 - YI yz -
But (**) entails YI = Hence p = p , since for every

YI Y2
Y E g(s) we have chosen Py' Now lemma 1 yields that {Py;y E g(s)}

is countable. This in turn implies, that g(s) is in yyt countable:
--mgrsr 00, quod erat demonstrandum.

Notice, that we could interpolate between Range(f) and x

only a "multivalued" function g, since the whole complete sequence

is not in JrL , and could thus not be used in order to find the

interpolating function g (if would be available in , we could

show m =n 1 hence fEn, but this is contradictory).
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But this defect is not too heavy since g(s) is for s E z always

countable, as we have shown.

Lemma 3. Cardinals are absolut In the extension from JYt to 1t .

Proof. Let a be an ordinal of n (and hence of m , by lemma T
=n

of section B), and let a be the cardinal of a in J1 and let
=')tL
a be the cardinal of a in JYL (i.e. the least ordinals equipotent

with a). Since Jl . every function from ordinals B a onto

a which is in m is also in 1(. .
=n =n

Hence a a . We shall show that also holds.-no. ::)11.
Let f be a function inn from 00 =;; onto 01 = a If

a is finite, then f E m and 00 = 01 follows trivially. Hence let

us assume th&t a is infinite. By lemma 2 there exists in Jfl a

function g such that Dom(g) = Dom(f) = 00 and 01 = Range(f) C

URange(g) 81 (hence =), and s E 01 + g(s) is in . Hence:

=)11, m m m m
a = Ot = Range(f) = URange(g) .,;; DomCg) x w = Dom(g)

m ),
:.1'(,

= ct

(since Dom(g) = Dom(f) is infinite (AC) holds in

m 1\1, -=rn ::.n mDom( g ) = Dom ( f ) = 00 = ( ct )

=Jt ==mHence a = a and the Lemma is proved.

The lemma implies th'lt in particular .-- the notion of being

(the second infinite cardinal) is absolute in the extension from

m to 'it. Thus the continuum has in n power N2 • This proves

the theorem.

Theorem (P.J.Cohen). If ZF is consistent, then so is ZF + (AC) +

(GCH) + V ¢ L. Thus the axiom of constructibility is not

provable in ZF + (GCE) + (AC).

Proof. Let be a countable standard modQ1 of ZF + V = L and let

be the model obtained by adding to one Cohen-generic real a,

= jftlal. Then V ¢ L holds in n since the class of construc-

tible sets of 1t depends only on the class of ordinals which are

in Jt . But m and J1 have the same ordinals, hence m is in 'J1
the class of constructible sets. Since a , we infer that a is

not constructible in 1t . On the other hand (AC) holds in Jt by the

first theorem of ection C. Further the (GCH) hD1ds in jl since a

a C w, and V = L(a) holds in .• To see this, use the correspon-

ding proof of L (GCH) in chapter II, 4. ./d.
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The continuum hypothesis can be violated in generic extensions

in various ways. R.M.Solovay has extended the result of Cohen and

has shown that 2Ko can be anything it ought to be. The only values

excluded for are excluded by Konig's theorem, which

asserts that 2Ho is of cofinality greater than Ko.

(811 R.M.SOLOVAY: 2Ko can be anything it ought to be; In: The Theory

of Models, 1963 Symposium at Berkely; North Holland Publ.

Camp. Amsterdam 1965, p.435.

Theorem (Solovay (51]): Let Xa be an infinite in the

eountable standard model m with Ko < cf(Ka). Then there

is an jL of)fL that the ordinals

of 11 are the ordinals (cardinals, resp.) of
and = Na in n .

The (GCH) can also be violated in various other forms. E.g. 2Ka : Ka +1
for ordinals a. < y and 2

Ky
;# K

Y
+
l

(Solovay ret] ,. Derrick- Drake,
H.Schwarz et al.), thus answerin8 a problem of Hajnal (Zeitschr.math.

Logik For a proof of this result

see e.g. Jensen the of Sehwarz (cited on p.76)

and the article of DerriJ.:k-Drake in the same volume as Jensen [':to] •

Solovay has furthermore shown that there are generic extensions

in which 2Ki : K is consistent where i < n, and no nl .,. nkni .L

(k E w) any sequence of natural numbers. W.B.Easton has extended

this result. By means of foreing with a proper class of conditions

he constructe a Cohen-generic extension n of a- eountable standard

model m of NBG-set theory (with global choi ee ) in which:

2Ka : KG(a) for every regular cardinal holds,

where G is any function in JrL from ordinals to ordinals satisfying

the following two requirements: (1) a S implies G(a) G(S) and

(2) is not cofinal with any cardinal less than or equal to Ka •

This result ie contained in Easton's thesis (Princeton 1964),

published partly in:

:W.B.EASTON: Powers of regular cardinals. Annals of math. Logic,

vol.l (1970).

J.R.Shoenfield has developed a method for obtaining generic exten-

sions of countable standard models Qf ZF without us ramified

languages. Dana Scott told us, that Shoenfield's approach is equi-

valent with the Boolean-valued model approach (see the forthcorring
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article of Scott-Solovay in the UCLA-set theory Symposium proceed-

ings, vol. 2).

Shoenfield presents the result of in his article:

[r1l J.R.SHOENFIELD: Unramified Forcing. Proceedings of the 1967-

set theory symposium at UCLA, to appear in the AMS-publi-

cations.

E) THE INDEPENDENCE OT THE (BPI) FROM THE ORDERING - THEOREM

We consider the following statement:

(BPI) Boolean Prime Ideal Theorem: Every Boolean algebra has a prime

ideal.

A Boolean algebra B is a distributive, complemented lattice re =
( B, u , n , - ) , where x U y is the join of x and y, x n y the

meet, and -x the complement of x. B can be partially ordered by

defining x y # X U Y = y. Then x z is the least upper bound

for x and z in B, and x" y is the greatest lower bound for x and

y. The maximal element in B is denoted by 1B and the minimal element

by 0B' An ideal I in S is a subset of B satisfying the following

three conditions:

(i) 0B E I,
(ii) x E I Y x Y E I,
(iii) x E I " Y E I .... x U Y E I.

A prime ideal is an ideal with the additional property:

(iv) x E I # (-x) 1.

In a Boolean algebra the prime ideals are just the maximal proper

ideals.

The Boolean Prime ideal theorem (BPI) has a considerable number

of equivalent forms in several branches of mathematics and in logic,

although by far not as many as the axiom of choice (Ae). The (BPI)

is thus an interesting and natural principle of set theory.

Lemma. The following statements are all equivalent (in ZF) with the

Boolean-Prime-Ideal theorem (BPI):

(a) The Stone representation theorem: Every Boolean algebra

E is isomorphic to a field of sets.

(b) The Tychonoff-theorem for Tz-spaces: The product of com-

pact Hausdorff-spaces is compact in the product topology.

(c) In every commutative ring with unit, every proper ideal

is included in some prime ideal.
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(d) The compactification theorem.

(e) Alaoglu's theorem: The unit sphere of the adjoint of a

Banach-space is a compact Hausdorff space.

(f) In evary Boolean algebra, there exists a 2-valued measure.

(g) The principle of consistent choices.

(h) The completeness theorem for 1s t-order languages: Let

be a set of 1s t-order sentences with arbitrary many non-

logical constants. If r is consistent, then it has a model.

(i) The compactness theorem for 1s t-order languages: Let L
be as in (h). If every finite subset of r. has a model,

then L has a model.

For a proof see the following papers: Nardzewski: Fund.

Math. 38 (1951) and Fund. Math. vol. 41 (1954); D.Scott: Bull.AMS

60 (1954) p. 390, L.Henkin: Bull.AMS. 60 (1954) p. 390;

H.Rubin - D.Scott: Bull. AMS. 60 (1954) R.Sikorski:
Algebras (Springer-Verlag Berlin 1964), Appendix.

We are interested here in one of the consequences of the (BPI),

namely the ordering principle:

(OP) Every set x can be totally ordered.

\'1e shall use the notions "totally ordered" and "linear ly ordered 1/

synonymously (i. e. equivalently). A somehow stronger principle is

the following:

(OE) Order-Extension-Principle: If x is a set and r a partial ordering

on x, then there exists a linear ordering t en x such that ret.

The (OE) has been discovered by Banach, Kuratowski and Tarski (see:

W.Sierpinski: Zarys terji mnogosci, Warszawa 1918, p. 158). The

first proof which appeared in print is due to E.Marczewski (Szpilrajn)

(Fund. Math. 16 (1930) p. 386-389). Marczewski used the lemma of

Zorn-Kuratowski in order to deduce (OE). Los, Ryll-Nardzewski and

L.Henkin observed, that (OE) is already a of the (BPI)

(proof either via the compactness theorem, or directly using the

ultrafilter theorem). Thus we have:

ZF I- (AC) (BPI) (OE) (OP).

We are interested in the problem, whether the converses of these

implications also hold. It is not known, whether (OE) + (BPI)

provable in ZF or not. In this section we shall present a result

of Adrian R.Mathias, which says, that (OP) (OE) is not a theorem

of ZF. In the next section we shall present the proof of J.D.Halpern-
A.Levy, that (BPI) does not imply the axiom of choice (AC).
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Preparatory remarks. Mostowski has constructed in his paper

a model containing urelements (atoms) in which the ordering

principle (OP) holds while (Ae) fails in it. Mostowski takes a

countable set of atoms ordered of type no (i.e. the order

type of the rationals). A set is called symmetric iff it is mapped

onto itself by some finite-support subgroup of G, the group of all

order-preserving mappings from no onto no. A set x is in the model

OOtiff x is hereditarily symmetric. The proof that (OP) holds in

based on the fact, that every set x of 11t has a unique

minimal support, supp(x), where supp(x) is a finite subset of no
(the set of atoms). The correspondence x * supp(x) is in 1tt and

hence the lexicographic ordering of supp(y) for y E x together with

wellorderings of the sets K = {y E x; supp(y) = e} can be used toe
obtain a (symmetric) totalordering of x.

This idea can be carried over to Cohen-generic extensions. The

role which was played by the urelements in Mostowski's model

will be played by generic reals in The Cohen-extension. However,

instead of adding a generic copy of no (the rationals) to some

countable standard model of ZF + V = L (in this case we would

not know, how to destroy (OE) in the extension ) we shall add a

generic copy of a certain partially ordered set (1,< ) to m.
If (I," ) has sufficiently enough automorphisms, then the generic

copy of (I," ) will not have in the extension"" a total ordering,

which extends" (the symmetry-lemma will be used here).

What are the properties, (1,<) has to fulfill, so that in the

extension the ordering principle (OP) remains true. The typical

property of no, which was used by Mostowski in in order to

prove the existence of a unique, minimul, finite support of every

set x of his model11t (the supports are sets of urelements!) was

the homogeneous ordering of We shall show, that, if we require

that (I," )is a countable, homogeneous, Ko-universal partially

ordered set inm. and m J:: ZF + V = L, then in n (the extens ion

of JrL) every set x = has a unique, minimal, finite

support supp(x), such that the correspondence x supp(x) is

1L -definable. The verification of (OP) in JL is then standard.

We need here. that JYL is a model of V = L for two reasons, first

in order to establish <using a theorem of B.J6nsson) that there are

in Jtt. homogeneous, universal partially ordered sets, and second

in order to ensure that K = {x; supp(x) C e}, e a finite subsete
of I, has a definable wellordering • Finally let us notice
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that, in contrast to Mostowski's permutation model OOt, the fact,

that we have chosen a partially ordered set <1,0;;; >and not a line­

arly ordered set (like Mostowski's Do) will not cause any troubles

when we want to linear order lexicographically the supports, since

the generic sets a. (for i E I) are subsets of wand {a.; i E I}
1

has thus in 11, a definable ordering (riameLy the ordering of the

real­line) .

Having clarified the basic ideas behind the of

a model JL of ZF + (OP) + I (OE) + I (BPI), we start to present the

details of the proof. First we define the notion of a homogeneous,

universal relational system. The notion is a generalization of

Hausdorff's notion of an Da­set. For more information we refer our

reader to the following publication5:

B.JONSSON: Homogeneous universal relational systems; Math. Scand.

vol.8 (1960) p.

[3 J J.L.BELL ­ A.B.SLOMSON: Models and Ultraproducts; North­Holland

publ. Compo Amsterdam 1969. (chapter 10).

Definition. The t.ype l' of a relational system 0\.:: (A,Ki> iE, vlhere

, is a finite ordinal) a sequence {no ,nl , ... n1;­l>

of natural numbers such that for 0 0;;; i 0;;; 1;­1 the relation

Ri is ni­ary.

Definition. The relational system <B,Si>iEI; is a of

01.,= <A,Ri>iEr; iff BS;:A and Si = Ri n Bni ( r­es t r-Lc'tLon

of Ri to B).

Definitioh. Let X be a class of relational systems all of the same

type T. A system m is X­homogeneous, iff the follo­

wing holds:

(1) m E JC

(2) If :tr = {B,S} iEI;' :t E :re, and if is a subsystem of

en:: {A,R·>·E such that B< A, and if $ is an iso­

morphism of j} into (Jt" then $ can be extended to an

automorphism of Ot.

Definition. Let be a c14sS of relational all of the same

type and let a be an or­d i.na l , A system ot E j{' is caI Led

(Na iff every system.t­ :: { B,S{ iE1;' sueh

that B " Ka, is isomorphic to a subsystem of crt. , and A
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has itself cardinality Xa.
Bjarni Jonsson has proved in under the assupmtion of the

(GCH), that under certain conditions on K and there are (Xa,X)­

universal, homogeneous relational systems. It follows in particular

that there are countable homog8neous partially

ordered sets (here X is the class of all partially ordered sets).

Theorem (A.R.D.Mathias): Let 1ft be a countable, standard model of

ZF + V = L; then 'fL can be extended to a countable standard

model of ZF + (OP) + I (OE). Thus the orderextension

principle (DE) and a fortiori the Boolean prime ideal

theorem (BPI) is independent from the ordering principle

(OP) in the system ZF.

This result is contained in

[58] A.R.D.MATHIAS: Order Extension Principle; Proceedings of

the 1967­set theory symposium at UCLA. To appear.

Proof. By the theorem of B.,Jonsson [£toil there exists in m a

countable, Xo­universal, homogeneous parially ordered set >

. We shall extend m by adding to m a generic copy of (I, > •

We emphasize that if we write i < j then i j and i + j. Thus <
is irreflexive, while is reflexive: i < j • (i < j Vi = j).

We construct in jYt a ramified language £ with the usual limited

quantifiers \la and limited comprehension operators Ea (for ordinals

a inm ), the ZF­symbols, coris t arrt s for each set x of , indivi­

dual constants a. for each i E I and two further constants A and < .
J.

The wellformed formulae and limited comprehension terms are defined

as usual, with the restriction that if A or <: occurs in the J:­formula

then is a limited comprehension term only if a w + 1.

A condition p is a finite partial function from w x I into

2 = {O,l}. Define the (strong) forcing relation If- as in section A

of this chapter. In our present case clause (3) reads:

p 11- t e: .ii (3 nEw) (p II-- !:!. '" t & P« n , i» = 1)

where t is any constant term of L. Clause (7) reads:

p n.. t e: A ­<3i E I) ( p If- t '" a. )1

• <3 i l E IH 3 i 1P If- t) < t1 E I) (i1 < i 1 & P II- tl '" a. 8c
.1)

P If- t1 '" a. )
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Let again the weak forcing relation. It follows

. <. '" jL·· Y'11 12 => J(J , a. <, a. ,
11 12

(V i E I) (21 a. e A).
1

Obtain a complete sequence of conditions and thereby a valuation

of the constant terms t of t, which defines the model 1t .
Write a. = val(a.), A = valCA), V = val« ), then a. C w,
111

A ={ai;i E r} and is an irreflexive parial ordering (in Yt
of A. By our Hauptsatz, 11 is a model of ZF. All what remains to

show is, that the ordering principle (OP) holds in JL while COE)

fails in )0 . To this end we need the following restriction lemma

and the symmetry ... lemma which we have proved in its full generality

in section C (see page 99), so that it is available in the present

situation.

Restriction lemma: Suppose that p II- and let occCe) be the finii!e

set of elements of I such that i E iff a. occurs
1

in Further let = {«n,D ,e ) E p;i E

then p/occ(¢»

Define Co = d = {i E r ; w Ve E ,e} E p "
i lIE co)}, and q = Suppose - q n... Then by lemma A (i) (see

section A) there exists an extension q' of q such that q' II-I q'

mentions names of reals in co, and also others, say those in the

finite set Cl :

Cl = {i E I;VnE wV e E 2 ({( n , i> , e ) E q' " i lIE co)}.

