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One of the continuing themes for study in algebraic 

semigroups is the interplay between multiplication and 

the various structures relating to division. Even though 

the concept of division is initially dependent upon mul- 

tiplication, the various types of division which have 

been defined for semigroups form important tools for 

the analysis of the multiplicative structure of a semi- 

group. In particular, the five equivalences of Green 

(i, R, H, D and J) have occupied a central position in 

the development of semigroup theory. Corresponding to 

the equivalences [, R, H and J are four quasi-orders which 

provide four connected global division structures on a 

semigroup. (See 3.2 below.) In [5] the author intro- 

duced the division category of a semigroup S, denoted 

D(S), and in [6] showed it to be the proper global divi- 

sion structure corresponding to the equivalence D. Then 

in [8], M. P. Loganathan presented an alternative divi- 

sion category for a semigroup. While not isomorphic 

with each other, both categories are equivalent in the 

case of a regular semigroup. From [5], [8] and [i0] 

it is clear that division categories of one type or an- 

other are indispensable in (co-)extension theory. Yet 

it seems equally clear that division categories have 

an independent significance due to their role in the 
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continuing development of global division theory for 

semigroups. 

In this paper we continue the study of the category 

~(S), but operate under the mild restriction that the in- 

volved semigroups are monoids. The prime focus is on 

the connections between properties possessed by either 

the division category or the underlying monoid. The 

first section provides some general background material 

on ~(S). The next section studies conditions on S which 

ensure that ~(S) has an initial object. This leads to 

an examination in the third section of conditions under 

which ~(S) is a quasi-order, in which case D(S) may be 

identified with the J quasi-order. This will occur pre- 

cisely when the category D(S) has powers [or copowers]. 

Exact conditions are provided for ~(S) to be identified 

with any of the L, R, or H quasi-orders. This is fol- 

lowed by a brief section on the existence of terminal 

objects in ~(S). 

In the final section we look at examples. The skel- 

eton of ~(S) is computed for some important classes of 

monoids. In the process, some connections with elemen- 

tary combinatorics are uncovered. (See 5.4-6.) While 

most examples involve inverse semigroups, a general study 

of D(S) for inverse monoids occurs in other papers. We 

refer the reader to 1.6 below for extended comments and 

references on this subject. 

The four natural quasi-orders seem to play a greater 

role in both compact semigroups and ordered semigroups. 

(However, terminology may vary. See, e.g., [2]A3.5-7.) 

This is hardly surprising. Indeed quasi-orders, like 

partial orders, may be considered primitive geometric 

structures. In this regard, the category D(S) may be 

regarded in part to be a directed graph which contributes 

to a global picture of the underlying monoid. For multi- 

plicative semilattices, all four quasi-orders coincide 

with each other and with ~(S), yielding the corresponding 

order semilattice. Indeed, much of what occurs in this 

paper and in [i] and [7] may be understood as partially 
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generalizing the fundamental correspondence between the 

algebraic concept of a semilattice (as a semigroup) and 

the geometric concept of a semilattice (as a partially 

ordered set). 

SECTION i. SOME BACKGROUND 

i.i Let S be a monoid. As in [6], D(S) denotes the 

category whose set of objects is S, whose morphisms are 

ordered triples <u,x,v>:x § uxv, and whose composition 

is given by 

<uW ruxv,v,><u,x,v> = <u,u,x,vvl>. 

Each morphism set, Hom(x,y), is thus the (possibly empty) 

set of distinct ways in which x divides y in S. 

1.2 Between morphisms in D(S), let <u,x,v> % <u',x,v'> 

stand for 

UXV = UXV I = UlXV = UVXV t , 

and denote the congruence on D(S) generated from this 

relation by ~. By the division category of a monoid S, 

denoted ~(S), is meant the quotient category D(S)/~. 

The congruence class of <u,x,v> in D(S) is a morphism 

in ~(S) to be denoted by [u,x,v]. In P(S), the morphism 

set Hom(x,y) represents the essentially distinct ways 

in which x divides y. The following theorem about iso- 

morphisms in ~(S) is a partial translation of standard 

g-class theory into the setting of ~(S). 

