Skip to main content
Log in

Efficient spin diffusion of transverse13C magnetization

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Relatively efficient spin diffusion among unprotonated carbons with large chemical-shift anisotropies can be achieved by a13C nuclear magnetic resonance multiple-pulse sequence with a lowduty cycle of ∼5% on the13C channel, which minimizes sample heating and reduces cumulative effects of pulse imperfections. The spin diffusion occurs among transverse-magnetization isochromats, while the total transverse magnetization is a conserved quantity under the average Hamiltonian. The “flip-flop” term of the dipolar-coupling average Hamiltonian is the same as in the full dipolar coupling, i.e., its scaling factor is unity. For a sample of 40%13COO-labeled poly(vinyl acetate), with13C in ester groups accounting for 7% of all heavy atoms, magnetization equilibrates within 20 ms over a volume of (0.9 nm)3, corresponding to a molecular mass of 500 Da, while the T2 relaxation time of the total transverse magnetization is ∼40 ms. The spin diffusion coefficient is estimated asD = 3 ± 1.5 nm2/s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Henrichs P.M., Under M.: J. Magn. Reson.58, 458 (1984)

    Google Scholar 

  2. Edzes H.T., Bernards J.P.C.: J. Am. Chem. Soc.106, 1515 (1984)

    Article  Google Scholar 

  3. Robyr P., Meier B.H., Ernst R.R.: Chem. Phys. Lett.162, 417 (1989)

    Article  ADS  Google Scholar 

  4. Robyr P., Tomaselli M., Straka J., Grob-Pisano C., Suter U.W., Meier B.H., Ernst R.R.: Mol. Phys.84, 995 (1995)

    Article  ADS  Google Scholar 

  5. Tracht U., Wilhelm M., Heuer A., Feng H., Schmidt-Rohr K., Spiess H.W.: Phys. Rev. Lett.81, 2727 (1998)

    Article  ADS  Google Scholar 

  6. Heuer A., Wilhelm M., Zimmermann H., Spiess H.W.: Phys. Rev. Lett.75, 2851 (1995)

    Article  ADS  Google Scholar 

  7. Madi Z.L., Brutscher B., Schulte-Herbruggen T., Bruschweiler R., Ernst R.R.: Chem. Phys. Lett.268, 300 (1997)

    Article  ADS  Google Scholar 

  8. Schulte-Herbruggen T., Madi Z.L., Sorensen O.W., Ernst R.R.: Mol. Phys.72, 847 (1991)

    Article  ADS  Google Scholar 

  9. Waugh J.S., Huber L.M., Haeberlen U.: Phys. Rev. Lett.20, 180 (1968)

    Article  ADS  Google Scholar 

  10. Haeberlen U., Waugh J.S.: Phys. Rev.175, 453 (1968)

    Article  ADS  Google Scholar 

  11. Haeberlen U.: High Resolution NMR of Solids: Selective Averaging. Advances in Magnetic Resonance Supplement 1. New York: Academic Press 1976.

    Google Scholar 

  12. Pastawski H.M., Usaj G., Levstein P.R.: Chem. Phys. Lett.261, 329 (1996)

    Article  ADS  Google Scholar 

  13. Schmidt-Rohr K., Spiess H.W.: Multidimensional Solid-State NMR and Polymers. London: Academic Press 1994.

    Google Scholar 

  14. Van Kampen N.G.: Stochastic Processes in Physics and Chemistry. Amsterdam: North-Holland 1981.

    MATH  Google Scholar 

  15. Kentgens A.P.M., de Boer E., Veeman W.S.: J. Chem. Phys.87, 6859 (1987)

    Article  ADS  Google Scholar 

  16. Clauss J., Schmidt-Rohr K., Spiess H.W.: Acta Polymer.44, 1 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, W.G., Zimmermann, H. & Schmidt-Rohr, K. Efficient spin diffusion of transverse13C magnetization. Appl. Magn. Reson. 17, 197–209 (1999). https://doi.org/10.1007/BF03162161

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03162161

Keywords

Navigation