By defintion Co n d = Co n Cl = 0. By the univerality of (r ,..:;) we

can find a subset of I, such that <bo U d ,..:;} and (co U C2 ,..:; )

are isomorphic, C2 n (co U d) = 0. and there exists an isomorphism

T" which is identical on co. By the homogeneity of cr ,..:; ) , T can be

extended to an automorphism C1 of cr ,<; } • Hence: C1 (i) = i for i E co

arid C1 (j) E C2 for j E C1. By the symmetry lemma, q' II- I implies

C1(q') C1( I¢». But C1 is the identity on Co = occ(¢», hence C1(¢» ¢>,

and we obtain C1Cq') By construction of C1, the domain of the

functions p and C1(q') coincides only on a (finite subset of w x Co,

where both have the same values, since q p and q q', q C1(q').

Hence p U C1(q') is a function and therefore a condition. By the

first extension lemma (see section A): p U oCq") II-I ¢>. On the other
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hand p If> entails also p U O(q') If>, a contradiction to the con­

sistency ­ lemma (see section i\). This proves q q v e v d .

Lemma: The Orderextension Principle (OE) does not hold ln Yt . In

particular g = val(<: ) cannot be extended in JL to a total

ordering of A = val(A).

Proof. Suppose g can be extended in 1t to a linear ordering of A.
Let R be such an orderextension of g. By the definition of JLthere

exists a limited conprehension term t Eaxlf>(x) of I such that R =
val(t). Let '¥(t) be the I­sentence 'It is a totalordering of Aexten­

ding < n Let c = occ(t) be the set of indices i E I such that a.
1

occurs in t. Hence c = occ('¥(t)). Let S(c) = {i E I; \I'E (i j V] c
j i)} be the "shadow of c in (I," )\".

By the universality of we may embed the following partially

ordered set into I­S(e):

., .,
12 13

[all elements are pairwise incomparable, only i 4

is smaller than i 6 ] •

it· )
1m

( m , k > 4= ( 4 , 6) ,

(ii)

E R,

'1t thatholds in

( a· ,a. >
11 12

terms a.
11

are ordered by R. Assume e.g. that

Hence we have obtained six generic

el 11­* a· <: a.
. 1 4 16

el <: a. va. <:
1 m l k lk

for m,k = 1,2,.,.6 with

Since R : valet) is a linear ordering of A in, it

{a. ,a. ,a· }
11 12 13

(a. ,a. ) E R.
12 13

such that: Ci )

(iii) ell¢­'C3'i <i. Va. <:a. )
m ] J J.m

for m = 1,2, ... ,6 and jE c = occ(t)

(iv) n '­(a. ,a.) E R !'(a. ,a.) E R.r- 1 1 12 1 2 13

Since everything which holds in must be forced (strongly or

weakly) by some condition in the corresponding complete sequence

we obtain, that there is a condition p in such that

p If...* 'II( t ) A (a. ,a. > e t A. (a. ,a. ) e t
1.1 12 12 1]

By the restriction lemma, we may assume that p contains finitely

many ordered pairs ({n,i>,e) (with nEw, e E 2) only with iEocc(t)

U {il , i 2 , i 3 } • Define
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Pi (occ t t ) ,i l ,h) = p/ocC<t) U {il ,iz}

pz (oocCt ) ,iz ,h) = Pjocc(t) U {' '}1z ,13 •

{il ,iz ,i6 ,is} and on

e:: t

l!: t.

(a. ,a.)
11 1z

A (a. ,a. )
1:1 13

Now define mappings 11 and 12 on occ(t) U

occ(t) U {iz ,i3 ,i4 ,is}, respectively, by:

Then by the restriction lemma:

( +) PI (oCC (-t) , i l , iz) 1I"*lJ' ( t )

( ++) ft (oCC(t ) , iz , is) 11-* lJ' ( t )

11 il'" i 6, i z .. is, 11 identical on ooo I t ) ,

'2, i z t+ is, b t+ i+, 12. identical on occ(t);

Hence 11 maps (occ(t) U {il isomorphically on Cocc Ct ) U{is,

i 6 } , and similar 1z maps (occ Ct ) U {iz , h } ,<;) isomorphically on

Cooct t ) U U.4 ,is}."'; ). By the homogeneity of (1,0;;;; ) • 11 and 1z can

by extended to automorphisms crl and crz ,respectively, of (1,0;;;;).

Using crl we Obtain from (+) by the symmetry-lemma:

(0) ql = Pi (occf t ) ,i6 ,is) 1I...·IjI(t) " (a. ,a. > e:: t
16 15

and using czfrom (++):

to weak for-

we obtain:

(00) qz = ps (occt t ) ,is ,i4 ) lJ'(t) " (a. ,a. ) e t
15 14

(notice, the symmetry-lemma also holds with respect. .. ..
cing Since ql U qz is a condition and 0 II- a. < a.

14 16

q I U qz 11-·1jI ( t) A a. <: a. 1'\ (a. ,a. ) e:: t " (a. ,a. ) e:: t
J.4 16 16 15 U 14

But t extends <: , hence (a. ,a. ) e:: t. But lJ'(t) says, that t is a
• J.4 16

linear ordering on A, a contradiction! since what we have shown is

the following: p is in the complete sequence, which defines :tL .
to be the sequence starting with p/occ(t), having p as its

seeond element, and containing then all conditions q of which

extend p. Then defines obviously the same model )1l . Since
*p/oec(t)II-lJ'(t) we infer that every complete sequence starting with

P/occ(t) must force lJ'(t) , and lJ'(t) has to hold, hence also in the
model )lLo defined by some complete sequence which starts with

p/occ(t) and has ql U qz as second element. But we have just shown,

that thie model define a total ordering on

which extends In this way we have thus obtained

a contradiction. This proves the lemma.

Next we want to prove, that in every set can be totally

ordered. The idea behind the proof is the following. It can happen

that for different I-formula and we have that
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val(EClx¢,(x» where * occ(¢,). We want to

show that for every x in there is a £-formula such that

u = and

occ(':!') n{ocd.p); u = val(EClxHx»}.

Then it follows, that every set u of JL is the valuation of a

limited comprehension term ECl'.x'¥(x) with minimal set called

the support of u. then have to show, that the correspondence

u support of u is definable in 1t . Then the rest of the proof

that (OP) holds in JL is standard.

Notation: If t = is a limited comprehension term and •

c, then we shall write t tee) in order to indicate that t mentions

reals a. if and only if i E c.
l

Lemma. Let t(c,d t ) and t'(c,d,) be limited comprehension terms men-

tioning only reals ai for icc U dl, i E cUd, respectively

where c ,dl ,d, are finite disjoint subsets of I. Suppose that

1t Ft(C,dl) ':: tl(c,d,).

then there is a limited comprehension term til t"(c)

mentionin&reals a. for i E c such that
l

J'tf;t(c,dl) :: t"(c).

Proof. All what holds in n is forced by some p in the complete

sequence 8. Hence there exists a condition p E 8 such that

P II-·t(c,dl) = t'(c,dz ) .

By the restriction lemma we may assume that « n , i) ,e) E p implies

i E c U dl U d, .

[more precisely, the restricted condition pic U dl U d, = po need

not to be in 8, a priori, but the sequence which starts with po,

has P as its second element and contains then all conditions q of

8 which extend p defines obviously the same model 11 . Thus we may

assume, that we have already chosen as the sequence which

defines n] .
Define Po = po(e) = pIc' PI = PI(dl) = P!dl and p, = p,(dz) =P/dz.

Hence Po U PI U pz 11-· t Cc ,dl) = t I (c ,dz ). A limited comprehension
•term t"(c) will be found for It/hich PI U pz U P3 11- t(c,dl) = t"(c).

It will be enough to consider the case when d z contains only one

element, say i o. The general case follows by induction. •
We shall write i H y for I(i j V j i) and similarly x I y

for the £-formula I(x <y v y < x v x = y).
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Let i l ,i2 ,i3 be elements of I, but not in c U dl U rio},

such that i l < i o < i 3 A i 2 I i o and such that for v = 1,2,3 there

are automorphisms <I .T, '<3 of (I,";; > with l<vCio) = i v and

i E c U dl + < Ci) = i. Then by the symmetry-lemma (for v =
V

1,2,3);

PoCc) U Pled) U P2(iv ) = t'(c,iv)
where <v(P2(io » = P2(iv) for notational simplicity. This together

ylith Po(c) U Pled) U P2(io) If-*t(c,dl) = t'(c,io) implies (using

the lemma):

( * ) Po ( c) U P2 ( i o) U P2 ( i v) 11"* t ' ( c ,io) = t I ( C , i v )

for v = 1,2,3. We introduce the following notations. For a condi-

tion q define Cq ("the content of q") to be the following £-sentence:

M. {n Ea.; «n,j},l) E q} m E «m,j>,O > E q},/A\ - ] - J

where J.X\ denotes conjunction. Let C (jj ) be the result of replacing
. q x

the generic constant a. in C by the variable x.
J q • •

For a finite subset s of I let Ds be the diagram of ({aj;jEs},<)

Le.:

D ;;:,/f0. . < ; j 1 < j 2 j 1 E s } { ..., a. .< a. ;
s ]1 J2 JI ]2

jl,j2 Es <j2l.

Let Ds(j/x) be the result of replacing the constant in Ds by the

variable x. We now claim that the following continuity-property holds:

( **) Po (c) U P2 (io ) Ax! x E A C ( io/x) D U{' }( i%). + •P2 C 10

t'(c,io) = tl(c,x»),

where tl(c,x) results from t'(c,io) by replacing a. in t l by X.
10

Let k be a limited comprehension term. We have to show that, if
*' iokq is any extension of Po(c) U P2(io) and q If-=k E A 1\ C (lK)"

then there is a ql J q with t'(c,k).

Assume that k and q are given such that the just mentioned

hypothesis is fullfilled. Since in particular q E A we know by

the definition of forcing, that there exists a ql q and a j E I

such that qll\-* k = a.. Pick v = 1,2 or 3, s" that ({io ,j},";; > and
J

( i o, i v} ,,;;;; > are isomorphic. We claim that there is an automorphism

r of <I,';;;; > so that for this choice of v , T maps ( o U {io ,iv} >

isomorphically on <c U rio ,j},';;;; > in such a way that T restricted

to c U rio} is the identical mapping.

In fact, since q' extends q the first extension lemma (see
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page 82) yields:

q' If-"k = CP2 (io/
j ) DCU{io}(iYj),

which means in particular, that q' (weakly) fopces that c U {i}

and c U {j} are isomorphic. Since already eI 11-* DcUHo }(io/j ) (obvious-

ly) we obtain that in fact (c U Ho},E;;) and (c U {j},E;;) are

isomorphic such that there is an isomorphism 01 leaving c pointwise

fixed. But by the choice of v there is also an isomorphism 02 from

( c U Hv},E;;) onto (c U rio},E;;) leaving c pointwise fixed. Hence

To = 0,102 is an isomorphism f'r-om v c U {iv},E;;) onto (c U {j},E;;}

leaving c pointwise fixed. It follows that (c U rio ,j},E;;) can be

mapped isomorphically on (0 U {io,iv},E;;) so that c U {io} is left

pointwise fixed. Let T be such an isomorphism.

Since q' If-"c (io/j ) it must hold that P2(j) =O::1(P2(io » C q'.
P2

Hence

Po(c) U P2(io) U P2(j) q'

and applying T to (*) the symmetry lemma and the 1s t extension lemma

entail:
'"q' 11- t' ( c , i o ) = t' (c , j ) .

Since q' It!k = a., this gives us q' = t'(c,k) as desired
J

and (**) is proved.

The limited comprehension term t"(c) can now be constructed.

Suppose that t'(c,io) is where is a formula of &containing

the constants a. and for i E c. Let be the £-formula
lo

obtained from by replacing a. by the variable x (at all places
lo

of occurrence) - it is assumed, that x does not occur in

Then define

t"(c) = Eay(V l x e A "c (ir'x) " D U{' }(iyx) "
x P2 C lo

By (**), Po(c) U P2(io) II-*t'(c,io) = t"(c). Since po(c) U P2(io)
p E and everything forced by p is true in 1t , the lemma is proved.

Lemma: The ordering principle (OP) holds in

Proof. Set up in J1 a ramified language £* with a name a* for each

a E A, names A* (for A), V* (for V = », names x· for each

x E JrL, limited \la, limited comprehension operators

Ea (for all ordinals a of and the usual ZF-symbols. Do this

in a way so that {(a,a* ); a E A} is a set of n and {(a, Va. ;
a. E Onn } and {( a. ,Ea.) ; a. E Onn } are classes of 1t . Notice,
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that we assume here that m is n -definable -this assumption can

be made by the remarks of page 96-97. Notice furthermore that we

could not use symbols like for i E I as names for the elements
.i,

of A since the correspondence i (i E I) is in 1L (for

each i E I we added a generic real = val(a.) to;rt, but we did

not add the correspondence {{ i , it.} ; i E I} generically to m).
-- .L

Define an interpretation Q* for the constant terms of £* inductively

by setting:

Q*(a*) = a for each a E A,
Q*(A*') = A

Q*(V*) = V and

Q*(x*) = x for each x E Jrt,
and then extending to all limited comprehension terms of £*, so

that Q* is Yl-definable. Now define suppv Cu) , for u E 'JL" as the

finite subset, call it d, of A of minimal cardinality such that

there is a term t*(d) of £* mentioning only the names a* for a E d

with Q*(t·(d» = u. Read supp·(u) as: the support of u. By the

previous lemma, supp· is always well defined. Notice, that there

is a clear one-to-one-correspondence • between constant terms t of

£ and terms t* of £* so that Q*(t·) = Further, is

YU -definable. For each finite subset d of A let

V
d

= {x En; supp t Cx) = d}

Each class Vd has an n -definable : the s ymbo l s from

the alphabet of £·used to construct constant terms t* with

supp*(Q*(t*» = d have an 1t-definable wellordering and thus the

eonstant terms t* of £* with supp·(Q·(t*» = d have an 11
wellordering (e.g. the lexicographic ordering as modified by Godel

[25]p.36). Using the interpretation Q. one obtains an induced well-

ordering of Vd . Each d a finite of A, which is linearly

ordered, being a subset of the real line. The set of finite subsets

d of A can be linearly ordered e.g. by the usual lexicographic

method. [For more details see the proof of the theorem on page 97-98].

Hence let Lex be the lexicographic ordering of finite subsets

of A and for each finite subset d of A let Wd be the wellordering

of V
d
. Now if u is any set of n, then

{{ x, ,X2" ; XI,X2 E u " [( sUPp·(XI) ,sUpp·(X2)} E Lex v

v (sUPp·(XI) = d = sUPp·(X2) " {'Xl ,X2} E Wd)U

is a linear ordering of u. This proves the lemma and hence the theorem

of A.R.D. Mathias is proved.
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Let (ACwo) (in the notation of A.Levy [39]p.223) be the following

consequence of the usual axiom of choice:

(ACwo): /\.) A.y<y E x

Vf(Fnc(f) " Dom(f) =
Y * 0 " y can be wellordered)

x " /\ E fey) E y) l .Y x

A E (0 * fey) C yY x

"y*f(y)))]

Theorem (A.R.D. Mathias): If ZF is consistent, then ZF + (OP) + (ACwo)
+ I (AC) is consistent too. Thus the Axiom of choice (AC) is

independent from (ACwo) + Ordering principle (OP) in ZF.

Proof ([58 J ): Take the model n constructed above. A set z is in

't wellorderable iff there is a finite subset d of A such that for

all y, if y E z, then supp*(y) C d. Hence, if z is wellorderable in

1L , then the n -definable linear-ordering turns out to be a well-

ordering. Thus, if x is a set 0 well-orderable sets, then there is

a function f in which assigns to each z E x a wellordering. Hence

(AC ) holds in n. As itwo
was shown in preceeding lemmata, (OP) and I (AC) are true in Jt .
This proves the theorem.

F) THE KINNA-WAGNER CHOICE PRINCIPLE

An interesting weakened version of the axiom of choice has been

considered by W.Kinna and K.Wagner in their paper:

W.KINNA-K.WAGNER: Ueber eine Abschwachung des Auswahlpostulates;

Fund. Math. 42(1955)p.75-82.

In contrast to the usual (Ae) where the choice function selects one

element, the functions considered by Kinna-Wagner select non-empty,

but proper subsets:

(KW-AC): The Kinna-Wagner choice principle: If x is a set all of

whose elements have at least two elements, then there

exists a function f, defined on x, such that for all y E x,

o * fey) *' y.

f\ [II (y E x 2 y) -+ Vf<Fnc(f) A Dom(f) = x "-x y

Obviously (KW-AC) is a consequence of (AC). W.Kinna and K.Wagner

have shown, that (KW-AC) implies the ordering principle (OP)

"Every set can be totally ordered":
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Lemma (Kinna-Wagner[ttttJ): ZF I- (KW-AC) .... (OP).

Sketch of Proof. Let M be a given set and let f be a function,

defined on P(M), the power set of M, such that 0 * fey) * y,

fey) C y whenever y E P(M) and y contains at least two elements.

Following the () -method of Zermelo' s second proof for (AC) .... "Well-

ordering-theorem" (see: Math. Arnm , 65 C190B)p.107-12B) one starts

the proof with the following definition:

Let F be the least family of subsets of M satisfying:

(1) M E F,

(2) (x E F 2 x) .... (f(x) E F x - f(x) E F),

(3) t C F .... ()t E F.