1.3 THEOREM. Let S be a monoid. In the division 

category, ~(S), the following hold: 

i) x ~ y if and only i__ff x~y i__nn S. 

ii) [u,x,v] is an isomorphism if and only if 

uxixRxv in S. 

iii) The class o_~f al__ll isomorphisms i__nn D(S) i__ss 

coprime: a composite o__[ff morphisms is an 

isomorphism precisely when each m0rphism 

is an isomorphism. 
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iv) Aut(x) ~ H(x), the (left) Schutzenberger 

group of H x, under the bijection [u,x,v] § 

[u]. 

v) S is stable (and thus J = 9) precisely when 

Aut(x) = End(x) for each xES. 

Proof. See [612.1, 8, 9, I0, 17 and 20. 

We now present some elementary facts about regular 

elements. 

1.4 THEOREM. Let S be a monoid and let x, yeS. Then: 

i) x i__ss regular if there exists e i__nn E(S) with 

x = e in D(S). 

ii) Let x and y b__ee regular. If x divides y, 

then there exist e, f in E(S) with e~x, f~y 

and e .> f. Moreover, x = e and y %= f in D(S) 

so that Hom(x,y) i_~s bijective with Hom(e,f). 

iii) I__n_n particular, if eeE(S), y i__{s regular and 

e divides y, then there exists f i__nn E(S)NDy 

such that e ~ f. 

Proof. (i) follows from 1.3(i). Suppose that x and y 

are regular elements with yeSxS. Pick ee~ and geDywith 

e,g cE(S). From yESxS it follows that g~SeS. Let g = 

uev. Set f = evgue. It easily follows that feE(S), fe~, 

and hence fe~y. Clearly e ~ f. Again 1.3(i) implies 

that x %= e and y = f in ~(S) and (ii) follows. 

1.5 THE FULL EMBEDDING THEOREM. Let S be a monoid 

and let eeE(S). Then the inclusion eSe C S induces a 

full embedding, @(eSe) ~ P(S). The embedding is also 

dense, and hence an equivalence o_ff categories, if and 

onl~ i_~f eeJ I. 

Proof. Let x,y E eSe and let <u,x,v>:x + y in D(S). Then 

<eue,x,eve>:x § y in D(eSe), and <u,x,v> % <eue,x,eve>. 

If <u~x,v'>:x § y also in D(S), then <u,x,v> % <u~x,v'> 

if and only if in D(eSe), <eue,x,eve> % <eu'e,x,ev'e>. 

The first part of the theorem is seen. If the embedding 

is dense, then eSeND 1 is nonempty so that eeJ I. If eeJ I, 
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then by 1.4 there exists an indempotent f in eSe~ I. 

Let u,v in S be such that uv = 1 and vu = f. Then for 

all y in S, vyuEfSf and hence vyueeSe. But VyuDy for all 

y, so by 1.3(i) we are done. 

1.6 For invers~ monoids, the above theorem has a con- 

verse. In [i], Aznar and Sevilla show that for ~ pair 

of inverse monoids, S and T, the following are equiva- 

lent: (i) ~(S) ~ D(T); (ii) D(S) and D(T) are equivalent 

categories; (iii) there exists a semigroup embedding, 

#:S + T such that D~:D(S) § ~(T) is an equivalence functor; 

and (iv) there exists eeE(T)~J~ and an isomorphism, #:S 

eTe. Thus inverse monoids are largely determined by 

their division structure. In [i] Aznar and Sevilla pro- 

vide a categorical description of the division categories 

of inverse monoids. This has been expanded upon by the 

author in [7] and used to extend the Clifford construc- 

tion of bisimple inverse monoids to arbitrary inverse 

monoids. The work of Aznar and Sevilla arose in response 

to conjectures made along these lines by the author in 

the previous unrevised version of the present paper. 

1.7 It is well known that if e,f in E(S) lie in the 

same g-class, then eSe ~ fSf. But what if e and f only 

lie in the same J-class. One can use Theorem 1.5 to find 

a relationship between eSe and fSf, and thus demonstrate 

the extent to which regular J-classes are homogeneous. 

1.8 THEOREM. Let S be a monoid and let e,f in E(S) 

lie in the same J-class. Then ~(eSe) ~ D(fSf). I_~f eeJ I, 

then D(eSe) ~ ~(S). 

Proof. Suppose that eeJ I. Let f,u,v in 91 be as in the 

previous proof. Let x § vxu be the isomorphism from S 

onto fSf such that xDvxu for all x in S. The chain 

1 ~ e ~ f induces a chain of full embeddings, ~(fSf)~ 

D(eSe)~D(S), which are all equivalence functors. Con- 

sider ascending chains of isomorphism classes: 
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DfSf.-•eSe _~S 
fxf~Wfxf~Vfxf. They all have a common cardinality, 

since by the above isomorphism and the fullness of the 

embedding, fxf D v(fxf)u, first in S and then in fSf. 

