
§ 16. Segal algebras on abelian groups

In § 9, Theorem 1, we established a bijective correspondence

between the closed ideals of symmetric Segal algebras 8 1 (G) and those

of L1(G); if G is abelian, we can prove that this correspondence

preserves the existence of approximate units.

THEOREM 1. Let G be any l.c. abelian group, 8 1(G) a Segal algebra

on G. A closed ideal IS of SI(G) belongs to f
a
( S I (G) if and only if

the closure of IS in L 1 ( G) belongs to 1
a
( L1 ( G) (for the notation,

see § 14, (i).

The proof is based on the method of linear functionals (§ 11)

and requires some preparation; moreover, the assumption that G is

abelian is needed only at one point of the proof. We shall, therefore,

carry out our work for general l.c. groups, as long as possible, and

introduce the commutativity of G only at the very end.

Let SI(G) be any Segal algebra, G being a general l.c. group.

SI(G) acts in a natural way on the dual space SI(G)': for f E SI(G)

we define the operator f** on SI(G)' by the relation (cL § 11, (6)

for the notation)

(1) (g , f* *" cPS). S
for all g E SI(G).

This means that the operator f** is the adjoint of the left multiplica-

tion operator on SI(G); this is one reason for the notation. We note

that

(2 )

Another reason is provided by the following lemma which will be

essential for the proof of Theorem 1.
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LEMMA 1. Let SI(G) be a symmetric algebra. Then the

functional f*lIol'tPS in Sl(G)', obtained from tP
S

E SI(G)' by means of the

operator f** (f E SI(G», corresponds to a bounded continuous function

x f*H-tPS(x) on G (abuse of notation!) and we have

= (R f , CPS>
x S

x E G.

In other words, if f " Jl. tP
S
(x) is defined by (3), then we have

(4) f g CxLf " * tPS (x ) dx

In particular, if the functional tP
S
corresponds to ¢ E LOO(G) , i.e. if

¢S is given by

f f f(x)tP(x) dx

then (3), with tP in the place of tP
S'

agrees with the customary defini-

tion of the function f*H- ¢ as the convolution of f* with ¢.

The relation (4) has already been proved: it is another

formulation of § 11, Lemma 1, relation (9), with f and g interchanged.

The customary definition of the function f*H- tP, for tP E LOO(G) , is

which agrees with (3) when ¢S E SI(G)' corresponds to ¢ E

also § 11, (7». Thus Lemma 1 is proved.

We note that (3) gives for x = e

(G) (cf.

(5) =

Another lemma useful in the proof of Theorem 1 is given below. We

shall write tP
S

1 I (¢S E SI(G)', t «; Sl(G» to indicate that (f, tPs>s

= 0 for all f E I.

LEMMA 2.

(i) Let SI(G) be any Segal algebra; let I be a left ideal (closed

=
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or not) of Sl(G). Then ¢S 1 I holds if and only if f**¢S 1 I holds

for all f E Sl(G).

(ii) Let Sl(G) be symmetric or pseudosymmetric; let I be a right

ideal (closed or not) of Sl(G). Then ¢S 1 I holds if and only if

f " ¢S = a for all f E I.

Proof.

(i) If <fo ' S = a for each fa E I, then

= a

for all f E Sl(G), since I is a left ideal, whence

< f o = a

for all f E Sl(G), and each f
o

E I. Conversely, if this last relation

holds for each fa E I and all f E SI(8), then

< f-lflof '¢8}a 8 = 0;

for fixed fa we then take f = un' with (un)n>l in 8
1(G)

such that

which yields <fa ' ¢8} S = a for all fa E I.

(ii) Suppose <f , ¢i 8 = a for all f E I. Then, since I is a

right ideal, we have

( f -lfIo g , ¢i S = a for all g E 8 1(G),

whence

(g , = 0 for all g E 8
1<G),

that is

f* -lfIo ¢
S = o for all f E 1.

Conversely, if this last condition holds, then - working backwards -
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o for every g E SlCG).

Now Sl(G), being symmetric or pseudosymmetric, has right approximate

units (§ 8, Proposition 1, Cii), (iii)); thus we can, for fixed f E I,

put g = un' with (un)n>1 In SlCG) such that

This yields (f , ¢S> S = 0 for all f E I.