Define an element e of F to be normal iff the following holds:

!\XEF[ e S x A e * x .... e C f Cx) vee x - fcx)] .

There are normal elements in F, e.g. M is normal. FGr e normal,

def-ine:

ge :: {x E F; x n e = 0 Y [x n e * 0 .... ( e S x v x f f Ce) v x C e-fCe}J}.

One proves satisfies the conditions (1), (2), (3) and is

therefore (by the minimality of F) equal to F. This shows that if

e is normal, then

(.) I\xEF[X n e = 0 V (x n e * 0 A [e x v x fee) V x f e -f(e)])]

holds. Now, let N be the set of normal of F, then N satis-

fies conditions (1), (2), (3) and thus N = F by the minimality of F.

This shows that every element of F is normal. Intuitively this

means the following: by means of an iterated application of f to M,
then to fCM) and M-f(M), then to f(fCM», f(M)-f(f(M», f(M-f(M»,

(M-f(M» - f(M-f(M», etc .... one obtains by transfinite induction

the following binary tree:

M level 0

f(M) level 1

f(f(M) ) f(M)-f(f(M» f(M-f(M» (M-f(M»-f(M-f(M» lev.2

/0-
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=
where at each point x the tree splits into two branches, if x 2,

where f(x) is the successor of x at the left branch and x - f(x)

the successor of x on the right branch. The information, that

every clement is normal means that if e E F and x E F, then

either e and x are on different branches, or, if there is a branch

going through x and e then either the level of x is smaller than

the level of e (case: e C x) or x appears on the branch after

one of the two successors of e. With this in mind, it is not

difficult to prove, that the binary relation P, defined on M by:

p P q P E f(f){x E F; p,q E x} V q fl. f«(\{x E F; p,q Ex}).

is a linear ordering of M. This proves the

The proof shows, that a binary, wellfounded tree can be

embedded into P(M), the powerset of M, such that the image forms

a chain C in P(M). The tree itself is equipotent with some ordinal

a, hence P(M) On the other hand, if D(C) is the Dedekind

completion of C, then D(C) is a maximal chain in P(M), linking 0
= =

and M. Hence M 2a• This proves the following:

Theorem (Kinna-Wagner In ZF the statement (KW-AC) is equivalent

to the statement:

(KW-O): For every set M there is an ordinal a such that

there exists a one-to-one function mapping Minto pea), the

powerset of a.

(KW-O) is a strong form of the Ordering-principle, since it asserts

that every set M has a linear ordering P which is a subset of the

canonical ordering on Pca), for some ordinal a,defined by x Y

Min{(x U y) - (x n y)} E y. Since ZF f- (AC) ->- (KW-AC) (KW-O) ->- (OP)

we ask, whether the first or the last arrow can be reversed. It is

known, that both cannot be reversed. J.D.Halpern and A.Levy have

first shown, that (AC) does not follow from (KvJ-AC) in ZF (see [35] )

and:

J.D.HALPERN-A.LEVY: the Ordering Theorem does not imply the

axiom of Choice; Notices of the hmer. Math. Soc. 11

(January 1964)p.56.

The problem, whether (OP) ->- (KW-O) can be proved in ZF remained for

some years open, though Mostowki has shown already in 1958, that

in ZFo (id est ZF but without the axiom of foundation) (OP) does

not imply (KW-O), see:
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[6t] A.MOSTOWSKI: On a problem of W.Kinna and K.Wagner; Call. Math.

vol.6(1958)p.207-208.

The independence of (KW-O) from (OP) in ZFo follows more directly

already from the fact, that (PW) holds in every Fraenkel-Mostowski-

Specker model (see p.62), hence in particular in Mostowski's model

of in which (OP) holds, while (AC) fails. If (KW-O) would hold

there, then (AC) would also hold. In 1969 u.Felgner has shown, that

also in full ZF, (KW-O) is independent from (OP).

[181 U.FELGNER: Das Ordnungstheorem impliziert nicht das Kinna-Wag-

nersche Auswahlprinzip. To appear.

Here we shall sketch the proofs for both results. But,in order to

prove that (Ae) is independent frow (KW-AC) we shall not use the

model mlao ,al , ... ,A] (an generic reals for nEw, A = {an;n E w})

which was used originally by Halpern and Levy (for a more detailed

description of this model, see sections C and G). We shall use the

model of Mathias,described in section E, since this will give us the

additional information, that (KW-AC) does not imply the order-exten-

sion principle (OE).

Theorem. The choice principle (K\.J-AC) of Kinna and \.Jagner holds in

the model of Mathias. Hence, if ZF is consistent, then

(KW-AC) does not imply the orderextension principle (OE),

though (KW-AC) implies the ordering principle (OP).

Proof. We have shown in section E, that Mathias' model has the

following features: for every set u of • the following relation

is a linear ordering of u:

{(Xl ,xz); XI,XZ E u A 1< supp t Cx, ),supp·exz »E Lex vesUpp·eXI j =
= supp·exz) = d A (Xl ,Xz) E Wd)]}

Here Lex was the lexicographic ordering of finite subsets of A, the

set of generic reals ai' and Wd was the wellordering of Vd = {x;

s upp> ex) = d ] . Since A f 2l'io, every set u of n splits into <; 2l'io

many wellordered subsets. Thus we can comp'lte an ordinal A such

that u can be embedded (i.e. mapped into, by a one-to-one function)

into l'i
A

x 2l'iO • Thus u can be embedded into 2l'ia, the powerset of l'in,
for a sufficient large ordinala. Thus (KW-O) holds in Jl . The rest
follows from results, proved in section E, q i e i d , (iClkR. 0(=;"')

If ZF is consistent, then (KW-O) is independent

from the ordering principle (OP).
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Sketch of proof. Let 'ft be a countable standard model of ZF + V = L.
Let Q be the set in jtt of rational numbers and let be the usual

ordering (of type no) of Q. Define in,yt a ramified language £

which contains besides the usual ZF-symbols and the useful limited

quantifiersV0. and limited comprehens ion terms EO. (0: E Onm ),
constants a.. , b., for i E Q and jEw, a constant c and a binary

predicate . Let £ further contain constants for each x E and

a unary predicate g, which will be used to make ')1i an n -definable

class.

A condition p is a finite partial function from w x Q x w into 2.

A forcing relation is defined as usual containing the following

key-clauses (here let t be any term of £):

p II- t e: a. . <'> (3 n c e ) (p 11- n '" t &"« n , i , j» = 1);
r

P II- t e b. <'> Cj j e: w) Cp II- t '" a. .);
1 1,J

p II- t e: c ('3 i E Q) Cp II- t '" b.);

p II- t 1 <; t2 (-3 it ,h E Q)( it i2 & P II-- tl '" b. & P t2 l:' b. ).
11 12

Obtain a complete sequence of conditions and thereby a valuation

val of the constant terms of £, which gives the model 1t . It holds

that a .... = val.Ca ... ) C w, b. = val(}).) = .... ; jEw}, c = val(c) =
1,J 1,J - 1 1 1,J

{b.; i E Q} and valCEw+3xC V V Cx::: (Yl ,Y2) A Yl .( Y2») = :i;;! is
1 Yt Y2

a linear ordering of c. Notice, that inside of 1t there is no

isomorphism between and but outside of n both are

isomorphic.

Symmetries. Let C} be the group in m of all orderpreserving

one-to-one mappings from Q onto Q and let K be in 1ft the group of

all permutations of w, which move only finitely many elements of w.

(1) ttL operates on £ by setting: if n E , then nCa .. ) ::: a (L) .,-5 1,J n 1 ,J
n(b.) ::: b C.)' u acts as the identity on all other symbols of t.

1 n 1 .

(2) X operates on t by setting: if (T,i) E X x Q, then define

T· = (T,i) and then: T.Ca .. ) ::: a. (.)' T.Cak .) ::: dk . if
1 1 1,J 1,T J 1 ,J ,J

k * i, Ti acts. identical on all other symbols of £.

(3) If P is a condition, 1T E l} , Ti ::: <T,i) E:X x. Q, then define:
1T(p) = {({n,1T(i),j ) ,e); ({n,i,j) ,e} E p I
Ti(p) = {«n,i,T (j» ,e)E p}U{({n,k,j) ,e)E p; k * I l .

We have two symmetry- lemmata:

First symmetry-lemma: If 1T then p II- .. nCp ) 11-1T(4l).
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Second symmetry-lemma: If 'i E;JC x Q, then p It- 'i(P) II- 'i(¢»'

Restriction lemma: If P It- and Po = {({m,i,j) ,e) E p; a..
occurs in then pe e ,

For a £-formula define OCCI to be the set of ordered pairs

(i,j) E Q x w suoh that ai,j occurs in and let be the

set of rationals i such that S. in For a limited comprehen-
l

sion term t = ECl. x write t = t(l'll ,l'l1) in order to indicate that

l'll = OCCt (¢) and l'l1 = OCCl Further, let prl (l'll) = {i E Q; V'E] w
(u,j) E I'll} be the projection of I'll to the first coordinate. The

following support-lemma is a generalization of the corresponding

support-lemmata of Mostowski and Mathias {58}.

Support lemma. Let t(l'll ,l'l2) and t*(l'l:,I'l;) be limited comprehension

terms of £ such that

11. Ft(l'll,l'l1.) = t*(l'li,l'l;);

then there exists a limited comprehension term

to = to such that = l'll n l'l; and =
(l'l1 nAt) u and n Ft(I'lI,l'll) =

The proof is along the lines of the support lemma proved in section

E, but in the present case slightly more complicated. Now, it can

be verified, that the ordering principle (OP) holds in n :
define V(AI ,l'l1) = {x; s uppj Cx) = I'll " supps (x ) = l'l1}, where
suppi(u), and supp;(u) are the finite sets such that suppi(u) is of

minimal cardinality, supp;(u) is of minimal cardinality modulo

suppi(u), such that there is a term t = with =
supp;(u), = supp;(u) and t is interpreted by u. Each class
Vhf' . ThiY . . de r i(1'l1,l'l2) as a de lnable wellorderlng.fCogether wlth a llnear or
of the ordered pairs (AI ,l'l2) can be used to obtain total orderings

for any set of 1t (see the corresponding proof in section E).

In a next lemma one shows that in 1t every subset of c = val{c)

is a finite un i.on of open, closed or at one side open, at the other

side closed intervals from (use th", 2nd- symmet r y- l emma and

the restriction lemma to see this). It follows, that in j[ every

subset of c is definable by a formula of £ in which none of

the symbols a.. occurs, since only and names £. for the endpoints
l

of the intervals are used. Now the argument of MOi!l<towski [61] can

be used to show, that (KW-AC) fails in '1 by showing, that there is

no function f in 1t selecting from each proper, closed interval of
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a non-empty, proper subset. The arguments given above show,

that in a transscription of Mostowski's continuity argument, by

the restriction lemma, the forcing conditions do not pose additional

problems. This proves the theorem.

Notice, that in contrast to all our examples of generic exten-

sions, here we have used a somehow different approach. We did not

add a Cohen generic GPPY of no as a subset of 2 0 to the groundmodel

(this would yield a model, in which (KW-AC) holds), but a copy of

no as a subset of the powerset of 2 o. Thus we have shown that

neither (KW-AC) + (AC) nor (OP) (KW-AC) is provable in ZF.

G) THE INDEPENDENCE OF THE AXIOM OF CHOICE (AC) FROM THE BOOLEAN

PRIME IDEAL THEOREM (BPI)

In section E we considered the Boolean Prime Ideal theorem (BPI)

and noticed that in zr the (BPI) is a consequence of (AC). Here we

shall prove, that the converse is not true, namely that (BPI) + (AC)

is not a theorem of ZF. As we mentioned proviously, this result is

due to J.D.Halpern - A.Levy [35]. A short outline of this prove

is contained in:

[31) J.D.HALPERN: The Boolean Prime Ideal Theorem; Lecture Notes

prepared in connection with the Summer Institute on

Axiomatic Set Theory at UCLA, July 10 - August 4, 1967

(informally distributed manuscripts ), 7 pages.

Historically Halpern first showed in 1962 in his doctoral dissertation

that in the model of Mostowski the (BPI) holds, thus proving

that in ZFQ (i.e. ZF without foundation) the (BPI) does not imply

(Ae). Mostowski had shown in 1939 in that inOOL the ordering

principle (OP) holds while (AC) is violated inGOt. Halpern's result

appeared in print:

[31] J.D.HALPERN: The independence of the axiom of choice from the

Boolean prime ideal theorem; FInd. Math. 55(1964) p.57-66.

After Cohen's invention of the generic ZF-model's in 1963, Halpern

proved in collaboration with A-Levy and H.Lauchli (via generic models),

that also in full ZF the (AC) is independent from the (BPI) - see

[35] and [31J .
According to the tradition of our notes we shall start

explain the ideas behind the construetion of a model of set theory
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in which (BPI) + I (Ae) holds by discussing Halpern's original proof

that in Mostowski's model CBPI) holds. But first of all

we need two lemmata.

Lemma 1C[32,]p.62): Let lB = <B, u , - } be a Boolean algebra, Au t I 18)

be the group of all automorphisms of m and let H be any

subgroup of Aut( ill). If I is an ideal of ID, closed under H,
and if b E Band J is the smallest ideal closed under H which

includes I and {b} and if 1B E J, then there is a finite sub-

set S of H such that

1.

Proof. fl{<PC-b); ¢ E S} is the greatest lower bound of the set of

elements ¢(-b) of B for <P E S. Let I(b) be the ideal generated by

I and {b}; then Hb):: {x E B;c3 y E I)(x ";;yW b i l , Close I(b) under

automorphisms Q of H: Jo = {z E B; (3y E Hb))(3<p E H)[z";; ¢(y)!}

and let J be the ideal generated by Jo, id est: J ={ Ue; e is a
finite subset of Jo}. By assumption 1B E J, hence there is a finite

subset e = {XI, ... ,xn} of Jo such that 1 :: U e. Since Xi E Jo,

there are Yi E I and <Pi E H (i = 1,2, ... ,n) such that Xi ,.;; ¢iCYi W b).

eJ . - L::l _L::.1 L:J
1B ::: i=1xl - i=1¢i(Yi u b) - i 1¢iCYi) U i=1¢i Cb)

and hence by taking the complements:
r.J LJ n n

-Ci::1cjliCYi) U = D1<J>iC-Yi) n [lcfli(-b) ::: 0B E I

Since I is closed under H, it follows that U{tiCYi); i = 1, ... ,n} E I.

Since un v = a implies v ,.;; -u in a boolean algebra, put

u ::: n {eJ>iC-Yi); 1 i ,.;; n} and v = n {<Pi(-b); 1 ,.;; i n l , then

it follows v < -u E I, hence v E I and if we define S = {¢i; 1 ,.;; i ,.;; n},

then the lemma is proved.

Lemma 2 If mis a Boolean algebra, X a finite subset of

Band P is the set of all functions f on X such that fCx) E
{x,-x}, then

u(n f Cx» = 1
fEP xeX B

Proof by induction on the cardinality of X.

The CBPI) holds in Hostowski's model m. Take countably many atoms

Curelemants of reflexive sets x :: {x}) ordered of type no' Let G be

the group of orderpreserving mappings and F be the filter of subgroups
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generated by the finite support subgroups. Mostowski showed in

that in On = Qo1A G,F], (OP) holds while (Ae) fails (see section E

of this chapter and chapter III for details and notation). J.n.Hal­

pern extended in [3ZJ this result by showipg that in oat even the

(BPI) holds. He proceeds as follows. Let ill be a boolean algebra in

Then H[E} = E G; q,(E) = ID} E F and by the definition of F

there is a finite support subgroup K[el = {¢ E G; ¢ is identical on

e} (e a finite set of atoms) such that K[el HIm]. Thus is e­

symmetric and every q, E K[el is an automorphism ofE. Halpern shows,

that among the e­symmetric ideals of B there is a prime ideal r.
In fact consider (outside of OCt) the set

Z = {J; J is an ideal of:B A J Em A l
B

J A K[ el ..; H[ Jl l ,

Z is inductively ordered by (see the proof of a similar situation

on p.6S), and has hence by Zorn­Kuratowski's lemma a maximal element,

say 10. We claim, that 10 is a prime ideal of B (10 is e­symmetric).

Suppose not, then there exists b E B such that b 10 and (­b) 10.

Let II be the smallest ideal of B which includes 10 and b and is

closed under K[e}, and let 12 be the smallest ideal of B which in­

cludes 10 and ­b and is closed under K[e]. Since both, II and 12,

are e­symmetric ideals, hence in 11l, they cannot satisfy the hypo­

thesis not to include l B, since otherwise II E Z and 12 E Z, contra­

dicting the maximality of 10. Hence l B E II and l B E 12 and by lemma

1 there are finite subsets 81, 82 of K[e], such that

(1)

and

(2)

n{q,(­b); ¢ E SI} E 10

=
Let r = e, then r determines r + 1 open K. (0 ..; i ..; r) of. l

A (in the ordering of type of the rationals). We want to get (via

lemma 2) ­:he contradiction that l
B

E 10. To do so, we need a certain

finite subset X of B such that n {f(x); x E X} E 10 for all fuctions

f on X such that f(x) E {x,­x}; then lemma 2 entails that 1B E 10.