~fSf ~fSf 
Thus ID~xfl = IVv(fxf)ul = Vfx f . Hence there must exist 

an equivalence functor E:~(eSe) + D(S) which is bijective 

between isomorphism classes; that is, an isomorphism 

of small categories. For the general case, we use 

1.4(iii) to find g in E(S~%Df such that e ~ g and eJg. 

We have fSf ~ gSg so that D(fSf) ~ D(gSg). But gSg = 

g(eSe)g and eJg also in eSe. By the particular case, 

D(eSe) ~ ~(gSg) and the theorem follows. 

SECTION 2. INITIAL OBJECTS 

2.1 Recall that an initial object in a category K is 

an object I such that for any object X, Hom(I,X) has 

exactly one morphism. Initial objects, if they exist, 

are unique to within isomorphism. In D(S), the obvious 

candidate for an initial object is i. 

2.2 THEOREM. Let S be a monoid. If D(S) has an ini- 

tial Qbject, then it is unique and equals i. Moreover 

S - {i} is an ideal. I_n_n ~eneral, 1 i__ss th__~e initial object 

i__nn D(S) if and only if for all x inn S, [x,l,l] = [l,l,x]. 

Proof. Let I be an initial object of S. Then there 

exist u,vES such that [u,I,v]:I + i. Since I is initial, 

[l,I,l] = [I,l,l][u,I,v] so that [I,l,l] is an isomor- 

phism as isomorphisms are coprime. Hence ILl by 1.3(ii) 

and dually IRI so that IHI. But Aut(I) = 1 1 implies H I = 

I, i.e., 1 = I and 1 is the initial object of D(S). Let 

xeJ I. If uxv = i, then [u,x,v][x,l,l] = [i,i,i] since 

End(l) is trivial. Again [x,l,l]:l ~ x so that x, being 

initial, is equal to i. Hence JI = 1 and S - {i} is an 

ideal. The given condition is necessary. If the condi- 

tion holds and uv = x, then [u,l,v] = [u,v,l][l,l,v] = 

[u,v,l][v,l,l] = [uv,l,l] = [x,l,l]. Thus Hom(l,x) = 

{[x,l,l]}. 
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2.3 COROLLARY. If 1 is initial in D(S) and T is an 

epimorphic image of S, then 1 T is initial in D(T). 

Proof. The equality of the theorem is inherited by T. 

2.4 From this corollary it is easy to see that assert- 

ing that 1 is initial in D(S) is stronger than asserting 

that Jl = {i}. There are many epimorphic pairs S + T 

with Jl = {i} in S, but not in T. 

2.5 NOTATION. V(S) = {xeS:[x,l,l] = [l,l,x]}. Clearly 

1 is initial in D(S) if and only if V(S) = S. 

2.6 THEOREM. V(S) is a submonoid of S. Moreover, 

<E> C V(S), where <E> is the submonoid generated by 

the set of idempotents, E. 

Proof. If eeE, then <e,l,l> % <e,l,e> % <l,l,e>. 

Thus E C V. Let x,y E V. Then: 

[xy,l,l] = [x,y,l][y,l,l] = [x,y,l][l,l,y] = [x,l,y] 

= [l,x,y][x,l,l] = [l,x,y][l,l,x] = [l,l,xy]. 

Thus xy E V. Since lee and E C_V, V is a submonoid and 

the theorem follows. 

2.7 From 2.2 and 2.6 it is clear that any idempotent- 

generated monoid has 1 initial in D(S). For many 

kinds of monoids this actually characterizes the case 

for 1 being an initial object. 

2.8 THEOREM. Let X be a regular P-class. Then: 

i Xt'~V(S) = X~<E>. 

Moreover, the followin~ are equivalent: 

ii For all xeX, Hom(l,x) = {[x,l,l]}. 

iii X~V(S). 

iv) X C_<E>. 

