§ 16. Segal algebras on abelian groups

In § 9, Theorem 1, we established a bijective correspondence
between the closed ideals of symmetric Segal algebras S'(G) and those
of L'(G); if G is abelian, we can prove that this correspondence

preserves the existence of approximate units.

THEOREM 1. Let G be any l.c. abelian group, $'(G) a Segal algebra

on G. A closed ideal Ig of $'{G) belongs to 35(81(6)) if and only if

the closure of I, in L'(6) belongs to 7;(L1(G)) (for the notation,

S
see § 14, (i)).

The proof is based on the method of linear functionals (§ 11)

and requires some preparation; moreover, the assumption that G is
abelian is needed only at one point of the proof. We shall, therefore,
carry out our work for general l.c. groups, as long as possible, and
introduce the commutativity of G only at the very end.

Let S'(G) be any Segal algebra, G being a general l.c. group.
S'(G) acts in a natural way on the dual space S'(G)': for f € S'(G)

we define the operator f*s on S'(G)' by the relation (cf. § 11, (8)

for the notation)
(1) (g , f**qu)S = (fxg , ¢S>S for all g € 8'(6).

This means that the operator f*s» is the adjoint of the left multiplica-
tion operator on S'(G); this is one reason for the notation. We note
that

(2) (£, %5,) % ¢g = 3 2f]x0dg.

Another reason is provided by the following lemma which will be

essential for the proof of Theorem 1.
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LEMMA 1. Let S'(G) be a symmetric Segal algebra. Then the
functional f*a&¢s in S'(G)', obtained from ¢S € $1(G)' by means of the
operator f£*s» {(f € S'(G)), corresponds to a bounded continuous function

X = f*x-¢s(x) on G (abuse of notation!) and we have

(3) f*aé¢s(x) = (R f, ¢S5S x € G.

In other words, if f*‘¥¢S(X) is defined by (3), then we have
(42 (g, f*ﬁ'¢s>s = J g(x)f*x~¢s(x) dx g € $ME).

In particular, if the functional ¢S corresponds to ¢ € L°(6), i.e. if

¢S ig given by
£ - f FUx)P(x) dx fesi(e,

then (3), with ¢ in the place of ¢g, agrees with the customary defini-
tion of the function f*# ¢ as the convolution of f* with ¢.

Proof. The relation (&) has already been proved: it is another
formulation of § 11, Lemma 1, relation (9), with f and g interchanged.

The customary definition of the function £*sx ¢, for ¢ € L¥(6), is
j Fr(y)oly ™ ix) Ay = j (¥ élyx) dy,

which agrees with (3) when ¢o € S'(G)' corresponds to ¢ € L¥(G) (cf.
alsc § 11, (7)). Thus Lemma 1 is proved.

We note that (3) gives for x = e
* =
(5) f xr¢S(e) {(f , ¢S)S.

Another lemma useful in the proof of Theorem 1 is given below. We
shall write ¢g L I (¢g € sl(e)', I C s'(@)) to indicate that (I , ¢§S =

= § for all £ € 1.

LEMMA 2.

(i) Let S'(G) be any Segal algebra; let I be a left ideal (closed
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or not) of $'(6). Then 95 L I holds if and only if £*s ¢5 L I holds
for all f € s'(@).

(ii) Let $'(G) be symmetric or pseudosymmetric; let I be a right

ideal (closed or not) of S$'(G)., Then ¢S L I holds if and only if
f**¢s = 0 for all f € 1.

Proof.

(i) If (fo s ¢S)S = 0 for each f € I, then

(fxfo,d)s)s = 0
for all f € 8'(G), since I is a left ideal, whence
* —
<fo , x-d)s)s = 0

for all f € S$*(€), and each fo € I. Conversely, if this last relation

holds for each f_ € I and all f € S'(G), then
(f-x-fO ,¢S>S = 03
. _ . . i .
for fixed f we then take f = u , with (udpsq in S (G) such that

u £, > £ in SY(E) (n > ),

which yields <fo s ¢>S>S = 0 for all f_ € I.
(ii) Suppose (f , ¢S)S = 0 for all f € I. Then, since I is a

right ideal, we have

(fx»g,(bs)s = 0 for all g € $'(G),
whence
(g,f*aubS)S = 0 for all g € 8'(@),
that is
f*x-dJS = 0 for all fel.

Conversely, if this last condition holds, then - working backwards -
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we obtain
(fxg , %)S = 0 for every g € S'(@).

Now S'(G), being symmetric or pseudosymmetric, has right approximate
units (8 8, Proposition 1, (ii), (iii)); thus we can, for fixed f € I,

- : : 1
put g = u_, with (un)n>1 in S (G) such that

n

fau, - £ in SY(G) (n - o).