8ince one wants to derive n {f(x); x E X} E 10 by some permutation

arguments from (1) and (2), Halpern finds (using a combinatorial

theorem of R.Rado) a certain finite subset W of the set A of atoms

and takes then as X = {x E B; :3 ¢ E Ki e l : ¢"(b) = x A ¢(g) ­ e :: W},

where ¢" is the unique extension of • to an automorphism of the whole

universe (see p,53), and g is the support of b E B. Rado's theorem

gives only in dependence of 31 , 82 and Ki g (i E r + 1) a certain

finite cardinal number q. The property, that the atoms are
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totally ordered of type is essentially used to conclude, that

between all points of Wwe can embed q points. W has a certain

partition property which is used to find an automorphism of B

such that either all elements of E Sz} or ESt}

can be mapped into {f(x); x E X}. Then n {f(x); x E X}< {$(-b);

<p E Sl}) or il {f(x); x E X} <EO;; 1/!( n{cjl(b); <p E S;}) for ljJ E Kl e l ,
Since 10 is closed under K[ e l , it follows from (1) and (2) that

E SI}) E 10 and 1/!(n{$(b); E Sz}) E 10. Hence,

since 10 is an ideal, fl{f(x); x E X} E 10 for all f under considera-

tion. As indicated above, this yields 1B E la, a contradiction!

Hence 10 is prime. For all details of the proof, the reader must

be referred to Halpern's paper [32} .

It is possible to carryover these ideas to the construction

of a Cohen-generic model n of ZF + (BPI) + I CAC). This has been

done in collaboration by Halpern, Levy and Lauchli. The construction

of the model has been carried out by Halpern-Levy [35}. In their

construction a combinatorial argument Has used (different from Redo's

theorem), which has been established by Halpern and Lauchli in:

[33] J. D. HALPERN - H. LAUCHLI: A partition theorem; Tr.3.ns-3.ctions Amer .

Math. Soc. vol.124(1966)p.360-367.

The model constructed by Halpern-Levy is a boolean valued model. We

shall, however, construct a Cohen-generic extension by means of

forcing. Our remark, that in the case of permutation models the atoms

have to be linearly ordered of type suggests that in the case

of Cohen generic models J1 the generic reals ai (for i E w) have to

form a dense subset of the real line of 11 . Following this idea we

construct 1t by adding TO some countable STandard model infinitely

many Cohen-generic reals Ci E w) and generically a set A which

just collects these We shall use the notation 11
al , ... ,Al. This model)! has been described in section C of this

chapter on pages 101 - 103.

Theorem (Halpern-Levy): m[ao ,al,'" ,A} is a model of ZF + (BPI) +
I (AC). Hence, if ZF is consistent, then (BPI) (Ae) is

not provable in ZF.

Proof. A detailed presentation of JYl[ao ,al , ... ,A} has been given

in section C, where it was shown, that in this model A is an infinite,

but Dedekind-finite set. Hence (Ae) does not hold in hold in this
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model. The proof, that (BPI) holds will require several lemmata.

First we remind our reader to the following (see p.99 and 102):

Symmetry-lemma: Let G be in JYL the group of all permutations of w.

for any a E G, any condition p: w x w 2 and any

I-sentence 9, P 11- <fJ ¢> o t p ) 11-- o(el».

Restriction Lemma. Let p be a condition, el> a sentence of £, occ(¢)

the finite set of natural numbers i such that a.
l

occurs in Q, and let po = p/oce(¢) be {Un,i) ,e) E P;

i E occ (el>)}. If p II- el>, then Po If-·el>.

Proof. Suppose p If- el> and -Po If-·e. Then there is a condition q :::> Po,

such that q II-"" <f>. Define Co = oce( 1» ,

d 1 = {i E w; VeE2c« n , i) ,e E p " i Co )}

d2 = {i E W;VE VE2 «( n, i) ,e E q " i Co ) }
n-w e

Now let a be any permutation of w which leaves Co pointwise fixed,

and maps d! in w-(co U d2), Then Dom(q) n Dom(o(p)) C w x co'

Since both, q and o(p), extend Po, they coincide on the common part

of their domain. Hence o(p) U q is a function, hence also a condition.

Since a leaves 00 pointwise fixed: 0(9) = ¢. Thus the symmetry

lemma tells us, that o Cp ) 11- ¢. Together Hi th q If-"" <f>, the extension

lemma yields o Cp) U q I!- ¢ " ..., 9, a contradiction. Hence Po must

be true.

The next lemma will say, that A {ai; i E w} is a dense subset

of 2w in the product topology of 2w. The following relation < is

the usual linear ordering of 2w:

SI < S2 Min«s! - S2) U (S2 - SI)) E S2

Since 2w is considered as the product of copies of the two-point

discrete space 2 = {0,1}, we may endow 2w with the product topology,

i.e. the basic open sets are of the form

b r = {f E 2
w; f r}

where r is a finite partial function from w into 2. Hence b r is the

set of functions (=real numbers) from w into 2 which extend r.

The space 2w endowed with this topology is called the Cantor-space,

since 2w is homeomorphic to the Cantor-dis continuum (considered as

a subspace of the real line with the USUal interval-topology)

- see e.g. Ph.Dwinger: Introduction to Boolean Algebras, Physica-

Verlag Wlirzburg 1961, p.49-50, or R.Sikorski: Boolean algebras,

Springer Verlag Berlin 1964, p.43, and textbooks on Topology,
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e. g. Kelley. The space l
w
wi th the topology as given above is a totally

disconnected compact Hausdorff-space Rnd the basic open sets b r are

also closed, and hence regular open sets.

Lemma 3. Every basic open set br of 2w contains a generic real ai'

or better stated: n l= "b () A :I: for every finite partialr
function r : w + 2".

Hence it holds in it A is a dense subset of 2w.

Proof. suppose br () A*-0 does nOT hold in '1 for every basic open

set br. Hence, there is a finite partial function r : w + 2 in

such that b r n A = 0 holds in J1 . Since everything which holds in

)1, is forced by some condition in the complete sequence (which

defined Jt ), there is p E such that

p b r n A = 0

Since p is finite, there is a natural number i o such that for every

nEw, <n,io} Dom(p). Define the following extension q of p:

q = p U {< (m,io ) ,1} ;m E w " rem) = 1} U {{ <m,io} ,0> ;m E w"r(m)=O}.

Identify subsets a of w with their corresponding characteristic

function

{
o if m a

'X.
a
(rn) = .

1 If mEa

then q Ij! rea. and hence q If..* . c b . It follows, that in the
- - lo r

model no defined by any complete sequence iRo which has pas first

elemen-t, it holds r ha't b () A*-0. This is in contradiction
r

to the assumption, that p (and hence forces b r n A = 0. Thus,

every basic open set (i.e. every absolute interval) of 2w contains

an element of A dnd A is in '1 a dense subset of 2w, q.e.d.

Continuity-Lemmq. Let , ••• ,x ) be an £-formula with no freen
variables other than XI, ..• ,x and suppose that contains none

n
of the symbols a. (for i E w), but may contain constants

l

for x E or the constant A. Let g = {gl , ••• ,gn> be a sequence

of different members of A. If , ••• ,gn) holds in Jt , then

there exists a seauence <br , ... ,b } of pairwise disjoint basic
- 1 r n

aDen sets of 2w, such that g E br (for 1 v n) and the
- V v
following holds: if h = {hi , •.. )fln> is any sequence of different

members of A such that hv E br for·1 v n, then
v

'J1.. , ..• ,hn ) ·
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Proof. Suppose that for sets gl •... 'gn E A the sentence •••••gn)

holds in Jt Let tl •... ,tn be constant terms of I. such that gv =
val(tv) for 1 v n. Consider the following I-sentence:

(0) , ... ,tn ) A t 1 e A A ••• A t n e

Vr1 •.. Vr [l;§..l(r e: kl;! 2k) A the basic open intervals
n \I - V -0 n

(for 1 v n) are pairwise disjoint A 1>C\1t e: A
n v:: V J.

A ••• A b A Xv e A) .... ••••• X »].
I 'xl xn - r v n

The continuity lemma is proved as soon as we have verified that

(0) holds in n . So suppose that the sentence (0) does not hold

in Jl . Then the negation of (0) holds in jl , and since everything

which holds in J1 is forced by some condition of the complete se-

quence (which defines 1t ), there exists p E such that

p 11-*1 (0). The statement (0) has the form 'PI .... 'P2. Hence p (0)

is equivalent to p 1I-!" 'PI A 11jI2' Thus P 11-* 'l'1 and p 11-*1 '!'2. v"lc shall

obtain a contradiction by showing that there exists an extension

Po of p such that Po 'P2• First, p 1l--*'¥1 is:
n

(*) p 1I-*'Ht1, ... ,tn) A e A
It from the forcing definikion, that there are i 1 , ... ,in E w

such that p' = " ••• " t = a· fOF sofue extensioft p' of p.Hence:
:1.1 n In

( ** ) p' 11-* <l\ci . ; ... ,';. ).
II :I.n

Extend p' to a further condition p" such that

(1) If (m,i ) E Dom(p") and m' < m, then (m'.,i ) E Dom(p")}

(2) If 1 v n, then there is mEw such that (m,iv) E Dom(p").

(3) If jl * j2 then there i! mEw such that (m,jl) E Dom(p").

(m,j2) E Dom(p") and p"«m,h» * P"«m.j,,», \
(4) p" extends p'.

It is possible to find conditions p" satisfying (1). (2), (3) and

(4). We shall not explicitely describe such a condition, but assume

that we have obtained such a p". Define interval designators (i.e.

functions from finite proper initial segments of w into 2) for

1 v n , called r v' by
r ( m) = p" ( (m i})
v ' v

for mE {m'; (m'.iv)E Dom(p")}. By condition (1), r v is a function

defined on some initial segment of w. By condition (!). r v is for

no v with 1 v n the empty function and by (3) the basic open

sets br = {f E 2 w; f ? r v} are pairwise disjoint (in the sense
v
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"V*ll-+
b r ,... b r :: 0).

\I II
assumption on

replaced by pI!,

of the meta-language). Hence this is weakly forced by every condition,

thus: n

o If-! (Fnc ( I'\l ) " r v
(0()
Since , ... ,a.; » :: {il , ..• ,i } by our

1. n
the restriction lemma,napplied to (**) with p'

yields: •
*. •(£1) PI II- iHai , ... ,ai )

l I n
wher-e PI is the restriction of p" to {i1, .•. ,in}' id est PI ::

{« m,i) ,e ) E pll; i E {il,'" ,in}}' Now we claim that the following

holds: n

( V ) p" A ,., 1\ [ 1 ( Xv E: A " Xv E: b ) -+ cfI (x, , ••• ,Xn)] •o Xl Xn v - r v
Ive have to prove that if t;, ... , tri are constant term of land q is

any extension of p" such that q 11--* ® 1( t ,. E: A " tv' e br ), then there
v- \I v

exists a further extension q ' of q such that q'll-* Ht;,: ..
Hence suppose terms t:, ... and a condition q are given,

where q extends pI! and q (weakly) forces the conjunction of the

statements tv e: A" e: br . Then there exists an extension q' of

q and numbers jl , •.• ,jn E such that

q q'lf-! ti' = a. ". . "t':: a. .Jl • n I n
Hence q'lI- a. e br " ... "a

J
. e br . Thus, if we identify subsets

Jl 1 n n

of 00 with their corresponding characteristic functions :

q'll-! !l C a j 1 " ... "rn C ajn' This implies ql C q ! , where

ql:: {«m,iy ) ,e); rv(m):: d.

Define the following permutation cr of 00: cr(i\l) :: jv for 1 v n,

a(jv) :: iv, cr(i) :: i for all other natural numbers i. It follows

that

Hence PI p" q q' and O(PI) :: ql q', and it follows that

PI U cr(Pl) is contained in the condition q'. Thus, PI U a(Pl) is a
condition. Applying 0 to (6) we get by the symmetry-lemma

a(PI) :: .. , ... ,.3.. )
J 1 J n

Hence, by the extens ion lemma q' 11-* (l (a. , ... ,aj ), Now, since q '
• • J 1 n

forces t;:: a. " ... " t' :: a· we infer that q' also (weakly)
JI n In

forces .•. This proves (y).

Both, (a) and (y), show that p" (weakly) forces that there are

non-empty, pairwise disjoint absolute intervals br such that
v
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a. E b
lV r v

( t; , ...

, and if <I>C a. ,... ,a. ), then 4i (tI' •.• t') for" every sequence
11 1n n

with E A A tv E br (1 v < n ) , Hence p" Since
v

p p' p", we have obtained the desired contradiction. This proves

the continuity-lemma.

lbe
Lemma 4. Let ria function from some finite ordinal into 2. Then

brn A is infinite. Further, A is Dedekind-finite (though

infinite in the usual sense).

Proof. By lemma 3 every absolut interval b r = {f E 2
w; f r} =

(f E 2w; ro < f rl} contains a generic real, where ro =
{(m,e);(m E Dom(r) A e = r-Cm) ) v (rn DomCr ) A e = D)} and rl =
{(m,e); (m E Dom(r) A e = rem)) v (m Dom(r) A e = i)}.

Since every absolut interval includes countably many pairwise disjoint

absolute intervals, it follows that br n A is infinite. Hence A is

infinite. That A is Dedekind-finite was proved in section C, page 102.

Notice, that the Dedekind-finiteness also follows from the continuity-

lemma (see e v g , ['35], th.10).

Remark. Since we want to be able to prove that every class Vd of

sets u of n such that there exists a constant term Ell X" o(x) with

u = val(EIl
X" 4i(x)) and d, where d is a finite subset of w,

has an wellordering, we proceed as in the proof of

Mathias' theorem (see p.120-121) and define in YL a ramified language

£ *. The alphabet of £ * contains be s i.do s the usual ZF-symbols and

the useful limited existential quantifiersVIl and limited comprehen-

sion operators Ell (for ordinals Il of ), a name a* for each a E A,

a name A* for A and names x* for each x E )1t. Define an interpreta-

tion n* for the constant terms of £* by induction: n*(a*) = a,

n*(A*) = A, Q*(x*) = x and then extending to all limited comprehen-

sion terms of £*. Hence n* is n -definable (for more details see

the analoguous situation on page 121). In order to obtain Jr -defina-

ble wellorderings of the n-classes Vd = {x EJ1; supp*(x) d }

we need a support-lemma. The proof of the support-lemma will depend

on the following generalization of the continuity-lemma.

5. Let 4i(xI , ... ,x ) be any £-formula with no free variablesn .
other than XI, ... ,x and let c* = {a.; a. occurs in (>}.

n 1 1

If gl t ••• ,gn is a sequence of different members of A-c*

and if 4i(gl , ... ,g ) holds in yt ,then there exists a
n

sequence b. , ... ,b of absolute intervals of A, pairwiser l r n
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disjoint and disjoint from c*, such that gv E br v
(1 v n) and , ... for every sequence

g; , ... ,g' of different menmers of A such that g' E b rn v v
for 1 v n.

frOIll .¢ by

different

from c*, q.e.d.

Proof. Let , •.. ,xn' Yl, ... ,Ym) be the formula obtained

replacing each occurrence of a. by the variable Yv' where

variables are used for different constants (it is assumed, that the

variables Yl ""'Ym do not occur in If we suppose that Q(gl , ...

•• ,gn) holds in 11 for different members of A-c*, then W(gl ,···,gn'

a. , ... ,ai ) holds in 1& for different members of A. By the continui-
11 m
tv lemma there are pairwise disjoint absolute intervals br , ••. ,br '

1 n
brn+1, •• ·,brn+m of A, such , •.. holds, whenever

E br v for 1 v n+m. Hence , , ') holds whenever E br v

for 1 v n, since W(g; , .•. ,g',ai , ,a, ) holds in)(L. Since
n 1 -rn

for 1 v m and all br (1 v n+m) are pairwise
v

follows that the br for 1 v n are pairwise disjoint
v

a· E b
l.y r n +V
disjoint, it

and disjoint

Support-lemma. Let t 1 = EU x 91(X) and t z = x wz(x) be limited com-

prehension terms, and suppose that n F tl = t z. There exists

an £-formula Q3(X) such that OCC(<P3) :: OCC(<I>I) n occ(<I>z) and

and for t 3 = EU X 93 Cx) the holds: '1l. F t l = t 3.