We can now prove some propositions from which Theorem 1 will

follow.

PROPOSITION 1. Let SlCG) be a symmetric Segal algebra; let IS be

a closed right ideal of SlCG). Then IS has approximate right units if

and only if the following condition CCS) is satisfied:

{

Wh e ne ve r f E IS and ¢S E SlCG)' are

that f* .. ¢S 1 IS holds, then f* * ¢S

such

= O.

Proof. Suppose IS has approximate right units and let f E IS and

¢S E Sl(G)' be such that

holds. Choose (un)n>1 in IS so that

then

(cf. Lemma 2 (ii)), or

o for each n

= o
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(cf. (2», whence for n -.. 00 res ult s :

f " '* ¢s o.

Conversely, suppose CCS) holds. Given any f E IS' consider the right

ideal

of SlCG); we want to show: f lies in the SlCG)-closure of If' Consider

any ¢S 1 If: thus, by Lemma 2, Cii) again,

o for all g

or g* x. cr- = 0 for all g E IS' whence

by the same lemma. Thus, by the assumed condition CCS), we have

f " ¢S = 0,

whence (f , ¢S) s 0 (cf. Lemma 1 and relation (5»). Since ¢S 1 If

was arbitrary, the desired result follows. Thus the proof is complete.

REMARK 1. In the case SlCG) L1CG), we simply write condition

(C) instead of (C
S);

explicitly this reads, for a closed right ideal I

of L1CG):

that f* * ¢ 1 I holds, then f* * ¢ = O.

{ Whenever f E I and ¢ E LooCG) are such
CC)

In this context we mention again that here f**¢ may be interpreted

in the customary way Ccf. Lemma 1).

PROPOSITION 2. Let Sl(G) be a symmetric Segal algebra and let I

be a closed two-sided ideal of L1CG); put IS = I n SlCG), so that IS
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is a closed, two-sided ideal of S1(G). If IS satisfies (CS)' then I

satisfies (C).

Proof. Let f E I and E Loo be such that f** 1 I. There is a

sequence (un)n>l in S1(G) such that

f *" u -+ f in L 1 (G) (n -+ (0) ;n

cf. part (i) of the proof of Theorem 1 in § 9. Now f*u lies in S1(G)
n

(since S1(G) is a left ideal in L1(G» and also in I (since I is, in

part icular, a right ideal); thus f * u lies inn

by Lemma 2, (i) (since I is also a left ideal), or

and in particular

Since f *" un E IS' we can apply (CS ) which yields

Now we also have

and for n -+ 00 we obtain

= 0,

i. e. (C) holds for 1.

f* * 0,

PROPOSITION 3. Let G be a l.c. abelian group and S1(G) a Segal

algebra on G. Let be a closed ideal of S1(G) and let I be the

closure of IS in L1(G). If I satisfies (C), then IS satisfies (CS)'

Proof. Let f E IS and E S1(G)' be such that
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There is a sequence (un)n>1 in SlCG) such that

u * f -+ f in SICG) ( n -+ 00) •
n

Now we also have, for each n,

u* *Cf** ¢ ) 1 IS'n S

by Lemma 2 (i); hence, since G is abelian,

C6)

Note that here * ¢S may be considered as a function ¢n in L00 CG)

Ccf . Lemma 1), and f**¢n lS an ordinary convolution, by the same

lemma, with f* defined in the usual way. Passing now to I, the closure

of IS in L1(G), we obtain from (6)

Since f E IS C I and *¢S E LooCG), we can apply the assumed condition

(C): it follows that, for each n,

f**(u**¢,) = 0,
n S

or

Letting here n -+ 00, we obtain

Le. CCS) holds for IS'

Proof of Theorem 1. This now results from § 9, Theorem 1 Cor Ch.

6, § 2.4), and from Propositions 1, 2, 3 above.

Theorem 1 reduces the investigation of '!f (SlCG»), for abelian G,
a

to that of 1aCL
1 CG») ; incidentally, already for abelian G not all
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closed ideals of L1(G) belong to 1 (L 1(G» if G is not compact (cf.
a

§ 17). in contrast to § 15, Theorem 1.

