§ 16. Segal algebras on abelian groups

In § 9, Theorem 1, we established a bijective correspondence between the closed ideals of symmetric Segal algebras $S^1(G)$ and those of $L^1(G)$; if G is <u>abelian</u>, we can prove that this correspondence preserves the existence of approximate units.

THEOREM 1. Let G be any l.c. abelian group, $S^1(G)$ a Segal algebra on G. A closed ideal I_S of $S^1(G)$ belongs to $\mathcal{J}_a(S^1(G))$ if and only if the closure of I_S in $L^1(G)$ belongs to $\mathcal{J}_a(L^1(G))$ (for the notation, see § 14, (i)).

The <u>proof</u> is based on the <u>method of linear functionals</u> (§ 11) and requires some preparation; moreover, the assumption that G is abelian is needed only at one point of the proof. We shall, therefore, carry out our work for general l.c. groups, as long as possible, and introduce the commutativity of G only at the very end.

Let $S^{1}(G)$ be <u>any</u> Segal algebra, G being a general l.c. group. $S^{1}(G)$ acts in a natural way on the dual space $S^{1}(G)$ ': <u>for</u> $f \in S^{1}(G)$ <u>we define the operator</u> f^{*} <u>on</u> $S^{1}(G)$ ' <u>by the relation</u> (cf. § 11, (6) for the notation)

(1)
$$\langle g, f^* \star \phi_S \rangle_S = \langle f \star g, \phi_S \rangle_S$$
 for all $g \in S^1(G)$.

This means that the operator $f^* \star$ is the adjoint of the left multiplication operator on S¹(G); this is one reason for the notation. We note that

(2)
$$(f_1 \star f_2)^* \star \phi_S = f_2^* \star f_1^* \star \phi_S.$$

Another reason is provided by the following lemma which will be essential for the proof of Theorem 1.

LEMMA 1. Let S¹(G) be a <u>symmetric</u> Segal algebra. Then the functional $f^* \not \leftrightarrow \phi_S$ in S¹(G)', obtained from $\phi_S \in S^1(G)$ ' by means of the operator $f^* \not \leftarrow (f \in S^1(G))$, corresponds to a bounded continuous function $x \rightarrow f^* \not \leftarrow \phi_S(x)$ on G (abuse of notation!) and we have

(3)
$$f^* \star \phi_S(x) = \overline{\langle R_x f, \phi_S \rangle}_S \quad x \in G.$$

In other words, if $f^* \neq \phi_S(x)$ is <u>defined</u> by (3), then we have

(4)
$$(g, f^* \star \phi_S)_S = \int g(x) \overline{f^* \star \phi_S(x)} dx \quad g \in S^1(G).$$

In particular, if the functional $\phi_{\rm S}$ corresponds to $\phi \in L^\infty(G)$, i.e. if $\phi_{\rm S}$ is given by

$$f \rightarrow \int f(x)\overline{\phi(x)} dx$$
 $f \in S^{1}(G)$,

then (3), with ϕ in the place of ϕ_S , agrees with the customary definition of the function $f^* \star \phi$ as the convolution of f^* with ϕ .

<u>Proof</u>. The relation (4) has already been proved: it is another formulation of § 11, Lemma 1, relation (9), with f and g interchanged. The customary definition of the function $f^* \star \phi$, for $\phi \in L^{\infty}(G)$, is

$$\int f^*(y)\phi(y^{-1}x) \, dy = \int \overline{f(y)}\phi(yx) \, dy,$$

which agrees with (3) when $\phi_S \in S^1(G)$ ' corresponds to $\phi \in L^{\infty}(G)$ (cf. also § 11, (7)). Thus Lemma 1 is proved.

We note that (3) gives for x = e

(5)
$$f^* \star \phi_S(e) = \langle f, \phi_S \rangle_S$$
.

Another lemma useful in the proof of Theorem 1 is given below. We shall write $\phi_S \perp I \ (\phi_S \in S^1(G)', I \subset S^1(G))$ to indicate that $\langle f , \phi_S \rangle_S = 0$ for all $f \in I$.

LEMMA 2.

(i) Let S¹(G) be any Segal algebra; let I be a <u>left</u> ideal (closed

[§16]

or not) of S¹(G). Then $\phi_S \perp$ I holds if and only if $f^* \star \phi_S \perp$ I holds for all $f \in S^1(G)$.

(ii) Let $S^{1}(G)$ be symmetric or pseudosymmetric; let I be a right ideal (closed or not) of $S^{1}(G)$. Then $\phi_{S} \perp I$ holds if and only if $f^{*} \star \phi_{S} = 0$ for all $f \in I$.

Proof.