Proof. Since p II-*tl = tz for p E frl, we may assume by the restriction

lemma, that (m,i) E DornCp) only if i E oce( <PI) u occ (Ih). Define

c = OCC(<Pl) n occ(<pz), d1 :: OCC(<%>I) - c,

and assume (without loss of generality), that d z = occ(9z) - c = {io}
has only one element (the general case follows by induction). Split

pinto subconditions Po = po (c) :: pi C, PI = PI (d1) = pi d l and

pz = pz(io) = p Idz • Let jo E w, jo ¢ c U dl U {iq } and let T be a

permutation of which leaves c U d1 fixed and maps i o onto jo.

Then the symmetry-lemma applied to poet) U PI (dl) U pz(io) =p
p Il-*tl (c ,dl) = tz (c ,io) yields

Po (8) U PI (dl) U pz (jo) Il-*tl (c,d l) = tz (c,jo)

where pz(jo) = T(Pz(io)) and "4 = tl(c,d1),.t;,(c,jo) = EU x T(<l>(X».

Hence both relations together,using the restriction lemma entail:

p' = Po(c) U pz(io) U pdjo) II-*tz(c,io) = tz(c,jo).

Obtain an extension p" of D' as in the of "the continuity lemma,

such that p" satisfies conditions (1), (2), (3) and (4) (listed on

page 134), where condition (2) reads in the present context as follows:
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can be chosen

that q If- tl =

Now define

replacing a. by the
lO

is assumed, that y does

E w such that (m,i) E Dom(p").

= {f E 2w; r. C fl. Then
l

continuity-lemma, that

t2 ( c ,io) = t2 (c ,y) I

i E c U rio ,jo}, then there is ill

r i by: ri (m r ) : pl!« m,i> > and br.
a,

the br. are pairwise disjoint and a i E br. for i E c U {io,jo}. In
l l

particular b n b = and br. as well as are disjoint from
rio l;'jo lo Jo

{ai; i E c}, see lemma 5.

It was shown in the proof

(I<) /\ yl yeA " y e:

of the

br . . ....
Jo

where t1(c,io ) = t2(C,X) is to be taken as

to be the i-formula obtained from by

variable y at all places of occurrence (it

not occur in t 2 (x » . Define

t3 = Ell x (Vly e A" y c b
Y rio

By (I<): p" 1f-"t2(c,io) = t3' where OCC(t3) = c. Since p"

to be included in hence in some q E it follows

t3, and the lemma is proved.

(2) If

Define

Lemma 6. The ordering principle (OP) holds in .

Proof. For u E n define supp·(u) as the finite subset of A of

minimal cardinality such that there is a term t· of £. mentioning

only names a· for a E d with n·(t·) = u. By the support-lemma,

supp·(u) is always defined. Put

= Iu E 1[; supp·(u) = d }

then the n -class Vd has an n -definable wellordering. Together

with the lexicographic ordering of the set of finite subsets of A
one concludes, that in n every set has a total ordering (for all

details see the corresponding proof in section E, page 120-121).

Notice, that every n -class Vd = {u E Tl , supp t Cu) d} has also

an j(t-definable wellordering, namely the one inducec (via n*) by

the 'j'(, -definable well-ordering of the constant terms t of £. VIi th

occ(t) d. Notice further, that the proof of lemma 6 shows that more

that (OP) holds in 1l ,namely the Kinna-Wagner ordering principle

(KW-O) holds in ir. Next we want to show that also the Boolean

Prime Ideal theorem (BPI) holds in Jt . First we need the following:

Lemma 7. Let ,Xl , ... ,xn) be a formula of £ with no free variables

other than xs , ... , x and suppose that occ c e , If tl , ... , t nn -
are constant terms of ;: such that v., ,tl , ••. ,tn) holdsXo
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in Jt and if val(tv) E Vd for 1 v n and some finite

subset d of A, then there is a constant term to of £ such

that ... ,tn) holds in nand val<to) E Vd .

Proof. Since \1/ 4i(xo ,tl"" ,t ) holds in '1L , there is a constant--- VXo n
term l' of! such that ¢(t' ,tl , ... ,tn) holds in n (since sets of

are valuations of terms of £). Suppose val(t') Vd • Let c =

{i1 , ••• ,im} be the set of numbers such that div occurs in t' and

1 v m and a. d. Hence c * 0. Let t'= EU x and let
lV

, ... ,y ) be the formula obtained from by replacing them
constants aiv by Yv for 1 v m, different variables for different

constants. Hence t' = EU x '¥*(x,a r , , ••• ,al' ). By lemma 5 we find
II . m

absolut intervals b , .. ,br such that ai E br (1 v m) and by
1'1 m v v

lemma 3 generic sets ajv such that ajv E and ajv * aiv (1 v m)
and further the br are pairwise disjoint and all are disjoint from d.v
Hence J't EU x ; .. ,a

l
, ) = Ea x , ..• ,aJ· ) and by

II m Jl m
the support lemma there is a term to such that J1 Ft' =to and t(lmentions

only generic reals in d, hence val(to) E Vd , and lemma 7 is proved.

Lemma 8. If mis a Boolean algebra in 1t , then there is a prime ideal

J of 18 in 1t such that

supp*(J) supp*(B).

Hence the (BPI) holds in 1t .

Proof. Let lB = {B, n •- ) be a boolean algebra in n , where 11 is the

meetoperation (i.e. prOduct, or greatest lower bound) and - is the

complementation operation (u is defina 'bJr,e by means of nand -).

Let d = supp*(ffi), henceS E Vd . Since the operations: projection to

the 1s t (2 nd, 3rd resp.) coordinate, are single valued it follows from

lemma 7, that B, nand - are sets of Vd' Further 1B and 0B (the lar-

gest and the smallest, resp.) are in Vd , since they are unique.

Consider the set Z of all proFer ideals ofm, which are in Vd .

Since {OB} E z, Z * 0. Since Vd has an -definable wellordering

and Z Vd , it follows that Z has maximal elements. Let I be a

maximal proper ideal of ill with I E Vd (id est: I E Z). We want to

prove that I is prime

Suppose I is not prime. Then for some b E B, b I and (-b) I.

Since b E Jt , there is a constant term t b of £, such that b = val(tb).
We shall derive a contradiction by showing that 1B E I.

It holds that supp*(b) - d * 0, since otherwise the ideal genera-

ted by I and {b} would be in Z, contradicting the maximality of I.
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{i E w; a i occurs in If} is of minimal
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Hence let t b a constant term
at b = E x then =

cardinality. Write

- d = {i E occ{lf); i fl. d) = H" ... ,ik}
The case k = 1 is especially simple, and, as an illuminating example

for the proof-procedure, is discussed in detail in Halpern-Levy [35J
and Halpern (31). We, however, shall start directly with handling

the general case, but recommend our reader to look at the discussion

of the illuminating example k = 1 in [!S] and [31.J .
We shall need a combinatorial theorem of Halpern-Lauchli ([33J ,

theorem 2). Before we formulate a particular case of that theorem,

we have to introduce some notation.

A tree 1:. = < is a partially ordered set such that for

each x E T, {y E T; Y < x} is totally ordered by The cardinality

of this set is called the of x, or the level at which x occurs.

A fan (Facher) is a non-empty tree such that all elements of it have
finite order and each level is a finite set. Hence, if ord(x) is

the order of x in the tree <T } , then

(T,<) is a fan !\xET{ord{X) E w A AnEw{X E T; or-dCx) = n} is finite).

Define Tin (restriction of T to n):

Tin = {x E T; ord(x) nl.

Definition. Let DI and D2 be subsets of the fan

DI dominates D2 AXED2 VyEDI (x y).

DI supports D2 I\xED2 VyEDI (y x).

A subset D of the fan < is called (m,l)-dense if there is an

element x of T, such that ord(x) = m and {y E T; ord(y) =m + 1 A X < y}

is dominated by D. Let <T .• be fans for i < k E wand let D. be

a (m,l)-dense subset of T. (with respect to for i < k. Then the
1 1

cartesian product is called an (m,l)-matrix.

Theorem (Ha Iper-n-Lduchl.L) . Let <T. , for i < k , be finitely many
1

fans without maximal elements. There is a positive integer

n such that for every 2-partition Q = <QI , Q2 } of
r-, 1

id est = QI U Q2. QI n Q2 = 0, either Qt or Q2
includes an (m,l)-matrix for some m < n.

For a proof see [331. (Correct in [33l,p.364, the following two

misprints: in lemma 1 the second quantifier on the left side of
L..' " • • Llinesan eXlstentlal and twmbelow in 1.1. the third

quantifier on the left side of t= d is a universal quantifier).
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Notice that in and [35] the terminology "finitistic tree" is

used. We do not like this philosophically sounding word "finitistic"

and use the word IIfan" which is also used in Intuitionism.

Now we return to the proof of lemma 8. Let t B, t n and t be

terms of .£ such that valCtB) = B, val(t n ) = 1'1 (the meet operation

of the boolean algebra B) and valet ) = - (the complement operation.. -
of B), such that occ(tB) d , occ(t,., ) C d and occ Ctj) S d.

Further, let t b = Ea x (x) be the term obtained above, and let

t I be the t-term with occ(tI) C d such that val(t r ) = I. Define:

&(Xt , ••• ,xk )

to be the .£-formula obtained from (tb e t B A , t b e tI' A (t_(tb) e t B A

A , t_(tb) e t r ) by replacing each occurrence of ai in t b (i.e.
a. vE x by the Xv for 1 v k. In the formula used

above t_(tb) denotes the "complement" of t b, id est vaHt_(tb» = (-b).

Since , ... ,aik ) holds in YL , there exists k absolute

intervals br t , •.. ,br k which are pairwise disjoint and d i.e j oLnt

from d, such that

(1) k
(xv e A A e b r v -+ &(Xt, ••• ,xk»

holds in (this follows by lemma 5). We put SO = {br }, for
v v

1 < v k' and SO = "",Sk)' We continue and define k-termed
sequences of absolute intervals, Sn, for every nEw. Simultanously

we prove that the sequences Sn have the following properties

denotes the v-the coordinate of the sequence Sn):

(P1) is a finite set of absolute subintervals of the members of

for m > 1 and 1 v k. Therefore, by the definition of

SO and by induction on m, the members of subintervals of

br for 1 v k.
v

(P2) Every member of has at least two subintervals in for

m > 1 and 1 v k.

(P3) The members of are pairwise disjoint, for m > D, 1 < v k.

(P4) If I: E IT Sm-1 and G is a finite set of elements of A which

contains exactly one member out of each member of U'Range( Sm) ,

then n{val(tb(ut, .. ,uk»;(Ut, .. ,uk} e (I: n G)} E I, and
v=l v

n{-val(tb(ut, .. ,uk» ; (Ut, .. ,uk) £ ff (TvnG)} E I, wher-e
)/=1

tb(u t, .. 'Uk) results from t b by replacing ai v by Uv for 1 v k.

The only one of (Pl), •.. ,(P4) which applies in the case m = 0, is

(P3); but this holds since the br '8 are pairwise disjoint.
v
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Induction. Let us assume now that for m n, Sm is defined and

(pl), ••. ,(P4) hold. We shall define Sn+l and prove that (Pi), ••.

.•• ,(P4) hold for m = n+l. By (Pi) the members of are subinter­

vaas of (for 1 v k). Therefore, if E E IT Sn, then IT E C ITS * ,
.Lv -

where S* = (br t , ... ,br k>. (The symbol II is used to denote the car­

tesian product and sequences are to be 1­1­functions with

domain some element of w). Hence, if EE ITSn then by (1):

Consider the ideal J generated by I U {val(tb(ut , ••• ,uk»;
(Ut , •.. ,uk> £ IT( n A)}. Since J E Vd and I is a maximal proper

ideal in Vd and I J we must have l B E J. Hence, by lemma
rl,

there

is a finite subset Gt< D of ITOv n A) such that n{­vaHtb(ut> .. ,uk» ;
(Ut , ... ,uk> £ Gt(E)} E I. By (2) Gt(E) has at least two members.

By considering, in the same way, the ideal generated by

I U {­vaHtb(ut, ... ,uk»;(Ut,,,,,uk> e n(Ev nA)} one obtains
a finite subset G2(E) of n A) which has at leat two members

such that n {vaHtb(ut , ... ,uk»;(u\ , ... ,uk> e G2 ( E) } E 1.

Define to be the set of those elements which occur on some

place in an k­tuple of = 1,2. is a finite subset of

A and it has at least two members in common with each Ev for

1 v k. Put

G* =U {G I (E) U G I ( L). E E ns"),
t 2'

Then G* is a finite subset of A which has at least two members in

common with each member of LJRangeCSn). Since G (E) C *lCE n G*)
- v= v

for 1 2, we get
n r k

(3) E E ITS -+ t n{­vaHtbCut, .. ,uk»;(Ut, .. ,uk>e: g (E nG*)}E I
v­1 k V

and nG*)} E I,

since Yt Y2 B -+ OY2 flY t , and I is an ideal. By lemma 5 we
obtain from (3) that there are absolut intervals b t , ... ,bX' pairwise

disjoint (and disjoint from d) such that, if G* = {a j t , •.. ,aj X}'
then a· e: b for 1 v X and

Jv v
(4) E E ITsn A [(x e: A A X £ b ) +'..121 v \I v k

n{­vaHtb(ut , ... ,uk»;(Ut , ... ,uk} E g (E n {x, ""'XX})}E I
. '0­1 v

A n{valCtb(ut ,."'Uk»;(Ut , ... ,uk> E n {XI.· .. ,xX})} E 1.

We can assume that each bv (for 1 v X) is a subinterval of some

member of LJRange(Sn) since this can be attained always by taking

appropriate intersections. Moreover it follows from our construction



143

of G*, that if s E l)Range(Sn), then s includes at least two sub­

intervals out of the sequence ( b1 , ••• ,bA) •

Let us define now the k­sequence Sn+1 by (for 1 v k):
n+1 { . ..:: n}Sv = by; 1 Y A by lS a subset of a member of Sv .

What we just said concerning the sequence (bi , .•. ,bA) shows that

Sn+1 satisfied the requirements (P1), P2), (P3) and by (4) also (P4).

Notice, that we defined the infinite sequence SO .s' , ... ,Sn, .•.
by induction in 1L where at each step we made arbitrary choices,

namely by selecting Gv(E) for V = 1,2. But at each step we made

only finitely many of them and each set Sn is in Vd which has a

definable wellordering (in terms of members of d) as we have shown

previously. Hence the construction of SO .s' ,.;. ,Sn .•. as given

above can be performed inside of 7t .
To apply the Halpern­Lguchli theorem we define the following trees.

T ­ USnv • nEw v
is the converse of the inclusion relation C.

(for 1 v k). It follows from (P1), ... (P4) that the n­th level

of is exactly and (Tv'''v) is a fan and by (P2) has no

tree­tops. Hence all the requirements of the Halpern­Lauchli theorem

hold in the present case. Let n be a natural number as in the conse­

quence of that theorem.

Let H be a choice function on the finite set W = l){Se; m n

1 v k} such that Range(H) A. Let y be the k­sequence given

by Yv = {H(s); s E m n}} for 1 " v " k. We shall show that

for every z ITy either

(S) n{valCtb(u1 , ... ,uk»;(u1 , ••• ,uJ2 E z} E I,

or n{­valCtb(u1 , ... ,uk » ;( U1 ) ... ,uk} E z l E 1.

Once (S) is proved then we shall obtain the desired contradiction

1B E I. Let us prove(S) k

We define the following 2­partition of IT (Tv/n):
v=1

QI = {g E vt (Tv/n);( H(g1),'" ,H(gk)} E z I
k

Q2 :: CTv/n) - Ql ,

where g is the sequence (gi , ... ,gk)' By our choice of n the Halpern­

Lauchli theorem asserts that there exists a positive integer mo < n

such that either Q1 or Q2 includes an (mo,1)­matrix M. Suppose M Q1'

By definition there are (roo ,1)­dense subsets A of Tv such that
M= ltA

v
' v

v=1
Since all the sets Av are (mo ,1)­dense, we may choose a k­sequence
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( mo mo+l
of intervals TI •... ,TJ such that Ty E Sy and for all s E Sy •

if s Ty• then r s for some r E Ay. With this choice of

(Tl, .... T
k
) define a function f on URange(SIDo+l) (using lemma 3) by:

{

i f for all y with 1 y k, s $ Ty• then let f(s) be an

arbitrary member of s n A.
f Cs) = if (3,,)(1 y k" s T y ) ' then take an arbitrary member

r of Ay for which r s holds and let f(s) be H(r).

Thus for every s E LJRange(Smo+1 ) . f(s) E s. Define

G = {f(s); s E URange(Smo+l)}.

By requirement (F4) for rno+1 we get
k

(6) n{vaHtb(Ul, ..•uk » ; ( u1 .... ,Uk) E n (T n G)} E:::.
y=l y

k
We shall now prove that n G) z. Once this is proved. then

(5) obviously follows, since Xl .,;;; X2 E 1 1 -+ XI E I is a property of

ideals. Hence let us prove that the product of TV n G is

included in z , and let h = (hi, ... ,hk> e n (Lv () G). Since
y=l

h v E Tvn G, there are Sy E l)Range(Smo+1) for 1 y k such that

f(sy) = hy. Since f is a choice function. h y E Sy.