This yields (f , ¢S>S = 0 for all f € I.
We can now prove some propositions from which Theorem 1 will

follow.

PROPOSITION 1. Let S$'(G) be a symmetric Segal algebra; let IS be
a closed right ideal of S'(&). Then Ig has approximate right units if

and only if the following condition (CS) is satisfied:

S
that £*x ¢g L I

(CH

< Wnhenever f € I and ¢g € SH(@)' are such
S

g holds, then f**‘¢S = Q.

Proof. Suppose Ig has approximate right units and let f € I, and

¢S € S'(G)!' be such that
f*x—¢8 R

in I, so that

holds. Choose (un)n>1 S

fru - f in SYH(B)Y (n = o)
then
u; *(f**=¢s) = 0 for each n
(¢f. Lemma 2 (ii)), or

(f%un)**dvs = 0
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(cf. (2)), whence for n - o pesults:

#* —

f*cj)S = 0.
Conversely, suppose (CS) holds. Given any f € IS’ consider the right
ideal

Iz = {frxg | g€ IS}

of S'(G); we want to show: f lies in the $'(G)-closure of If. Consider

any ¢q 1 If: thus, by Lemma 2, (ii) again,
(f*g)**fbs = 0 for all g € Ig ,

or g*»e(f*-¥¢8) = 0 for all g € I., whence

8
N ;
f ae@s 1 IS R

by the same lemma. Thus, by the assumed condition (CS), we have
f*x-@s = 0,

whence ¢ f , ¢S>S = 0 (of. Lemma 1 and relation (5)). Since ¢o 1 I

was arbitrary, the desired result follows. Thus the proof is complete.

REMARK 1. In the case S'(G) = L'(G), we simply write condition
(C) instead of (CS); explicitly this reads, for a closed right ideal I

of L}(G):

{' Whenever £ € I and ¢ € L®(G) are such
(D]

that f*» ¢ L I holds, then f*» ¢ = 0.
In this context we mention again that here f* ¢ may be interpreted

in the customary way (cf. Lemma 1).

PROPOSITION 2. Let 5'(G) be a symmetric Segal algebra and let I

be a closed two-sided ideal of L'(G); put Ig = I N s$'(G), so that IS
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is a closed, two-sided ideal of S!(G). If I_ satisfies (Cg), then I

S
satisfies (C).
Proof. Let £ € I and ¢ € L” be such that f*»x ¢ 1L I. There is a

sequence (u_) in S'(@) such that

n>»1

fxu - f in LY(G) (n - =);

cf. part (i) of the proof of Theorem 1 in § 9. Now f*un lies in S*(&)
(since 8'(G) is a left ideal in L'(G)) and alsc in I (since I is, in

particular, a right ideal); thus f->eun lies in IS' Now we also have
u;*(f**d)) L 1,
by Lemma 2, (i) (since I is also a left ideal), or
(f xun)**<b LI,
and in particular
*
(f*un) sed L Ig.
Since fwu € I., we can apply (Cg) which yields
(fx-un)**q) = 0,

and for n - e we obtain

i.e. (C) holds for I.

PROPOSITION 3. Let G be a l.c. abelian group and S'(G) a Segal

algebra on G. Let IS be a closed ideal of $!(G) and let I be the

closure of Ig in L'(G). If I satisfies (C), then Ig satisfies (Cg).

Proof. Let f € I, and ¢g € S'(G)' be such that

S

£ ¢g L Ig.
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There is a sequence (u ) ., in S1(G) such that

1

u xf > f in SHEY (n - ).
Now we also have, for each n,
* *
un*(f *¢S) 1 IS’

by Lemma 2 (i); hence, since G is abelian,

(6) f*-x(u;* cj)S) L IS.

Note that here u;x ¢S may be considered as a function ¢n in LO(G)
(cf. Lemma 1), and f*a(—cbn is an ordinary conveolution, by the same

lemma, with f* defined in the usual way. Passing now to I, the closure

of I in L1(@), we obtain from (6)
f**(ul’fl*(bs) 1 I

Since f € IS C I and u;*cps € L®(G), we can apply the assumed condition

(C): it follows that, for each n,
f**(u;-x-tbg) = 0,
or
* -
(unx-f) *¢g = 0.
Letting here n = o, we obtain
f*a«-q;s = 0,

i.e. (CS) holds for IS.

Proof of Theorem 1. This now results from § 9, Theorem 1 (or Ch.

6, § 2.4), and from Propositions 1, 2, 3 above.