(i) If $\langle f_0, \phi_S \rangle_S = 0$ for each $f_0 \in I$, then

 $\langle f \star f_{o}, \phi_{S} \rangle_{S} = 0$

for all $f \in S^1(G)$, since I is a left ideal, whence

$$\langle f_0, f^* \star \phi_S \rangle_S = 0$$

for all $f \in S^1(G)$, and each $f_o \in I$. Conversely, if this last relation holds for each $f_o \in I$ and all $f \in S^1(G)$, then

$$\langle f \star f_{o}, \phi_{S} \rangle_{s} = 0;$$

for fixed f_0 we then take $f = u_n$, with $(u_n)_{n>1}$ in S¹(G) such that

$$u_n \star f_o \to f_o \text{ in } S^1(G) \quad (n \to \infty),$$

which yields $(f_0, \phi_S)_s = 0$ for all $f_0 \in I$.

(ii) Suppose $\langle f , \phi_S \rangle_S = 0$ for all $f \in I$. Then, since I is a right ideal, we have

$$\langle f \star g, \phi_{S} \rangle_{S} = 0$$
 for all $g \in S^{1}(G)$,

whence

$$\langle g, f^* \star \phi_S \rangle_S = 0$$
 for all $g \in S^1(G)$,

that is

$$f^* \star \phi_{S} = 0$$
 for all $f \in I$.

Conversely, if this last condition holds, then - working backwards -

we obtain

$$\langle f \star g, \phi_S \rangle_S = 0$$
 for every $g \in S^1(G)$.

Now S¹(G), being symmetric or pseudosymmetric, has right approximate units (§ 8, Proposition 1, (ii), (iii)); thus we can, for fixed $f \in I$, put g = u_n, with (u_n)_{n>1} in S¹(G) such that

$$f \star u_n \to f \text{ in } S^1(G) \quad (n \to \infty).$$

This yields (f , ϕ_S) = 0 for all f \in I.

We can now prove some propositions from which Theorem 1 will follow.

PROPOSITION 1. Let $S^{1}(G)$ be a <u>symmetric</u> Segal algebra; let I_{S} be a closed <u>right</u> ideal of $S^{1}(G)$. Then I_{S} has approximate right units if and only if the following <u>condition</u> (C_{S}) is satisfied:

$$(C_{\rm S}) \left\{ \begin{array}{l} \mbox{Whenever } f \in {\rm I}_{\rm S} \mbox{ and } \varphi_{\rm S} \in {\rm S}^1({\rm G})' \mbox{ are such} \\ \mbox{that } f^* \star \varphi_{\rm S} \perp {\rm I}_{\rm S} \mbox{ holds, then } f^* \star \varphi_{\rm S} = 0. \end{array} \right.$$

<u>Proof</u>. Suppose I_S has approximate right units and let $f\in I_S$ and $\phi_S\in S^1(G)'$ be such that

$$\texttt{f}^{*} \not \leftarrow \texttt{\phi}_{\texttt{S}} \perp \texttt{I}$$

holds. Choose $(u_n)_{n \ge 1}$ in I_S so that

$$f \star u_n \to f \text{ in } S^1(G) \quad (n \to \infty);$$

then

$$u_n^* \star (f^* \star \phi_S) = 0$$
 for each n

(cf. Lemma 2 (ii)), or

 $(f \star u_n)^* \star \phi_S = 0$

[\$16] - 89 -

(cf. (2)), whence for $n \rightarrow \infty$ results:

$$f^* \star \phi_c = 0.$$

Conversely, suppose (C_S) holds. Given any $f\in I_S^{},$ consider the right ideal

$$I_f = \{f \star g \mid g \in I_c\}$$

of S¹(G); we want to show: f lies in the S¹(G)-closure of I_f. Consider any $\phi_S \perp I_f$: thus, by Lemma 2, (ii) again,

$$(f \star g)^* \star \phi_{\circ} = 0$$
 for all $g \in I_{\circ}$,

or $g^* \star (f^* \star \phi_S) = 0$ for all $g \in I_S^{}$, whence

$$f^* \star \phi_S \perp I_S$$
,

by the same lemma. Thus, by the assumed condition ($C_{\rm S}$), we have

$$f^* \star \phi_{\varsigma} = 0$$
,

whence (f , ϕ_S) = 0 (cf. Lemma 1 and relation (5)). Since $\phi_S \perp I_f$ was arbitrary, the desired result follows. Thus the proof is complete.

REMARK 1. In the case $S^{1}(G) = L^{1}(G)$, we simply write <u>condition</u> (C) instead of (C_S); explicitly this reads, for a closed <u>right</u> ideal I of $L^{1}(G)$:

(C)
$$\begin{cases} \text{Whenever } f \in I \text{ and } \phi \in L^{\infty}(G) \text{ are such} \\ \text{that } f^* \star \phi \perp I \text{ holds, then } f^* \star \phi = 0. \end{cases}$$

In this context we mention again that here $f^* \star \phi$ may be interpreted in the customary way (cf. Lemma 1).