Since also h y E TyE it follows from (Pi) and (P3) that

Sy Ty' But in this case hy = f(sy) = H(ry) where r y E Ay• Thus

h = <H(r ) .... ,H(rk » where <rl •...• r k) E ff Ay C QI. But by definition
Y:1 -

of Ql this implies h " (H(rl ) •... ,H(rk» E z and hence IT(Ty n G) C z

holds.

To deal with the other case, namely M Q2, let us write z· "

(ny) - z and proc8ed exactly as in the case M Ql • replacing z

by z· and Ql by Q2. Where (F4) was used to obtain (6). we use (P4)

now to obtain n{-vaHtb ( UI , •••• uk»; .... } E I and get

n{-vaHtb(ul .... ,uk»;(ul' .... uk) E z·} E I, so that (5) holds.

Thus we have shown that for every z ny, (5) holds. This will

be used to obtain by means of lemma 2 the desired contradiction

that l B would be in I.

Let P be the set of all functions defined on

X = {vaHtb(ul , ... ,uk»;(ul .... ,uk) E ny}

such that for x E X. E {x,-x}. Consider

z = {< ui , ... ,Uk) E ITy; ... ,Uk» " valCtb(ul , .... uk»},
Then z ny and by (5): n{va:..(tb(ul .... ,uk»;<ul .... ,ul<) E z} E I

or n{-vaHtb(ul, ... ,uj<»;(ul,""uk) E z I E 1. Since one of these

elements is in I, their intersection is in any case in I. Thus

X E X} E I for every Since P is finite, the union of

these intersections is again in I. It was shown in lemma 2, that this
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union equals lB' Hence l B E I. The assumption, that I is not prime

leads, hence, to a contradiction, id est: I is prime. This proves

lemma 8.

This proves the theorem, that m[ao ,ai, ... ,A] Fzr + (BPI) +

I (AC). The axiom of choice (AC) is therefore not provable from

(BPI) in ZF.

We may use the model constructed above in order to obtain a

further independence result. We consider the following two defini­

tions of continuity:

Definition (L.Cauchy): The function f from reals to reals is conti­

nuous at Xo iff for every £ > 0 there is a 0 > 0 such

that Ix ­ Xo I < 0 implies If(x) ­ f(xo)1 < £.

Definition (Heine ­ Borel): f is continuous at Xo iff lim f(xn) =n1CO
f(xo) sequence {x } E convergent to xo'

f
nnwor

In elementary analysis one proves, that both definition are equiva­

lent, but the proof uses the axiom of choice. That the equivalence

is no longer true if we drop (AC) has been discovered by Halpern­

Levy in [351 and independently by

[3,] M.JAEGERMANN: The axiom of choice and two definitions of Conti­

nuity. Bull.Acad.Polon.Sci.vol.13(1965)p.699­704.

Theorem (Halpern­Levy; Jaegermann): It is not provable in ZF, that

every function from reals to reals which is continuous (at

xo) in the sense of Heine­Borel is also continuous (at xo)

in the sense of Cauchy.

Notice, that it is obviously provable in ZF that every Cauchy­conti­

nuous function is also Heine­Borel continuous.

Proof. By lemma 4 (see page 136) A is dedekind­finite, while infinite

and by lemma 3 (see p.133) A is a dense subset of 2w (in the sense

of the product topology). The function
$ : x # E 1_

n=O 2n+1

for x E A, is a one­one mapping of A into the interval ]0,1] (right

closed, left open). is one­to­one since no x E A is finite (finite

subsets of ware all in the groundmodel JYt). Since absolut intervals

of A are non­empty, the image $(A) is a dense subset of [0.1], and
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is a dedekind-finite, while infinite, subset of the closed inter-

val [O,lJ. Define the following function f:

[

0 if x E </leA)
f Cx) =

1 otherwise

for x E [0,1]. Then f(0) = 1, since 0 Since <P(A) is dedekind-

finite, every sequence {x } E convergent to 0, for 0 < xn < 1, cannnw
contain at most finitely elements from Hence lim(f(xn» = 1 =
f(O) and f is continuous in the sense of Heine-Borel. Since $(A)

is dense in [0,11 , f is obviously not continuous in the sense of

Cauchy. q.e.d.

H) THE AXIOM OF DEPENDENT CHOICES

In his paper "Axiomatic and algebraic aspects of two theorems

on sums of cardinals" (FundIMath.3S(1948)p.79-104, in particular

p.96) A.Tarski considered the following axiom, which was firat formu-

Imed' by P ...:Berna:ys (J.S.LO' 7 (1942)p.B6):

(DC) AXIOM OF DEPENDENT CHOICES: Let R be a binary relation on the

set x such that ('V y E x ) ( 3 z E x ) « y, z) E R), then there exists

a countable sequence YO,Yl , •.. 'Yn"" (n E w) of elements of x

such that (Yn'Yn+l) E R for all nEw.

The name "dependent choices" is used, since (DC) asserts that there

exists a choice sequence where y is chosen in dependence of then
choice of Yn-l' Berna,s mentions that (DC) follows from (AC) and that
(DC) implies the countable axiom of choice (ACw) obviously (see p.l00

of these notes for the formulation of (ACw» .
Both axioms, (ACw) and (DC), are powerful weakened forms of

(AC); e.g. in analysis (ACw) is sufficient to prove most of the

"positive" results such as the first fundamental theorem of Lebesg.ue-

measure. In addition, (DC) is sufficient to prove such results as

the Baire category theorem. Further, we mention, that A.Levy has

shown in his paper "A Hierarchy of formulas in set theory-" ['*'8] ,

that (DC) is equivalent (in ZF) with some forms of the Lowenheim-

SkoLern theorem (see ['f-&]p.72-74).

In the formulation of (DC) the choice of Yn is made in dependence

of the choice of Yn-l' In this formulation, (DC) can not be generalized
to yield the existence of sequences of length larger than w (if

certain hypothesis are fullfilled), since e.g. Yw can not depend on

a "predecessor". But we get the idea to let depend Yw on the set
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{Yn; nEw}. More generally we formulate for cardinal numbers a

(i.e. finite or an aleph):

(DCa) Dependent Choices: Let R be a binary relation between subsets

and elements of a set x, such that for every y x with
card(y) < a there is an Z E x with (y,z) E R, then there is

a function f : a + x such that E R for every ordinal

B < a.

Here fIB = feB) and fllB = {f{Y); Y < B}. The formulation of (DCa) is

due to A.Levy:

A.LEVY: The Interdependence of certain consequences of the

axiom of choice; Fund.Math. 54(1964)p.135-157.

Lemma 1: Levy's axiom (Dew) is in ZF equivalent with Bernays' axiom

of dependent choices (DC).

E!££f. (1) Suppose Bernays' CDC) and let R be a binary relation defi-

ned between subsets and elements of a set x such that (\1y C x)

CcardCy) < 00 + (3 z E x)«y,z) E R). Consider S = {u; u is a finite

subset of x} and define the following relation R· on S:

(UI,U2) E 3z E X)(UI U Lzl = U2 A (Ul ,0 E R).

By Bernays f (DC) there exists a sequence ue ,Ul , ... ,un" .. (n E 00)

of elements of S such that (u ,u 1) E R· for all- new. Define an n+
function f : 00 + x by: fen) is the only element of un+1 - un' then
f satisfies Levy's (DCW) .

(2) Now suppose CDCw) and let R be a relation on x such that

for every y E x there is z E x such that (y,Z> E R. Define
S = {( Zo , ... , z ) ;( Zo , Zl) ERA (ZI , Z2) ERA ... A (z l' Z ) E R}
n n rr- n

and S = LJ{S ; n E:w}; Define the following relation R· between
n

subsets T and elements t of S by:
( T , t) E R· * (.3 z Ex) ( :3 to E T) (t = to •<z'1

where to •<z) denotes concatenation, i. e. to = {vo, .• , vn' z> if
to = (vo , •.. ,vJ. By (DCw) there is a function f 00 + S such
that for all nEw: (f"n,f'n> E R·. Since fCO) = flO = (vo, .. ,vk) E S

define g : 00 + x by g(O) = Vo , ••• ,gCk) = vk,g(n) = the last coordi-
nate of fCn-k), for n> k+l. Then g satisfies Bernays' CDC), q.e.d.

Lemma 2 (A. Levy [52.1): zro f- 1\(DCo.) + CAe).

Proof. Let x be any set. Define W = {y C x; y is wellorderable} and

a binary relation R between subsets of x and elements of x by:
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(y,z} E R <I'> (y E W ... z E x A Z 'I- y).

Let a = K(x) = SUp{A; A is an ordinal and embedda.ble. into x l ,
a is a cardinal number. Suppose x is not well-orderable; then R

satisfies the hypothesis of (DCa), and hence, by (DCa), there exists

a function f from a into x such that (fHe ,f( e)} E R for all ordinals

a < a. By definition of R this implies, that a is embeddable into

x. Hence a E K(x) = a, a contradiction, since ordinals are allways

well-founded, q.e.d.

Corollary 3. ZFl) I- /\(DCa) (AC).
a

Next we shall discuss another family of weakened forms of the

axiom of choice and investigate the interdependences, resp. indepen-

ces between them and the family of statements {(DCa); a a cardinal}.

Let a be an ordinal: (ACa): if x is a set of non-empty sets, such

that card(x) = a, then there exists a function f defined on x such

then f(y) E Y for all y E x.

A.Levy has obtained in [,21 (among other things) the following

results:

Lemma 4: Let a be an aleph, then (in ZF): (DCa) + Let at and

a2 be alephs such that al < a2 , then (in ZF) (DCa,) +

(DCa l ) and (ACa2 ) + (ACa l ) .

For a proof see Levy [52,] p.138, p.14D and p.142.

The following nice result was obtained by R.B.Jensen in 1965

(unpublished). We are grateful to A.R.D.Mathias for telling us Jen-

sen's proof.

Theorem (R.B.Jensen): ZF r + (DCw ) .

Proof. Suppose, this is not true. Then there exists a set X and a

binary relation R on X such that ("'rjyE X)(3z E X)«y,z} E R), but

there is no sequence Xo ,Xl, .•. ,Xn , ... (n E w), such that

( xn ,xn+1} E R for all nEw. (Notice, that we consider Ber n ays "

(DC) rather than (DCw) ) . Consider

W = {Y; Y C X A Y is wellorderable}.

Then for all yEW get that y} is well-founded and we

can introduce a rank-notion Py on Y by induction on the well-founded

relation R- 1 (restricted to Y). Since Uw = X (since all singletons
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are in W) we can define for every Z E X:
A(Z) = sup{Py(z); yEW} •

Step 1: If Z E X, then W < A(Z).,

Proof. Suppose not; then A(Z) = n < w for some z E X, and hence

A(Z) = py(z) for some YEW. Thus there are elements XI"",Xn
in y, such that {Xl ,xz} E R-1, (x, ,Xl) E R-1, .•• ,(x l'x} E R-1

n- n
where xn = z. But for given Xl E X, there exists E X such that
(Xt,xo)E R, and hence (xo,Xt) E R- 1. Hence for y* = Y U {xo} we

get Py*(z) = n+l, a contradiction.

Step 2: For every Z E X there exists YEW such that A(Z) = Py(z).

Proof. For ordinals y A(Z) consider the following sets:

Ty = {{Y,M}; YEW A Mwellorders Y A Py(z) = y}
and define K(z) = {T ; Y A(Z)J. The set K(z) is wellordered of
type A(Z) + 1. by (ACA(z)+l) there exists a function f

which selects from each T one element. Write f(T ) = (Y ,M) ? andy y y y
define Y* = U{yy; y A(z)}. We claim that Y* is wellorderable.

In fact, put Yo = Ae, Al = Yl - Yo , ... , A = Y - (U{Ya ; a < •••
y Y I-'

for y A( z ) and No = Mo , ••• ,Ny = My () (Ay x Ay); then Ny wellorders
Ay, and Y* = l){Ay; y A(Z)} and the Ay are pairwise disjoint.

Define

M* = {( a,b) ; Vy V{)(a E " b E A{) "
l v < () V (y = s " (a,b) E Ny)])}'

then M* wellorders Y·. Hence y* E W, and Py.(z) is defined. It
follows that Py*(z) = A(Z), q.e.d.

Step 3. The final step: Take an element Zo E X such that A(Zo) is

minimal in {A(Z); Z E X}. By the Hypothesis on R, there exists

Zl E X such that ( Zo ,Zl) E R. For any yEW such that Zl E Y define

y+ = Y U {zo}. Then always py+(zo) = Py+(ZI) + 1. By the result of
step 2, there exists YEW, such that A(Zt) = py(Zt). Hence for

this Y:

A(z!) = Py+(ZI) < Py+(ZI) + 1 = PY+(zo) <; A(zo).
A contradiction! A(Zo) would not be minimal: This proves Jensen's
theorem.

Independence Results

Mostowski has shown in 1948 by means of models containing

urelements that (DC) does not imply (AC) in or even:
ZFo y(DCw ) + (ACWI

) :
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[68J A.MOSTOWSKI: On the principle of dependent choices; Fund.

Math.35 (1948)p.127-130.

We shall describe briefly Mostowski's model. Consider a set theory

in which there are many reflexive sets. Let A be the set,of

reflexive sets x = {x},of cardinality Define Ro = A,

Ry =LJ{P(Ra); a < y} and V = l}yRy. Take an enumeration of the set

of reflexive sets (called "atoms" in the sequel): Ro = A = {ay;y < Wt}.

Every ordinal y can be written (in a unique way) as a + n, where a is

a limit ordinal and nEw. Write y - 0 iff Y = a + n with n even, and

write y =1 iff y = a + n with n odd. A permutation f of Ro (i.e.

one-one-mapping of Ro onto Ro) is called admissible iff f preserves

pairs, id est:

Def. f admissible * !\y<Wt[f(ay) * ay + [(y - 0 A f(ay) = ay +1 ) v

(y - 1 A f(ay) = ay_ 1
») ) •

Hence admissible permutations on Ro leave B = {{ay,ay+1};y E Wt A Y = O}

pointwise fixed. Let G be the group of all admissible permutations on

Ro. Call a subgroup H of G a countable support subgroup if there is

a countable subset e of Ro such that H = {f E G; f leaves e pointwise

fixed}. Let F be the filter of subgroups of G which has the set of

countable support subgroups as filter basis. Define = OO1[G,FJ

as in chapter III, section B, page 54. Then oat obviously violates

(AC), since e.g. B Em, but B has no choice set inm . nor-eover

(ACW1) is false in m , since B is wellorderable in DOL of type WI .

Mostowski shows that (DC), id est (Dew), holds in . In fact, if

R is a binary relation inm , such that R satisfies the hypothesis

of (DC). Choose (outside of'm) a countable sequence xo ,Xt , ..• such

that (xn'xn+1) E R for all nEw. Each xn has a countable support

Sn' Since is again countable, the subgroup H = {f E G; f leaves

LJsn pointwise fixed} is in F and fixes the sequence XO ,Xt , ..• ,xn, ...

which is hence in 06t , q. e i d ,

Thus we have proved the following:

Theorem (A.Mostowski ['8]): There exists a permutation model of zro

containing atoms in which (DCw) holds, but (ACWt) is violated.

Thus (DC) (AC), or better (DC) (ACWt), is not a theorem

of zro.

A.Levy's paper [51J contains further independence results. Since

Levy's paper- is "pre-Cohen", as Mostowski' s (68) , the results apply

only to and the method is by construction of rraenkel-Mostowski-



151

Specker models.

Levy asks in [StJp.137 and in whether (ACw) + (DCw)

is provable. R.B.Jensen has solved this problem in 1965 (unpublished).

We are grateful to F.R.Drake for sending us his abstract of Jensen's

proof.Jensen presented his result during the Logic-Colloquium 1965

in Leicester. He first gave a permutation model containing urelements

in order to illuminate the basic idea in his independence proof, and

then translated the method to the construction of a Cohen generic

model. We follow Jensen and present first his permutation model. In

the sequel we make, of course, the tacit assumption, that ZFo is

consistent.

Theorem (R.B.Jensen): There exists a permutation model otL of ZFo

containing atoms in which (ACw) holds, while (Dew) is not

true in oat. Hence (ACw) + (DCW) is not provable in zro.

Proof. Take a set theory with choice in which there is a set Ro of

reflexive sets (called atoms), such that Ro has cardinality K
1,

We

want to define a certain tree-ordering on Ro.

Consider first the well-ordered set WI and consider

wT = {( xi , •.. ,Xm) ; Xl < Xz < .. , < Xm E WI l
and = l){wT; 1 m < wl. There is a natural partial ordering «on

defined by: SI « sz * the sequence Sl is an initial segment

of Sz. More precisely one defines firpt Sl<' Sz to express that SI

immediately preceeds sz:

SI <: Sz * (SI = (XI , ... ,xri ,.. Sz = (XI , .•• ,xm,y»
Hence SI <s S2 * (.3 y E WI ) (S2 = SI.< y» if • denotes concatenation of

sequence. Now define

SI «sz * there are finitely many elements of say

hi, ••• ,hn, such that SI = hi <: h2 <: •. <:hn = S2·
Since has cardinality KI , there exists a one-to-one mapping f from

Ro onto li. Via f one carries the tree-structure « over to Ro by:

a < b * f(a) « f(b).