Proof. That X~<E>~X~V is clear. So let xeX~V. Thus, 

[x,l,l] = [l,l,x]. Compose this equality with [l,x,x'] 

where x' is an inverse of x. We thus obtain [x,l,x'] = 

[l,l,xx'] = [xx',l,xx'] where xx'eX~%E. Thus by [6]3.6 

there is a path of idempotents e I , e 2, ..., e n where 

e I = xx', en = x'x, for each i s n - 1 either eiLei+ 1 
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or eiRei+ 1 and <ele2...en,l,en...e2el> = <x,l,x'> in 

D(S). Thus x~<E>, and (i) follows. Clearly (iii) and 

(iv) are now equivalent, with (ii) implying both. Assume 

(iii) and let [u,l,v]:l § x where xeX. Pick e,fEE such 

that eeR x and fei x. Then euER x and vfEL x so that eu,vfeX. 

By (iii) applied to vf we have: 

[u,l,v] = [eu,l,vf] = [eu,vf,l][l,l,vf] 

= [eu,vf,l][vf,l,l] = [euvf,l,l] 

= [x,l,l]. 

Thus (ii) follows and we are done. 

2.9 EXAMPLE. Let X be a finite set and let T(X) be 

the full transformation monoid on X. It is well known 

that the set of nonunits of T(X) is idempotent generated. 

Thus if x is a nonunit, since it is regular, we have 

Hom(l,x) = {[x,l,l]}. 1 is not initial in D(T(X)) unless 

X is a singleton, since Aut(1) ~ S(X), the full symmetric 

group on X. 

2.10 COROLLARY. Let S be a regular monoid. Then 

V(S) = <E>, and 1 is initial in D(S) iff S = <E>. 

2.11 COROLLARY. Let e ~ f in E(S). Then Hom(e,f) = 

{[f,e,f]} precisely when Df(~eSe~<E(eSe)>. 

Proof. By 1.5, all calculations of Hom(e,f) can take 

place inside D(eSe). The corollary follows from the 

theorem, since Df(~eSe is a union of regular D-classes in 

eSe. Indeed, let x belong to the intersection and let 

y be an inverse of x in S. Then eye is an inverse of 

x in eSe. 

2.12 We now turn our attention to the situation where 

S may contain nonregular D-classes. Recall that a monoid 

S is stable if inside each D-class both the L quasi-order 

coincides with the L equivalence, and the R quasi-order 

coincides with the R equivalence. For stable monoids, 

D = J. 

2.13 THEOREM. Let S be stable and assume that every 

D-class has only finitely many g-classes between it and 
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D I. Then 1 is initial in D(S) if and only if S is idem- 

potent generated. 

Proof. We need only prove one direction. Suppose 1 

is initial in D(S). If S ~ <E>, then let x{<E> be an 

element in a maximal D-class containing such elements. 

By 2.8 the class X = D x is not regular. Since [x,l,l] = 

[l,l,x] let us look at a %-chain from <x,l,l> to <l,l,x>. 

The first morphism <x,l,l> is such that xeX, but 1 is 

in a higher (in fact the highest) D-class. Suppose 

<u,l,v> arises in this chain with uEX, but v belonging 

to a higher D-class. Let <u,l,v> % <Ul,l,Vl>, the next 

morphism in the chain. From uv I = x, since S is stable 

and X nonregular, we must have v I belonging to a higher 

D-class. Thus vIE<E>. From UlV 1 = x~<E> we obtain uI~<EA 

Thus UleX. No matter how far we go in our %-chain, the 

left entry of <u,l,v> will always be in X. Thus <l,l,x> 

cannot arise, i.e., [x,l,l] ~ [l,l,x]. This is a contra- 

diction. Thus S = <E>. 

2.14 COROLLARY. If S is a finite monoid, then 1 is 

initial in D(S) if and only if S = <E>. 

2.15 EXAMPLE. We construct an example of a monoid such 

that E = {i}, the monoid is stable with infinitely many 

elements, and 1 is an initial element. Let S 1 = F(el,e 2) 

be a semigroup free on the idempotent generators {el,e2}. 

Define S 2 by 

S 2 = (S 1 - {el,e2})uF(ell,e12)UF(e21,e22). 

Here we are replacing e I and e 2 by two copies of S I. 