PROPOSITION 2. Let $S^{1}(G)$ be a <u>symmetric</u> Segal algebra and let I be a closed <u>two-sided</u> ideal of $L^{1}(G)$; put $I_{S} = I \cap S^{1}(G)$, so that I_{S} is a closed, two-sided ideal of $S^1(G)$. If I_S satisfies (C_S), then I satisfies (C).

<u>Proof</u>. Let $f \in I$ and $\phi \in L^{\infty}$ be such that $f^* \star \phi \perp I$. There is a sequence $(u_n)_{n \ge 1}$ in S¹(G) such that

$$f \star u_n \rightarrow f \text{ in } L^1(G) \quad (n \rightarrow \infty);$$

cf. part (i) of the proof of Theorem 1 in § 9. Now $f \star u_n$ lies in S¹(G) (since S¹(G) is a left ideal in L¹(G)) and also in I (since I is, in particular, a right ideal); thus $f \star u_n$ lies in I_S . Now we also have

$$u_n^* \star (f^* \star \phi) \perp I,$$

by Lemma 2, (i) (since I is also a left ideal), or

$$(f * u_n)^* * \phi \perp I,$$

and in particular

 $(f \star u_n)^* \star \phi \perp I_S.$

Since $f \star u_n \in I_S$, we can apply (C_S) which yields

$$(f \star u_n)^* \star \phi = 0,$$

and for $n \to \infty$ we obtain

$$f^* \star \phi = 0,$$

i.e. (C) holds for I.

PROPOSITION 3. Let G be a l.c. <u>abelian</u> group and S¹(G) a Segal algebra on G. Let I_S be a closed ideal of S¹(G) and let I be the closure of I_S in L¹(G). If I satisfies (C), then I_S satisfies (C_S).

<u>Proof</u>. Let $f \in I_S$ and $\phi_S \in S^1(G)$ ' be such that

$$f^* \star \phi_S \perp I_S.$$

There is a sequence $(u_n)_{n\geq 1}$ in S¹(G) such that

$$u_n \star f \to f \text{ in } S^1(G) \quad (n \to \infty).$$

Now we also have, for each n,

$$u_{p}^{*} \star (f^{*} \star \phi_{S}) \perp I_{S},$$

by Lemma 2 (i); hence, since G is abelian,

(6)
$$f^* \star (u_n^* \star \phi_S) \perp I_S$$
.

Note that here $u_n^* \star \phi_S$ may be considered as a function ϕ_n in $L^{\infty}(G)$ (cf. Lemma 1), and $f^* \star \phi_n$ is an ordinary convolution, by the same lemma, with f^* defined in the usual way. Passing now to I, the closure of I_S in L¹(G), we obtain from (6)

$$f^* \star (u_n^* \star \phi_S) \perp I.$$

Since $f \in I_S \subset I$ and $u_n^* \star \phi_S \in L^{\infty}(G)$, we can apply the assumed condition (C): it follows that, for each n,

$$f^* \star (u_n^* \star \phi_S) = 0,$$

or

 $(u_n \star f)^* \star \phi_S = 0.$

Letting here $n \rightarrow \infty$, we obtain

$$f^* \star \phi_S = 0$$
,

i.e. (C_S) holds for I_S .

Proof of Theorem 1. This now results from § 9, Theorem 1 (or Ch. 6, § 2.4), and from Propositions 1, 2, 3 above.

Theorem 1 reduces the investigation of $\mathcal{I}_{a}(S^{1}(G))$, for <u>abelian</u> G, to that of $\mathcal{I}_{a}(L^{1}(G))$; incidentally, already for abelian G <u>not all</u>

closed ideals of L¹(G) belong to $\mathcal{J}_{a}(L^{1}(G))$ if G is not compact (cf. § 17), in contrast to § 15, Theorem 1.

It is an open question whether for Segal algebras on <u>abelian</u> l.c. groups G every ideal in $\mathcal{J}_{a}(S^{1}(G))$ possesses approximate units having a positive Fourier transform with compact support: this would be some analogy to § 15, Theorem 1. In the other direction, it is also an open question how far Theorem 1 above can be extended to <u>general</u> l.c. groups.

In connection with Theorem 1 let us restate a familiar definition.

DEFINITION. Let G be a l.c. abelian group, S¹(G) a Segal algebra. A closed set \hat{E} in the dual group \hat{G} is said to be a <u>Wiener-Ditkin set</u> for S¹(G) if there is only one closed ideal I_S of S¹(G) such that cosp I_S = \hat{E} (i.e. if \hat{E} is a <u>Wiener set</u> for S¹(G)) and if this ideal I_S belongs to $\mathcal{J}_{a}(S^{1}(G))$.