Hence < is a strict partial ordering on Ro and (Ro is a tree.

Notice that (Ro has no tree-tops, that the order of each element

of Ro is finite and that for every aERo the set of immediate

successors {b E Ro; a < b /\ or-dCb ) :: or-dCe) + t l hws cardiYlo.eify h\ .
Let G be the group of all orderpreserving one-to-one mappings

from Ro onto Ro. In order to define an interesting filter r of

subgroups we define the notion of a "small subtree". First:
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B is a complete branch in <RI) iff <B, is totally ordered

and if a < b E B, then a E B and there does not exists an

element d E Ro such that a < d for all a E B.

Definition. If T is a subset of Ro ,then ) is a small subtree of

<Ro iff T is countable, is a subtree (id est:

a < bET implies a E T) and no branch in is a

complete branch in <Ro ) .

Definition. A sUbgroup H of G is called a nice subgroup iff there

exists a small subtree < such that

H = {11 E G; 11 leaves T pointwise fixed} =- K [ T ]

Define F to be the set of those subgroups of G which include a nice

subgroup. F is a filter of subgroups. Define H[x] = {11 E G; 1I(x) = x}

and let TC(x) = {x} U x U lJx U ... be the transitive closure of x.

Define as in chapter III, p.54: m =m[G,F] = {x ; l\y(Y E TC(x) ...

H[y] E F)}. Specker's theorem (see p.54) shows that is a model of

ZFo. We shall show that (ACW) A I (DCw) holds in

Lemma: The axiom of dependent choices (DCw) does not hold in 001.

Proof. Since for aERo, a has finite order, and hence {b E R; b < a}

is a small subtree it follows that KlaJ H[aJ E F and hence Ro,

every element of Ro and the tree-ordering is in Obviously <
is a binary relation satisfying (V x E Ro) ( 3y E Ro) (x < y). If

(DCW
) , and hence (DC), would held in OR , then there would be a

countable sequence S = {an ,al, ,an' ..• } of elements of Ro in m ,
such that ao < al < ... < an < . If S is in m , then there is a
small subtree T of Ro such that if 11 E K[T] = {a E G; a leaves T

pointwise fixed} (by def.see p.57) entails 1I(S) = S, id est

K[T] <;; H[S]. But S· = {b e Ro; (3a E S)(b a)} is a complete branch

in <Ro ,< ) . Since T is small, T n S· is finite (or even possibly

empty). Hence there exists bo E S with bo T. Define the following

permutation T of Ro: pick any element Co E Ro - T such that, if

bl is an immediate predecessor of bo, then bl < Co and ord(co) =
ord(bl) + 1 (hence ord(co) = ord(bo) and Co and bo are in the same

set of immediate successors of bi). Let T be the identity on

{x E Ro ; I Cx ;;;;. bo V x ;;;;. co)} and T (bo) = co, T (co) = bo and T maps

the subset fx E Ro; x;;;;. bo} onto {x E Ro; x;;;;' co} and reversely.

Hence T E K[TJ and since K[T] H[SJ, it follows that T(S) = s.
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But bo E S implies Co = E T(S) = S, a contradiction. This

proves the lemma.

Lemma. The countable axiom of choice (AC
w)

holds in OOC.
Proof. Let z = {x.; i E w} be a countable set in such that

1

i * j x. n x. = 0, x. * 0 for all i E wand the sequence
1 J 1

{( x . ,i); i E w} = 4 is in 'On. Hence there is a small subtree T such
1

that K[T] H[z] (since is a wellordering of

z, see p.57-58). Write T = T . Proceed outside Since (AC)z
holds in the surrounding set theory, there exists a choice set C =
{y.; i E w} such that y. Ex. for all i E to , The set C need not be

1 1 1

in m" but C C oat by the transitivity of OiL . We are looking for

mappings (not in G) which transform C into some choice set C* which

is inm.
of (Ro ,<) suchare small subtrees T.

1

w. Proceed by cases.

Since y i E 10[" there

that K[T.] H[y.] for i E
1 1

Case 1. T* = l){T.; i E w} is a small subtree. Then obviously
1

K[T*l K[cl K[cl and C is in and we are done since we have

obtained a choice-set C for z in OOL •

Case 2. T* is not a small subtree. We shall construct a sequence of

permutations 'IT. E K[ T ] such that TO = U {'IT. (T.); i E w} is a small
1 z 1 1

subtree. We construct these permutations TI. by induction OD i.
1

I) Let 'lTo be the identity on Ro .

II) Suppose that for 0 i < n permutations TIi E K[T
z)

are defined.

III) Construction of TI .
n

Of course, the construction of 'IT takes place outside of . Remember
n

that the tree structure on Ro has the property, that the set of

immediate successors of any element of Ro has (outside of DOt:)
cardinality while small qubtrees always have cardinality .

Hence we may shift (displace) the tree T into a tree TI (T ) so that
n n n

Tz n Tn = Tz n 'lTn(Tn) but 'lTn(Tn) - Tz is disjoint from L){Vi(Ti);
o i < n}. In details:

For aERo let [a) be {x E Ro;a x}. Further call the cardinality

of {y E Ro; Y a A y * a} the order of a, in symbols ord(a}. Hence

ord(a} is for aERo always finite. Define L(k) to be the k-th level:

L(I<) = {x E Ro ; or-dCx) = k}

For y E L(k) let I(y) be the set of immediate successors of y:

I(y) = {x E Ro; Y < X A ord(x) = ord(y) + 1}
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( a.nc1 I(})
Thus Y1 =1= Y2, Y1 , Y2 E Uk) implies I(Yt) n I(Y2) = ilalways has

cardinality K1 and further L(k+1) = l){I(y); y E L(k)}.

When we consider ([ a] we mean of course the ordered pair

consisting of [al and restricted to Lal , If at, a2 E L(k), then

([ at 1 and ([ a21 are isomorphic (and isomorphic with

( Ro ) ). Let aa1 be such an isomorphism which maps [at J one-to-onea2
onto [a21 in an orderpreserving way. If ord(al) =1= ord(a2) then

oa1 is undefined.
a2

For m < ord(x) define X(m,x) to be the element zERo with

ord(z) = m and z < x. Since is a tree-ordering of height w,
X(m,x) is unique.

With this amount of notation we are able to define by induction

(on k E w) a sequence of permutations gk E G which approximate TI .
n n

gO is the identical mapping on Ro. Suppose gm is defined forn n
o m k. Define gk by means of gk-1,a and the following function

n n
which we are going to characterize:

Since T , T and U {'IT. (T.); 0 ,;;;; i < n} are all countable andz n 1. 1.

each set I(y) for y E L(k-1) is uncountable we may find a function

from L(k) onto L(k) which preserves the partition {I(y); Y E L(k-1)}

id est = x E I(y)} = I(y) for all y E L(k-1), and

leaves L(k) n Tz pointwise fixed and In-1}
{g(x); x E L(k) n T A X T } n {x E L(k); x E T )} = 0.

n z z l= 0 1

Now define gk: let x be in Ro:
n

if crdt x) < x ,

= if ord(x) = k,
n

X(k,x) >
o,(A(k,x»(x) if ord(x) k.

Thus the sequence gk for k E w is defined by induction for all k E w
n

and we define 'ITn : let x E Ro :

TI (x) = gord(x)(x)
n n In-lj

It follows that TI E K[T 1 and 'IT (T ) is "disjoint from\.--/10TIi(T.;)n z n n 1.= ...

modulo Tz" . Since we have defined the sequence 'ITo ,'ITl , ••• ,'ITn , .••

by induction it follows that every branch B which is included in

TO =U{TI.(T.); i E w}
1 1.

is either included in Tz or in one of the small subtrees TI.(T.).
1.

Hence TO itself is small. Hence K[TOl e F.

Define CO = {TIn(yn); nEw}; then K[TO] < K[TIn(Tn)l ,;;;; H[TIn(y n)]
since K[ T J ,;;;; H[ y ] . Thus K[ TO 1 ,;;;; K[ CO] H[ CO J and it follows

n n
that CO is a set of OOL .



155

Since n E K[T ] K[z] it follows from y E x E z thatn z n n
nn(Yn) E nn(xn) = xn E z. Hence CO is a choice set. This proves the

lemma and Jensen's theorem is established.

Discussion. The function ord can be given in 0tL and {L(k);k E w}

is a countable set in m . By (ACw) in '"DOt, 'Oat", contains a choice set

C for this set. It follows that {x E Ro; (3 y E C)(x y)} is a small

subtree!

Another point is, that the method of proof given above can be

used to yield the following generalization:

Theorem: If a is an aleph, then (ACa) (DCw) is not provable in Zpo

(provided zro is consistent).

The proof is analoguous to the one given above. Instead of defining

to be mEw} one takes LJ{(a+)m; mEw} as 2' where a+ is

the successor aleph of c . Small subtrees of ( Ro are subtrees

without complete branches of cardinality Ci.. Notice, that here Ro
has cardinality Ci.+. The proof can be carried over to the present case,
. + . .S1nce a 1S a regular card1nal.

This generalization shows, that the other result of Jensen,

namely ZFo 1-1\Ci.(ACCi.) (DCw) is the "best possible" result.

Translation to a Cohen-generic model

Theorem (R.B.Jensen 1965): Every countable standard model Yrt of

ZF + V = L can be extended to a countable standard model Yt
of ZF such that:

(a) The ordinals of n are exactly the ordinals of m ,
(b) the alephs of 11 are exactly the alephs of YYt
(c) (ACw) holds in 1t ,
(d) (DCw) does not hold in 1L

Proof. Let be a countable standard model of ZF + V = L. We extend

m by adding to m a generic copy of (the tree defined on p Yi"1)

and generically all small subtrees T of together with wellorderings
on each T.

Hence take the first uncountable ordinal of 'ft and define

in and the tree-ordering on li as before. Next define a ramified

language £ in Jrt which contains besides the usual ZF-symbols, the

limited quantifiers \la, the limited comprehension terms ECi. (for
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ordinals a of ), constants for each set x of.JYL , constants

ah for each h E li, a binary predicate and binary predicates 8T
for each small subtree T of

A condition p is a finite partial function from w x Q into 2.
Define a strong forcing relation containing the following key­

clauses:

p t E ah • c3 n E w)Cp t '" & pCCn,h» = 1),

P tl .:;; tz .... c:3 hi ,hz E H) (hi hs & p II- tl t< ah & p II- tz '" ah ) ,- I Z
p II- STCtl,tz)"" C3h E li)(h E T & p II- tl '" ah & p II- tz '"

where t, tl, tz are constant terms of £. Obtain a complete sequence

of conditions and thereby a valuation valCt) of the constant

terms t. By the Hauptsatz, = {valet); t constant term of £} is a

model of ZF which contains )ft as a complete submodel. Further Yft
and Jt have precisely the same ordinals (by lemma T, see page 90);

hence Ca) holds.

Notice that

1) ah = val(ah) w,

2) = val ) is a tree­ordering the field of which is

just the set {ah; h E Q},

3) 5T = val = {C ah,h ) ; h E T

more precisely is the valuation of E
W
+1x ( V V (x = Cy,z) A Y z )

y z
and similar for ST' Since we took symbols 8T into £ only for small

subtrees T which are in 1rL satisfies V = L, hence (Ae).

there is in jfl a wellordering WT for T. Since 5T is a one­one­function

from {ah; h E T} onto T, and val (WT) = WT is in it it follows that

in n the sets {ah; hE T} (T a small subtree of!i in m) are

wellorderable.

Let G be the group Cin Jrt) of all orderpreserving one­to­one­

mappings n from onto For a condition p define

nCp ) = {C Cn , n (h i) ,e) ; CCn , h) , e) E p}

and define the action of G on £ in the following way: if nEG and

hEll, then n(a.h) = an(h)' TICST) = STIIIT ' where
TI"T = {n(h); h E T} ot-iM:neJ \

and for an I­formula ¢ let n(¢) be replacing any

occurence of ah by TI(ah) and of ST by TI(ST) (the other symbols of

¢ remain unchanged). Then the following holds:

Symmetry­Lemma: If nEG, p is a condition and ¢ an I­sentence, then
p 11- ¢ .... n (p ) If- n ( ¢ ) •
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Proof by induction (see page 99).

This lemma enables us to prove:

Lemma: The countable axiom of dependent choices (DCw) does not hold

in n.
Proof. One shows that no condition p can force that {ah; h Eli},

partially ordered by has a complete branch. See the proof of

I (DCw) in the preceeding FraenkelMostowski-Specker model.

In order to show that (ACw) holds in yt we need a lemma

which says, that any set of on which is 'JL -countable (i. e. coun-

table in jt ) is also 'tt-countable. More generally we shall prove

that cardinals are preserved in the transition from 1ft to 'i ,
thus proving (b).

Combinatorial Lemma. Let B be a set of conditions. There

exists in Jrr a subset B' of B such that B' is in coun-

table and for every p E B there is a p' E B' such that p

and p' are compatible.

For a proof see e.g. Jensen's lecture notes [391 (Springer-Berlin)

page 147, or these notes page 106-107. The lemma implies obviously

that if B is in 1Yt a set of conditions whose elements are pairwise

incompatible, then B is countable. We have shown on p.106-108

(these notes), that this implies that cardinals (i.e. alephs or

finite ordinals) are absolut in the extension from Jrt to ;

thus we have shown:

Lemma. For every ordinal y of 1t (and hence of In ) the cardinality

of y in the sense of '! is equal to the cardinality of y

in the sense of 'Jtt :
:m =rt
y = T

hence and yZ have precisely the same alephs.

In order to show that (ACw) holds in we introduce the following

notation: for a small subtree T of let VeT) be the n -class

of sets which are explicit defina'Di. e from T. Since 1. is 1ft, -definable

and J1i is a complete submodel of 1t (see the necessary remark on

p.96-97), £ is ::fl,-definable. Since the correspondence h ah is

not in 'f[ (for all h E li), we cannot interpret £ ins ide of r: ,
but what we can do is to interpret certain sublanguages £(T) of £
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in . Namely let for a small subtree T be leT) the language

which contains besides the Zf-symbols, the symbols va and

further for x E YrL and , only constants ah for h E T and

symbols SD for small subtrees D for D C T.

Notation: we say that the set s of 1t is explicit definable from

T if there is a constant term t s of leT) such that s = valets)'

Now let Vet) be the collection of all sets of which are explicit

definable from T. We claim that Vet) is 1t -definable and has an

-definable wellordering.

In fact, since £(T) is m-definable, hence n -definable, and the

correspondences ah h for h E T and SD D (since D = Range(SD))

for D T are in we can define an interpretation n for constant

terms t of £(T) in JL by setting

n(ah ) = n(SD) = SD for h E T, D T, D small subtree,
) = and = x,

and then extending by induction to all t's of I(T). Thus

VeT) = {Q(t);tis a constant term of £(T)}

and VeT) is an Jt -definable class.

Lemma. If T is a small subtree of < } , then VeT) has an

jt -definable wellordering.

Proof. Since T and {D C T; D a small subtree} are wellorderable in
')1t and further x -a set of mi. {va; a. E On'JYt } and

{Ea.; a E have wellorderings, it is clear,

that the alphabet of £(T) is wellorderable in )tt. Hence the class

of all constant terms t of £(T) (considered as finite sequences of

symbols from the alphabet of £(T)) has a (lexicographic) wellordering

which is carried over to VeT) via Q.

Notice, that Q can not be defined for all terms of £, but only for

terms of £(T); but this is sufficient in the present case, q.e.d.

Lemma. For every term t of £ there is a small T such that

for every condition p it holds that p *" el t n C(T) *" el.

Sketch of Proof. C(T) is the unlimited term of £ so that VeT) =
val(C(T)). For given t consider B = {q E Cond; q 11"* V x E: t l ,

x
where Cond is the of conditions. Now apply the combinatorial

lemma and obtain a subset B' of B so that for every

q E B there is q' E B' with q U q' E Cond, and construct the tree T.

Then for p' E B' there is t' of £(T) so that p' ll-*t '* 0 ... t' I: t .
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Sketch of proof. Let z be a countable set in • Z = {zi; i E w}
so that each zi E z is not empty. Let t z' t i (i E w) be constant

terms of £ so that z = val(t z) and zi = val(ti). By the preceeding

lemma there is a sequence of small subtrees T. such that
l

I1J II-*t i '* I1J ... t i n C(T i ) . Obtain a sequence of permutations 1T i
leaving t invariant but such that T* =U {7T. (T. ); i E w} is a

Z l l

small subtree (use the construction presented in the Fraenkel-

Mostowski-Specker version of the model). Hence in : zi n VeT-) '* I1J

for all i E w. Since V(T*) has an jt -definable wellordering we

obtain a choice sequence in n . This proves Jensen's theorem.