Multiplication on the three semigroup components is left 

alone, but each multiplication between the components is 

reduced to multiplication in the higher original compon- 

ent. Thus elle21 = ele 2 and elle2e I = ele2e I. We keep 

repeating the process. Thus if S n is generated by a 

set of 2 n idempotents, then replace each idempotent 

by a copy of F(el,e 2) and extend the multiplication from 

all components as above. Let S be the countable union 

of the Sn - E(Sn). S is an infinite semigroup without 
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idempotents. But 1 is initial in ~(SI). We need to show 

V(S I) = S I. Clearly S 1 is generated by pairs of the 

form flf2 where flf2 is the ghost of some previous idem- 

potent f. But 

[flf2,1,1] = [fllf12f21f22,1,1] 

= [fllf12f21f22,l,f21f22] 

= [fllf12,l,f21f22 ] 

= [fllf12,l,fllf12f21f22 ] 

= [l,l,fllf12f21f22 ] 

= [l,l,flf2] " 

Thus flf2cv(sl). Hence S 1 = V(S I) and we are done. 

2.16 Let Ab denote the category of abelian groups. Let 

Ab D(S) denote the abelian category of all functors from 

~(S) to Ab and natural transformations between them. 

Let Lim:Ab D(S) § Ab be the inverse limit functor. We 

say t~at-~(S) has cohomological dimension zero [or co- 

dimension zero] if Lim is an exact functor. We denote 

this by cd~(S) = 0. If 1 is initial in D(S), then LimF 

F(1) is a natural isomorphism and Lim is exact. Thus 

if 1 is initial in D(S), then cdD(S) = 0. We may ask 

whether or not the converse is true. Using a theorem 

of Laudal which characterizes small categories of codi- 

mension zero, it is not hard to see that cdD(S) = 0 if 

and only if there is a morphism ~End(1) such that for 

every pair of morphisms B,y:l § x with a common codomain 

x, 80~ = y0~. Clearly when Jl = {i}, cdD(S) = 0 if and 

only if 1 is initial in D(S), for then [i,i,i] is the 

only choice for s. Laudal's Theorem is found in [4]. 

2.17 THEOREM. Let Jl = {i}. Then 1 is initial in D(S) 

if and only if cd~(S) = 0. 

SECTION 3. WHEN D(S) IS A QUASI-ORDER 

3.1 Recall that a quasi-ordered set is a pair (S, 2) 

where S is a set and ~ is a reflexive, transitive binary 

operation defined on S. Every quasi-ordered set (S, 2) 
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may be turned into a small category with object set S 

by setting Hom(x,y) = {[~]} if x ~ y, but otherwise let- 

ting Hom(x,y) be empty. Reflexivity ensures that i x = 

[~] exists for all xES, while transitivity yields the 

X X 
composition [{] o [y] = [z]- Such a category has the 

property that each morphism set, Hom(x,y), has at most 

one morphism. This property provides a categorical def- 

inition of a quasi-ordered set. On the object set of 

any small category possessing this property, set x ~ y 

precisely when Hom(x,y) is nonempty. In practice, we 

identify a quasi-ordered set with its corresponding cate- 

gory. 

3.2 On a given monoid, S, four natural quasi-orders 

are defined: the J, L, R, and H quasi-orders. Here 

x ~ y(J) iff yESxS; x ~ y(i) iff yeSx; x ~ y(R) iff yexS; 

and x ~ y(H) iff yESx~xS. We denote the corresponding 

small categories by J(S), L(S), R(S) and H(S). As cate- 

gories, the quasi-orders L(S) and R(S) are canonically 

embedded in D(S). L(S) (R(S)) is identified with the 

subcategory of D(S) determined by choosing only mor- 

phisms of the form [u,x,l]([l,x,v]). Using either L(S) 

or R(S), there are two ways to embed H(S) into D(S). 

We identify J(S) with the maximal quasi-order image of 

D(S). Indeed, Hom(x,y) is nonempty in D(S) precisely 

when yeSxS, that is, x ~ y(J). We summarize our remarks 

as follows: 

3.3 THEOREM. Let S be a monoid. The maximal quasi- 

order image of D(S) i_~s the quasi-order ](S). If D(S) 

is a quasi-order, then D(S) = J(S). Both the quasi- 

orders, [(S) and R(S), lie (isomorphically) inside D(S). 

If i(S) = D(S), then i(S) = J(S) and H(S) = R(S). Dually, 

if R(S) = D(S), then R(S) = J(S) and H(S) = s Fi- 

nally, H(S) can be embedded i__nn ~(S) via either L(S) o__rr 

R(S). If H(S) = D(S), then D(S) and all four standard 

guasi-orders coincide. 
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3.4 COMMENT. If S is a commutative monoid, then the 

four standard quasi-orders coincide with each other, 

but need not equal D(S). Conditions such as ~(S) = J(S) 

or [(S) = ~(S) are quite strong. By comparison, they 

are much stronger than D = J or i = ~. 