This definition agrees with that given in Ch. 2, § 5.2 (cf. especially the Remark loc. cit.).

We now have immediately the following result:

COROLLARY of Theorem 1. For any Segal algebra $S^1(G)$ the Wiener-Ditkin sets are the same as those for $L^1(G)$.

Proof. This is a simple consequence of § 9, Theorem 1 (or Ch. 6, § 2.4), and Theorem 1 above.

In particular, single points of the dual group \hat{G} are Wiener-Ditkin sets for S¹(G). It is useful to verify directly that <u>a Segal</u> <u>algebra satisfies the condition of Wiener-Ditkin</u>: given any $\hat{a} \in \hat{G}$ and $f \in S^1(G)$ such that $\hat{f}(\hat{a}) = 0$, there is for every $\varepsilon > 0$ a $\tau \in S^1(G)$ such that

 $\hat{\tau}(\hat{x}) = 1 \operatorname{near} \hat{a}$ and $\|f \star \tau\|_{S} < \epsilon$.

- 93 -

This can be verified very simply by reduction to L'(G), as follows. There is an $h \in S^1(G)$ such that \hat{h} has compact support and $\hat{h}(\hat{x}) = 1$ near \hat{a} (cf. Ch. 6, § 2.2 (iii)). L¹(G) satisfies the condition of Wiener-Ditkin (cf. Ch. 6, § 1.4), thus there is a $\tau_1 \in L^1(G)$ such that $\hat{\tau}_1(\hat{x}) = 1$ near \hat{a} and

$$\|\mathbf{f}_{\mathbf{x}}\tau_{1}\|_{S} < \varepsilon/\|\mathbf{h}\|_{S}.$$

Let us put $\tau = \tau_1 \star h$; then $\tau \in S^1(G)$ (since $h \in S^1(G)$), $\hat{\tau}(\hat{x}) = 1$ near \hat{a} , and

$$\|f \star \tau\|_{S} \leq \|f \star \tau_{1}\|_{1} \cdot \|h\|_{S} < \varepsilon.$$

REMARK 2. By the Corollary above, we may now simply speak of '<u>Wiener-Ditkin sets in</u> \hat{G} ', without any ambiguity. Likewise we may say 'Wiener set in \hat{G} ': this is already familiar from Ch. 6, § 2.4. In practice, we are thus free to consider only $L^1(G)$.

Let us finally discuss anew the <u>injection theorem for Wiener-</u> <u>Ditkin sets</u> which was given in Ch. 7, § 4.5 and reads as follows. Let Γ be a closed subgroup of the dual group \hat{G} and let \hat{E} be a closed subset of Γ . Then \hat{E} is a Wiener-Ditkin set in Γ if and only if \hat{E} is a Wiener-Ditkin set in \hat{G} .

With the tools at our disposal, we can give the <u>proof</u> as follows. First, \hat{E} is a Wiener set in Γ if and only if \hat{E} is a Wiener set in \hat{G} : this is the injection theorem for Wiener sets (cf. Ch. 7, § 3.8). Now let $H \subset G$ be the orthogonal subgroup of $\Gamma \subset \hat{G}$, i.e. $(G/H)^{2} = \Gamma$. Let I be the (unique) closed ideal of $L^{1}(G/H)$ with cospectrum \hat{E} ; then the (unique) closed ideal of $L^{1}(G)$ with cospectrum \hat{E} is clearly $T_{H}^{-1}(I)$ (cf. Ch. 4, § 4.3). If I lies in $\mathcal{J}_{a}(L^{1}(G/H))$, then $T_{H}^{-1}(I)$ lies in $\mathcal{J}_{a}(L^{1}(G))$: see § 14, Corollary 1 (with S¹(G) = L¹(G) and n = 1); the converse is obvious, which completes the proof. [§16]

- 94 -

REMARK 3. The proof of the injection theorem for Wiener-Ditkin sets given here should be compared with that in Ch. 7, §§ 4.4 and 4.7. Corollary 1 of § 14 (cf. also Lemma 2 of § 8) represents, as it were, the 'non-commutative part' of that proof. A comparison of the two proofs will show that by separating the non-commutative and the strictly commutative parts one obtains a simpler proof and a clearer insight into the structure. Similarly, the conditions (C_S) and (C) used in the proof of Theorem 1 above embody the non-commutative part of the criterion of Herz-Glicksberg (Ch. 7, § 4.9).

In connection with Remark 3 the following may be mentioned. It often occurs that the proof of a result in classical harmonic analysis may be divided into two parts: one that admits of an extension to nonabelian groups and another, strictly abelian one. A clear recognition of these two components is of considerable interest: it leads not only to more general results, but also to greater simplicity in the proofs.