It is an open question whether for Segal algebras on abelian I.e.

groups G every ideal in ':/ (S 1 (G» possesses approximate units havinga

a positive Fourier transform with compact support: this would be some

analogy to § 15, Theorem 1. In the other direction, it is also an open

question how far Theorem 1 above can be extended to general 1. c.

groups.

In connection with Theorem 1 let us restate a familiar definition.

DEFINITION. Let G be a I.e. abelian group, SI(G) a Segal algebra.

A closed set E in the dual group G is said to be a Wiener-Ditkin set

for S1(G) if there is only one closed ideal IS of S1(G) such that

cosp IS = E(i.e. if E is a Wiener set for SI(G» and if this ideal

IS belongs to 1
a
( S I ( G» .

This definition agrees with that given in Ch. 2. § 5.2 (cf.

especially the Remark loco cit.).

We now have immediately the following result:

COROLLARY of Theorem 1. For any Segal algebra S1(G) the Wiener-

Ditkin sets are the same as those for L1(G).

Proof. This is a simple consequence of § 9, Theorem 1 (or Ch. 6,

2.4). and Theorem 1 above.

In particular, single points of the dual group Gare Wiener-

Ditkin sets for SI(G). It is useful to verify directly that a Segal

algebra satisfies the condition of Wiener-Ditkin: given any a E G and

f E SI(G) such that = 0, there is for every E > 0 a ,E SI(G)

such that

1 near a and II f .... ,11 S < E.
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This can be verified very simply by reduction to L'(G), as follows.

There is an h E S1(G) such that h has compact support and hex) = 1 near

a (cf. Ch . 6, 2.2 (iii). L1(G) satisfies the condition of Wiener-

Ditkin (cf. Ch. 6, § 1.4), thus there is a T 1 E L1(G) such that

T1(X) = 1 near and

a, and

IIf*TlI11·lIhIIS < E.

REMARK 2. By the Corollary above, we may now simply speak of

I Wiener-Ditkin sets in G', without any ambiguity. Likewise we may

say' Wiener set in G ': this is already familiar from Ch. 6, § 2.4.

In practice, we are thus free to consider only L1(G).

Let us finally discuss anew the injection theorem for Wiener-

Ditkin sets which was given in Ch. 7, § 4.5 and reads as follows. Let

r be a closed subgroup of the dual group Gand let E be a closed sub-

set of r. Then E is a Wiener-Ditkin set in r if and only if E is a

Wiener-Ditkin set in G.
With the tools at our disposal, we can give the proof as follows.

First, E is a Wiener set in r if and only if E is a Wiener set in G:

this is the injection theorem for Wiener sets (cf. Ch. 7, § 3.8). Now

let H C G be the orthogonal subgroup of reG, i.e. (G/H)- = r. Let I

be the (unique) closed ideal of L1(G/H) with cospectrum E; then the

(unique) closed ideal of L1(G) with cospectrum E is clearly 1(1)

- 1
(cf. Ch. 4, § 4.3). If I lies in 1a ( L

1 ( G/ H) , then TH (I) lies in

'1 (L 1(G): see § 14, Corollary 1 (with Sl(G) = L1(G) and n = 1); the
a

converse is obvious, which completes the proof.
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REMARK 3. The proof of the inlection theorem for Wiener-Ditkin

sets given here should be compared with that in Ch. 7, §§ 4.4 and 4.7.

Corollary 1 of § 14 (cf. also Lemma 2 of § 8) represents, as it were,

the 'non-commutative part' of that proof. A comparison of the two

proofs will show that by separating the non-commutative and the strictly

commutative parts one obtains a simpler and a clearer insight

into the structure. Similarly, the conditions (CS) and (C) used in the

proof of Theorem 1 above embody the non-commutative part of the criterion

of Herz-Glicksberg (Ch. 7, § 4.9).

In connection with Remark 3 the fol may be mentioned. It

often occurs that the proof of a result in classical harmonic analysis

may be divided into two parts: one that admits of an extension to non-

abelian groups and another, strictly abelian one. A clear recognition

of these two components lS of considerable interest: it leads not only

to more general results, but also to greater icity in the proofs.