3.5 We turn to examine conditions under which D(S) is 

a quasi-order. We begin by looking at some categorical 

equivalences. Recall that products of the form X X X 

in a category are called powers, while coproducts of 

the form X + X are called copowers. 

3.6 LEMMA. Let K be a category whose class of isomor- 

phisms i_~s coprime, and let X b_ee a_nn object of K. Then 

the power X X X, exists if and only if for all objects 

U of K, Hom(U,X) has at most one morphism, i n_n which case 

X may be chosen a_~s its own power. Dual remarks hold 

for the existence of the copower, X + X. 

~2 Proof. If a product diagram X ~ P + X exists, then 

there is a unique morphism A:X + P such that 

X 

X ~  ~I p ~2~.) X 

commutes. Hence i x = ~i A = ~2 A. Since isomorphisms are 

coprime in K, A, ~i and ~2 are isomorphisms with ~I = 4-I = 

~2- Hence X i X i X is also a product diagram. But this 

is equivalent to asserting that for all objects U, 

Hom(U,X) has at most one morphism. 

3.7 THEOREM. Let S be a monoid. Then the followinc 

are equivalent: 

i) D(S) = J(S). 

ii) For all xES, the power x X x exists in D(S 

iii) For all xeS, the copower x + x exists in 

D(S). 

When these conditions hold each element x is both its 
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own power and copower. Moreover H is trivial and S is 

stable. 

Proof. All but the last assertion follow from the pre- 

vious lemma. If the conditions are met, then for all 

x, End(x) = Aut(x) = {[l,x,l]}. By 1.3(iv) and (v), H is 

trivial and S is stable. 

3.8 COROLLARY. I_~f D(S) has either finite products or 

finite coproducts then D(S) = J(S). If D(S) has finite 

products, then D(S) is equivalent to an upper semilat- 

tice. If D(S) has finite coproducts, then D(S) is equiv- 

alent to a lower semilattice. If D(S) has both, then 

it is equivalent to a lattice. 

For regular monoids we have: 

3.9 THEOREM. If S i__ss regular, then the following are 

equivalent: 

i) 

ii) 

D(s) = J ( s ) .  

If e a f in E(S), then Hom(e,f) = {[f,e,f]} 

in D(S). 

iii) For each e in E(S), e is initial in D(eSe). 

iv) For each e i__n_n E(S), eSe is generated by 

E(eSe). 

Proof. Clearly (i) implies (ii). The converse is im- 

plied by 1.4(ii). The equivalence of (iii) with (iv) 

follows from 2.10. Applying 1.5 twice, we have (i) im- 

plies (iii) implies (ii). 

If a monoid S is a band, then S = E(S). In this 

case all principal monoids eSe must be idempotent gener- 

ated. 

3.10 THEOREM. Let S be a band. Then: 

i) D(S) = J(S). 

ii) D(S) is equivalent to the order semilattice, 

(s/D, ~). 

iii) D(S) has finite coproducts. 

iv) D(S) has finite products when (S/V, 2) is 

a lattice. 
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Proof. (i) follows from 3.9(iv). (ii) is a well known 

property of the J quasi-order of a band. (iii) and (iv) 

follow immediately from (ii). 

We present two classes of monoids for which ~(S) = 

J(S), but the monoid is not a band. 

3.11 EXAMPLE. Let (X, ~) be a finite, totally ordered 

set. Let S = S(X, ~) be the semigroup of all order pre- 

serving mappings on X. S is regular, all of its princi- 

pal monoids are generated by their idempotents, and thus 

D(S) = J(S). (See 5.3 below.) S is not a band whenever 

Ixl 3. 

3.12 EXAMPLE. Let E be a nonempty set. Let T be the 

monoid freely generated from E as a set of idempotent 

generators. Thus if 1 is the empty word, then E(T) = 

EU{I}. Let I be the ideal in T consisting of all words 

having at least two nonconsecutive occurrences of some 

element in E. (Thus if e,f are in E, then efe is in 

I, but not eef = ef.) Let S be the Rees quotient, S = 

T/I. Then D(S) = J(S). If IEI ~ 2, then S is not regu- 

lar. Moreover, D(S) has neither products nor coproducts. 

We now examine what happens when any of the quasi- 

order embeddings of L(S), R(S) or H(S) into D(S) become 

identifications. 

