mixing process removed the heterogeneity that originally existed between the grab samples, but the information about individual variability was lost. For slag, the composite procedure used seems to be non-effective. (3) The number of samples taken and analysed reduced uncertainty in the estimated mean heavy metal concentrations to an acceptable level. This should also be true for indirect estimation of the mean elemental composition of municipal solid waste, since the mass flow of waste input, slag and filter ash within the measuring periods can be measured with negligible errors. It must be assumed that the elements considered are transferred only into slag and filter ash. This is true for the elements considered in this article (\rightarrow Fig. 3).

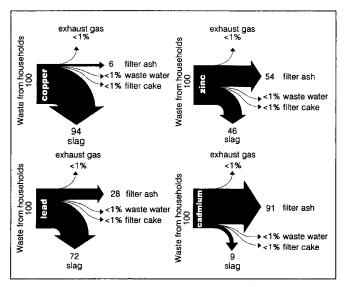


Fig. 3: Transfer of copper, zinc, lead and cadmium through a municipal solid waste incinerator (SCHACHERMAYER et al., 1994)

(4) Significant differences, especially for filter ash, between two data sets due to different incinerated waste were found within acceptable laboratory work (64 samples of analysis for filter ash, and 76 samples of analysis for slag). Since most heavy metals are transferred in filter ash and slag, this shows that indirect detection of changes in the chemical waste composition over time via these two residues of incineration is possible. To improve this instrument, sampling frequencies and sampling preparations have to be defined on a basis of empirical work. This also includes questions of grab and composite sampling. Solving this problem ensures the comparability of different measuring programs and reduces sources of misinterpretation to a minimum.

6 References

- AGENEND F.J., TRONDT L. (1990), Bilanzierung bei der Müllverbrennung am Beispiel des Müllheizkraftwerkes Essen-Karnap, VGB Kraftwerkstechnik 1/90 p. 36–42
- BAUER G. (1995), Die Stoffflußanalyse von Prozesses der Abfallwirtschaft unter Berücksichtigung der Unsicherheit, PhD Thesis (to be published), Technical University, Vienna
- BERGSTRÖM J., SUNDQUIST J. (1984), Emission control for municipal solid waste incineration in Sweden, EWPCA-ISWA, München
- BRUNNER P.H., MÖNCH H. (1986), The flux of metals through a municipal solid waste incinerator, Waste Manag. & Res. 4, p. 105-119
- BRUNNER P.H., ERNST W. (1986), Alternative Methods for the Analysis of Municipal Solid Wastes, Waste Manag. & Res. 4, p. 147-160
- BURDICK R.K., GRAYBILL F.A. (1992), Confidence Intervals on Variance Components, Statistics, textbooks and monographs, vol.127, New York
- DEAN R.B. (1987), Incineration of Municipal Waste, Academic Press, London
- EAWAG (1982), Metallgehalte in der Kehrichtschlacke und Elektrofilterasche der Kehrichtverbrennungsanlage Biel, Projekt Nr. 30-4658
- HOLCOME L. (1988), Relations of Sampling Design to Analytical Precision Estimates, In: Principles of Environmental Sampling, Ed. by KEITH L.H., American Chemical Society, p. 395–408
- REINMANN D.O. (1989), Heavy Metals in Domestic Refuse and their Distribution in Incinerator Residues, Waste Manag. & Res. 1, p. 57-62
- SAS/STAT (1990), User's Guide, Version 6, Fourth Edition, Volume 2, Cary, NC SAS Institute Inc.
- SCHACHERMAYER E., BAUER G., RITTER E., BRUNNER P.H. (1995), Messung der Güter und Stoffbilanz einer MVA, Monographien Bd. 56, UBA, Wien
- SCHAEFFER D.J., KERSTER H.W., JANARDAN K.G. (1980), Grab Versus Composite Sampling: A Primer for the Manager und Engineer, Enviro. Manag. 4, 2, p. 157-163
- SCHEFFE H. (1957), The Analysis of Variance, John Wiley & Sons, London
- WELCH B.L. (1947), The Generalization of 'Student's' problem, when Several Different Population Variances are involved, Biometrica, 34 p. 28-35

Receiving: November 27, 1995 Accepted: January 25, 1996

р. 137-1	o. 3 (19 44. Ple	995), " ase rep	Substa place t	ince F he equ	lows Throu lation on p By cal	. 142 by	y the ea	quation	Environi below. De proven		ı Regi	ion, Pa	ırt II:	Mode	lling"	by E.	Van i
					By cal	culatinį	g A∞ tł	nis can l	be proven	:							
							-	ר∞ך	-								
1 0	0	0	0	0	0	0	0		1	0	0	0	0	0	0	0	0
0 1	0	0	0	0	0	0	0		0	1	0	0	0	0	0	0	0
0 (0	0	0	0	0.045	0	0		0.24	1.24	0	0	0	0	0	D	0
).4 D	0	0	0	0	0	0.4	0		1.25	1.25	0	0		0	0	0	0
) ()	0	0	0	0	0	0	0.7	=	0.25	0.25	0	0	0	0	0	0	0
0.32 0	0	0	0	0	0	0.32	0		1	1	0	0	0	0	0	0	0
) 1	0	0	0	0	0.955	0	0.7	1	5.32	27.54	•		-	-	0	0	0
	0	0	0	0	0.045	0.6	0	1	2.11	3.11	-			-	0	0	0
0 80.0	0	0	0	0	0	0.08	0.3	1	D.36	0.36	0	0	0	0	0	0	0
))).().(1 0 4 0 32 0 1 6 0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 0 0 0 0 0 0 0 4 0 0 0 0 32 0 0 0 0 1 0 0 0 6 0 0 0 0	1 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 32 0 0 0 0 0 1 0 0 0 0 0 6 0 0 0 0 0	1 0 0 0 0 0 0 0 0 0 0 0 0.045 4 0 0 0 0 0 0 0 32 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0.955 6 0 0 0 0 0 0 0 0.045	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 0 0 0 0 0 0 0 0 0 0 0 0 0.045 0 0 4 0 0 0 0 0 0.045 0 0 4 0 0 0 0 0 0.4 0 0 32 0 0 0 0 0 0.32 0 0 0.77 5 0 0 0 0 0.955 0 0.7	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$				