Theorem 1 reduces the investigation of ga(Sl(G)) , for abelian G,

to that of ga(Ll(G)); incidentally, already for abelian G not all
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closed ideals of L'(G) belong to 7;(L1(G)) if 6 is not compact (ef.
§ 17), in contrast to § 15, Theorem 1.

It is an open question whether for Segal algebras on abelian 1l.c.
groups G every ideal in 52(SI(G)) possesses approximate units having
a positive Fourier transform with compact support: this would be some
analogy to § 15, Theorem 1. In the other direction, it is also an open
question how far Theorem 1 above can be extended to general l.c.
groups.

In connection with Theorem 1 let us restate a familiar definition.

DEFINITION., Let G be a 1l.c. abelian group, S'(G) a Segal algebra.

A closed set E in the dual group G is said to be a Wiener-Ditkin set

for S1(G) if there is only one closed ideal Iq of $1(@) such that
cosp Ig = E (i.e. if £ is a Wiener set for S!(G)) and if this ideal
I belongs to ja(Sl(G)).

This definition agrees with that given in Ch. 2, § 5.2 (cf.

especially the Remark loc. cit.).

We now have immediately the following result:

COROLLARY of Theorem 1. For any Segal algebra S'(G) the Wiener-
Ditkin sets are the same as those for L!'(G).
Proof. This is a simple consequence of § 9, Theorem 1 (or Ch. 6,

§ 2.4), and Theorem 1 above.

In particular, single points of the dual group G are Wiener-
Ditkin sets for S$'(G). It is useful to verify directly that a Segal

algebra satisfies the condition of Wiener-Ditkin: given any a € and

f € 8'(G6) such that £(a) = 0, there is for every €¢ >0 a 1 € sH(®

such that

T(X) = 1 near a and “f‘*T"S < €.
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This can be verified very simply by reduction to L' (8), as follows.
There is an h € S!(G) such that h has compact support and h(x) = 1 near
a (cf. Ch. 6, § 2.2 (iii)). L'(G) satisfies the condition of Wiener-
Ditkin (cf. Ch. 6, § 1.4%), thus there is a 1, € L'(8) such that

%l(i) = 1 near a and
Ilf-)(»”clll1 < e/llhlls.

Let us put T = 1,3 h; then v € §'(G) (since h € 3'(&)), T(X) = 1 near

5, and

I£stlg < Bfxt,l .lnlg < e.

REMARK 2. By the Corollary above, we may now simply speak of

' Wiener-Ditkin sets in & ', without any ambiguity. Likewise we may

say ' Wiener set in & ': this is already familiar from Ch. 6, § 2.4.
In practice, we are thus free to consider only LGy,

Let us finally discuss anew the injection theorem for Wiener-

Ditkin sets which was given in Ch. 7, § 4.5 and reads as follows. Let
I' be a closed subgroup of the dual group G and let £ be a closed sub-
set of I'. Then £ is a Wiener-Ditkin set in I if and only if E is a
Wiener-Ditkin set in G.

With the tools at our disposal, we can give the proof as follows.
First, £ is a Wiener set in T if and only if £ is a Wiener set in G:
this is the injection theorem for Wiener sets (c¢cf. Ch. 7, § 3.8). Now
let H C G be the orthogonal subgroup of I' C G, i.e. (G/H)" = T. Let I
be the (unique) closed ideal of L'(G/H) with cospectrum E; then the
(unique) closed ideal of L!(G) with cospectrum £ is clearly T%l(I)
(cf. Ch. &, § 4.3). If I lies in J_(L}(G/H)), then Ty (I) lies in
7a(L‘(G)): see § 14, Corollary 1 {(with S}(G) = L*{(G) and n = 1); the

converse is obvious, which completes the proof.
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REMARK 3. The proof of the injection theorem for Wiener-Ditkin
sets given here should be compared with that in Ch. 7, 88 4.4 and u4.7.
Corollary 1 of § 14 (cf. also Lemma 2 of § 8) represents, as it were,
the 'non-commutative part' of that proof. A comparison of the two
proofs will show that by separating the non-commutative and the strictly
commutative parts one cobtains a simpler proof and a clearer insight
into the structure. Similarly, the conditions (CS) and (C) used in the
proof of Theorem 1 above embody the non-commutative part of the criterion
of Herz-Glicksberg (Ch. 7, § u4.9).

In connection with Remark 3 the following may be mentioned. It
often occurs that the proof of a result in classical harmonic analysis
may be divided into two parts: one that admits of an extension to non-
abelian groups and another, strictly abelian one. A clear recognition
of these two components is of considerable interest: it leads not only

to more general results, but also to greater simplicity in the proofs.