Again. as in the case of the permutation model. the theorem can be

strengthened to

Theorem (Jensen): Let a be an infinite cardinal in a countable

standard model IN of ZF + V = L; then can be extended
to a countable standard model of ZY in which (ACa ) is

true but (DCw) is false and furthermore On?fL = On1t and

JrL and have the same alephs.

The Independence of the Axiom of Choice from the Principle of

Dependent choices

Mostowski showed in 1948 that (AC) is independent from (DC) in

ZFo. W.Marek in Warsaw translated Mostowski's construction of a

model m of zr" + (DC) + "l (ACWI
) to yield a Cohen-generic model

of ZF plus (DC) + -, (Ae). Thus (DCw) + (AC) is not provable in

full ZF.

[511 W.MAREK: A remark on independence proofs; Bull. Acad. Polon.

Sci. vol.14(1966)p.543-545.

Marek just immi.tates Mostowski's model by adding to a given countable

standard model Jrt of ZF + V = L generically a set X of Kt many

unordered pairs E WI ) where each contains two Cohen-generic

reals ut and ut. The extension is obtained as the constructible
closure (using ordinals of but besides Godel's eight fundamental

operations Marek takes a nineth one which will serve to add countable
sequences. Unfortunately the proof in [5'1 1 is only briefly sketched.

We shall consider in the sequel Feferman's model Jrt[ao .at , .• a .• J.n
Feferman showed that in this model the (BPI) fails and Dana Scott pointed
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out that even the axiom of choice for unordered pairs (ACt) is
violated - see Feferman [16] (we cited this paper on p.98). Several

people observed that (DC) holds in Feferman's model. Probably

R.M.Solovay was the first who made this observation. A proof is
published in:

[l3] G.E.SACKS: Measure - Theoretic Uniformity in Recursion Theory

and Set Theory; Transactions Amer.Math.Soc.vol.142 (1969)p.381-
420

The proof is presented in [13J in the language of measure-theoretic

uniformity rather than in the forcing approach. The results of Sacks

(131 are announced in: G.E.Sacks: Measure Theoretic Uniformity;

Bull. Amer. Math. Soc. vol.73(1967)p.169-174, and (under the same

title) in the Godel-Festschrift (Springer-Verlag, Berlin 1969)p.51-57.

FEFERMAN'S MODEL me ao ,al, ... J •

Let Jrt be a countable standard model of ZF + V = L. Define in JYt a

ramified language t, which contains besides the usual

( "l, v ,V, =, e and variables), limited existential quantifiers v"
and limited comprehension operators EO, (for ordinals a of)ft),

constants x for eaph set x of JrL and unary (generic) predicates a.
- l

for i E w. We suppose that this is done in such a way that the cor-
respondences x -+ x, i -;. a., a -+ Va and a-+Ea are allm-definable.

- l

This can be attained e.g. by the standard-method - see page 79.

Define conditions p to be finite partial functions from w x w into

2 = {D,l}. The (strong) forcing relation t between conditions p and

£-sentences is defined as usual. The definition contains the following
key-clause:

p II-- ai Ct ) <3 nEw) (p II- t '" n & p« n,i» = 1)

where t is a constant term of t. Obtain a complete sequence and

thereby a valuation valet) of the constant terms t of £. Let

n = (val(t); t a constant term of £}, then n is a countable
standard model of ZF. It holds that a. = val(a.) C w. We use the

1 l

following notation
jt m.. (ao ,al , .•• J

i.e. Jt results from by adding countably many Cohen-generic

reals a i (i E w) to Notice, that the correspondence a i -+ i,

id est {(a.,i); i E w}, is not added and that we did notbadd a set
1 (C'cmc.uninQ

A which just collects these generic reals a.:>This IS the main diffe-
1

renee to the model of Halpern-Levy: me ao ,al , ..• ,A] (see pages 101-
103 p.131). Halpern-Levy's model satisfies the (BPI) and since
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(BPI) (OP) (ACz) (in ZF),

where (BPI) is the Boolean prime ideal theorem, (OP) the ordering

principle and (ACz) the Btatement which says that every set of un­

ordered pairs has a choice­function, it follows, that (ACz) holds

in )ft[ao,al , .• "AJ. We shall show in the sequel that (ACz) does

not hold in 'ft[ao ,al , ... J. Moreover it will be shown that there

is no set in m [ao ,al, •.• J which just collects the reals ao ,al,' • ,

an"" Though the models of Feferman and of Halpern­Levy seem

to be very similar, they are considerably different and have extre­

mely different features.

Symmetry­properties of Peferman's model

Let G be the group of all one­to­one mappings TI of

w onto w. Let be the result of substituting a (') for a. in
'!t' a

the £­formula and define 7f(p) = {« n,7f(i) >,e >; « n,i >,e> E p l
for conditions p. Then the "classical" Symmetry­lemma says:

"If 7f E G, is an i­sentence and p a condition, then

p II- iff 7f (p) II- 7f ( ) "

Feferman considers in [16J p.330­331, a different kind of trans­

formation (we use Levy's notation in [51] p.147­149).

If r is a set of JYt and r w x w then r defines a trans­

formation:

Definition: Let Q be a function on a subset of w x w into 2 (in

particular Q may be a condition). We define

[r,Ql = {«n,i>,e> ; «{n,i>,e> E Q "(n,i> E r ) v

v«{n,i> ,1­e> E Q " (n,i> fIE r)}.

Definition. Let be an £­formula. We write for the result of

replacing each occurrence of aiC,) (where, is a variable

or a constant term of £) in by

[r"l £ W " (ai ( [ r " l ) ([r,'l ,J:.> e r),

where [r"J if is a variable and {[r"J ,J:.> £ r

stands for:

V E r " A (y E X C!\ (z e Y z " [r" J ) v

E y (z " v z " i»»
(the Kuratowski­definition of an ordered pair as a limi­

ted sentence of £) and z " for A E Z V E [r"J).
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It follows, that if p is a condition (in Jri) and r w x w, r in

Jri, then [r ,pI is a condition (in m ). Further if is a limited
i-formula, then is a limited i-formula; if is unlimited, then

so is If t is a limited comprehension term, say

then [r,t] is a limited comprehension term (this is

used above for [r,r,;J if r,; is a constant term).

Let QI and Qz be functions with Dom(QI ) w x w,

Dom(Qz) C w x wand Range(QI) 2, Range(Qz) 2 and

let r C w x wand suppose that QI , Qz and r are inm .
If 01 C Oz, then [r ,QI I [r ,Qz J. Further it holds that
[r,[r,Q.l} = Q. (for i = 1,2). If is an £-formula

and ¢l(X) = [r,4>(x)}, then = 4>'([r,uJ) if u is a

variable of £ or a constant term of t. Further it holds

that o[r,tl = oCt) for any constant term t of t.

(see p.79 for definition of 0).

Lemma II.If (po ,PI , ... ,p , ..• ) is a complete sequence of conditions.. n
and if r C w x w is a set inm , then

[ r , 4ZJ f ([ r ,pI, [ r ,pI, ... , [ r , p ) , ... )e Q 1 n

is a complete sequence.

LemmaIII.For every constant term t: = val[r,4ZJ([r,t}) for
r and as in the preceeding lemma. For every £-sentence

F=\ll iff r=[r,4>l.

For a detailed proof see Levy's paper [S1}p.148. Lemma III can be

strengthened to:

Lemma IV. (Feferman [16]): Let 4> be an £-sentence, p a condition (in

Jrt) and r C w x w, r a set of . Then

p II.. iff l r vpl n- [r,4>l .

Next we shall present Feferman's lemma, which says, that (BPI) does

not hold in 1t . We need some lemmata.

Lemma V. Let pew) be the powereet of wand I a prime ideal in pew).

If I is not principal, then I contains all finite subsets
of w.



a non-principal prime ideal I of

finite subsets of w. Let t r be
val(t

I)
and t I

and nEw such that i E

neither an nor w - an is in I
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Proof. Suppose, there is a finite subset S = {bl , ••• ,b } C w suchn -
that S I. Then w - S E I since I is prime. Write Bl = w - {b1l,B2 =
W - {b21, ..• ,B = w - {b 1. Then (j{B.; 1 < i < nl E I and since In n 1

is prime there exists i with 1 < i < n such that B. E I. Since I is
1

a proper ideal, I = {x C w; x C B.}. Hence I is a principal ideal,
1

q.e.d.

Lemma (Feferman [161p.343): Let p1L(w) be the powerset of w in the

sense of 1t . Every prime-ideal I E 1t in the Boolean algebra

( Pn (w), is a principal ideal.

Proof. Suppose there exists in 1L
(p'ft- (w), ) • Thus I contains all

a constant term of £ such that I

Let = {i E w; a. occurs in
1

implies i < n. We shall show that

(an generic). Proceed by cases:

Case 1. Suppose a E I holds in Yl . Since everything that holds in---- n
1t is forced by some conditions in the complete sequence which

defines n , there exists p E 6l such that

p If-Han)'
Let ko be chosen so that for all k ko , (k,n) Dom(p).

Define in m. :
I' = {( k,m); m =1= n v (rn = n A k < ko)} C w x w.

It follows that (r,p] = p , Let = [r,Hx)]. Lemma IV implies

p • hence Jt 1= since [r,p] = p E lit. But

"it F # I ([ r,an] ). By construction of r:

Jt q,'([r,a]) # Hence
n n
Jt 1= H( r,anl )

and therefore val([r,anl) E I. But

val([r,a]) = [(a () ko) u (to - a )1 () (w - ko).n n n
Since prime ideals J satisfy: an b E J then a E J or b E J, it

follows that either (an () ko) U (w - an) or (w - ko) is in I.

But I contains all finite subsets of w, hence in particular ko'
Hence w - ko cannot be in I since otherwise ko U (to - ko) = wEI.

Thus we get that (an () ko) U (w - a ) E I. Hence w - a E I. Butn n
by our assumption an E I, a contradiction, w would be in I.

Case 2. w - an E I holds in Jt . Proceed in a similar way and obtain

a contradiction. This proves the lemma.
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Corollary: The Boolean Prime Ideal Theorem does not hold in yt .

Proof. It is well-known that (in ZF) the (BPI) is equivalent to the

statement: "Every infinite Boolean algebra has a non-principal prime

ideal" (see e.g. Tarski's abstract in the Bull. AMS 60(1954)p.390-

391). It follows/hencejfrom the previous lemma, that (BPI) does not

hold in n .
Remark: Dana Scott showed that in Feferman's model Jt even there

does not exist a choice set selecting reals from the cosets of the

rationals in the reals - see Fefcrman's paper l161p.343-344.

Let C(a..a. ,a .•...•a. ) be the m-set of all constant terms
11 12 J.k

t of £ such that 8(t) < a and symbols aj occur in t only for

j E {il •... ,ik}. Let )U l a.,ail" .. ,aikJ be the n -set of those

sets (of 1t ) which are denoted by members of C(a.,a. , ... ,aik)'
11 .

It is clear that l has a constant term t(a,a. , ... ) which denotes
. - 1 1

JI \;- [ a.a. , .. ,aikJ. Def i.ne

, ...•aik) = U{CCa,ai , ...• ai,); a E Onm }
11 1

and let !(ai
l
•... ,aik) be (an unlimited) constant term of £ denoting

U C)Tt l a ,ail" .. ,aikJ ; a E ann } - J1U ail" .. ,aikJ

Lemma. For each finite subset {it , ... ,ik} of o , ml a i l , ... ,aikJ

has an n -definable well-ordering.

For the proof use the techniques presented on pages 97-98, 138 and 158 .

Lemma. Let be an t-formula whose only free variable is x such

that = {i E W; occurs in ekE w. Then for

every condition p:

p II- "'" 1'0. x £ :t(a. ,ao ,al"" ,ak» .

The idea for the proof is the following: if u is a constant term of

£, say with B < a, such that ¢(u) and u mentions (names for)

generic reals aj at most for j E {O,1, ... ,m}, then transform u into

a term u* = such that ¢(u*) and u* mention (names for)

generic reals aj at most for j E {O,i, ... ,k} = k + 1. This can be

achieved by replacing ak , d k+1, ... ,am in U by pairwise disjoint subsets

of ak. More precisely one defines (in m) the following function r

from constant terms to constant terms (assume k < m):

r(Ewxa.(x» = EWxa.(x) if 0 < i < k,
1 1

r(Ewxai+k(X» = EWxa
k«m-k+1)'x+i) if 0< i < m-k,
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r(E
Wxa

i+m+1(x» = EWxa
i+k+1 ( x ) if 0 i.

Extend r to act on all constant terms of £ in the following way.

If EYxf(x) is any constant term of £, then replace first in f(x)

every occurence of a.(x) by x E EWza.(z) and call the resulting
] J W

formula f'(x). Then replace every occurrence of E zaj(z) in fl(X)

by r(EWzaj(z» and call the resulting formula r(f(x». Finally

define r(EYxf(x') to be EYxr(f(x». With these definitions let u*

be id est r(u). It follows from the construction, that

u* mentions (names of) generic reals B.j at most for j E k + 1.

Hence val(u*) E ,al , ... ,ak] . A symmetry argument shows that
<I>(u*) holds.

Lemma (R.Solovay): The axiom of dependent choices (nCw) holds in

Feferman' s model 1l, jI't[ ao ,al" .. ,a , ..• l .
n

Outline of proof. Let <I>(x,y) be an £-formula whose only free variables

are x and y, such that if a. occurs in <1>, then j < m. Let us assume
]

for simplicity that m = 1. Suppose EU<x,y)<I>(x,y) defines in yt a

binary relation R on a set s such that for all xEs there exists

y E x with <x,y ) ERin 'Jt . Itle intend to find in n a function f

from w into s such that for all nEw, (f(n),f(n+1» E Rand
f E m (ao , al ) .

By the previous lemma it holds in 1t that the following two

formulae are equivalenti

(1) Ax E l(ao ,al, ••. ,an) 4 <I>(x,y)] )

(2) Ax V)x E l(ao,al , ..• ,an) ..... (iP(x,y) AyE l(aO,al , ... ,an+1»].

Consider the following transformation r n+1:
r n+1(Ewxao (x ) = EWxao (x L,

rn+1(Ewxai+1(x» = EWxal (2 i+1·x + 2i - 1) for 0 i n,

rn+1(Ewxan+2(x» = EWxal (2n+1. x + 2n+1 - 1),

rn+1(Ewxan+j(x» = EWxa
1+j(x) for 3 jEw.

This transformation r can be extended to act on the whoLe In. -class
of constant terms in the same way as it was done in the preceeding

proof. A symmetry argument yields that

(3) Ax Vi x e: r n+1(l(ao , ,an» 4>(x,y)], and

(4) Ax Vy[ x e: r n+1(l(ao, ,an» <I>(x,y) '" Y E r n+1(l(ao, .. ,an+1 » ]
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are equivalent (namely, apply r 1 to (1) (2». Notice that
I n+

... ,An» and ... mention (names of)
generic reals aj only for j = a or j = 1. Hence val(rn+1(!(Ao, •• ,ak» C

C Jrt.,[ ao ,atl for k E {n,n+l}. But m£ ao ,ad has an "'---definable

wellordering. Hence there is in Jt a function f : W + s such that

f ( 0) E 9ft I ao , at 1,
fen + 1) E valCrn+1(!(Ao, ... ,c3.n+1» ) mr ao ,at J ,

and 1\ <f(n),f(n + l)}E R holds in Jt. We can insist thatnEw
f E ,at], since the constant-terms that denote the well-orde-

rings needed in the definition of the term t f (for f = val(tf» are

members of C(a.,At). This proves the lemma.

Theorem (R.Solovay): If ZF is consistent, then so is ZF + J\a<ACa) +

+ (DCw) + I (DCWt).

The model used by Solovay is the Cohen-generic extension

n [ ao , ... ,ay , •• .] y<w1[L of a countable standard model m ox

ZF + V = L which results from -""0 by adding Wt many (in the sense of
generic reals a y (y < to but no set collecting these reals.

Another result in this area is due to Tomas Jech from Prague:

T.JECH: Interdependence of weakened forms of the axiom of choice;

Comment.Math.Univ.Carolinae, Prague, vol.7(1966)p.359-

371, Corrections, vol.8(1967) page 567.

Theorem (J.Jech [38J): Let JiL be a countable standard model of

ZF + (AC) and u a regular infinite cardinal in JrL . Then

there is an extension n. of m with the same ordinals

such that 1t is a ZF-model satisfying (ACS) and (DCS) for

every S < a but neither (Aeu) nor (DCa) hold in JL .

H.C.Doets asked. whether there is any interdependence between (Dew)

and the (BPI). The answer follows from results presented in this

chapter. In fact, Halpern and Levy showed that m [ao ,at, ... ,A]

satisfies (BPI) + I (ACw) and hence I (Dew) - see pages 100-103 and

section G, p.131. On the other hand (DCw) + I (BPI) hold in Feferman;s

model JYt, [ao ,at, ... J •