3.13 THEOREM. Let 1 be initial in D(S) and let any of 

the following conditions hold: R(S) = J(S), L(S) = J(S), 

or H(S) = ](S). Then S is a band and D(S) = J(S). 

Proof. Assume that R(S) = J(S), or equivalently, that 

L(S)~R(S). Thus for each pair u,v in S, there exists 

= u(u,v) such that uv = vu. Suppose that we are pre- 

sented: 

x = ux = uv = ulv. 

Then x = unx for all n ~ 0, and x = unv for all n ~ i. 

What is more, for u given as above, x = vu n for all 

n ~ i, and x = xu n for all n ~ 0. Thus 

U'X = UlUV = U'VU = XU = X. 
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By assumption, 1 is initial in D(S). By 2.2, for any xeS, 

[l,l,x] = [x,l,l] and there exists a chain in D(S), 

<l,l,x> = <Ul,l,Vl> % <u2,l,v2> % "-" % <un,l,vn> = <x,l,l>. 

But by what was just seen, we must have in succession: 

UlX = x, u2x = x, --., UnX = x, xx = x. 

Thus S is a band and by 3.10, D(S) = J(S). 

Recall that a band is said to be right (left) regu- 

lar, if D = R (D = L). The following corollary is an easy 

consequence of the previous two theorems (3.10, 13). 

3.14 COROLLARY. Let S be a monoid. Then: 

i) R(S) = D(S) iff S is a right regular band. 

ii) L(S) = D(S) iff S is a left regular band. 

iii) H(S) = D(S) iff S is a semilattice. 

If S is commutative, then H(S) = J(S). The next 

theorem summarizes for this case many of the previous 

results. 

3.15 THEOREM. Let S be a commutative monoid. Then 

the following are equivalent: 

i) S is a semilattice. 

ii) D(S) = J(S). 

iii) 1 is initial in D(S). 

iv) D(S) has finite coproducts. 

v) D(S) has finite copowers. 

vi) D(S) has finite powers. 

vii) cdD(S) = 0 

Proof. The equivalence of (ii), (v) and (vi) comes from 

3.7. Since H(S) = J(S), the equivalence of (i), (ii) 

and (iii) comes from 3.13, 14. By 3.10, (i) implies 

(iv), which trivially implies (v). Thus (i) through 

(vi) are mutually equivalent, with (iii) implying (vii). 

Assume (vii). Since S is commutative, End(l) = Aut(1). 

But by the discussion in 2.16, there must exist s~Aut(1) 

such that B~ = Ys for all pairs B,Y:I § x in D(S) with 

a common codomain. Upon cancelling e to obtain 8 = Y, 

(iii) must follow. 
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3.16 In the process of studying relationships between 

various global division structures, we have obtained 

characterizations of left (right) regular bands and of 

semilattices in particular. But what of arbitrary bands? 

If S is a band, then by 3.10 D(S) is a quasi-order. 

Stated otherwise, if all x in S are idempotent as ele- 

ments of a monoid, then they must also be idempotent 

as objects in the category D(S). (See 3.7.) By 3.11,12 

the converse need not hold. Notice, however, that the 

property of being a band is hereditary: if S is a band, 

then all of its submonoids T are also bands. In this 

case, the property D(S) = J(S) is inherited by all sub- 

monoids T of S. In general, the property D(S) = J(S) 

is not hereditary, and to assert that it holds and is 

hereditary for a monoid S is stronger than the simple 

assertion that ~(S) = J(S). 

In what follows, T ~i S denotes the fact that T is 

a submonoid of S. 

3.17 THEOREM. Let S be a monoid. Then the following 

are equivalent: 

i) S is a band. 

ii) If T Sl S, then D(T) = J(T). 

iii) If T ~i S, then 1 is initial in D(T). 

iv) If T ~i S, then cdD(T) = 0. 

Proof. Assume (i). If T ~i S, then T is also a band 

so that P(T) = J(T) by 3.10. Thus (ii)-(iv) must follow 

from (i). To see the converses, pick x in S and set T = 

<x>, the cyclic monoid on x which contains 1 = x 0. T is 

clearly a commutative monoid. Moreover, T is a semilat- 

tice if and only if x = x 2, in which case T = {l,x}. By 

Theorem 3.15, any of the conditions (ii)-(iv) on S will 

first force T to be a semilattice and thus force x to 

be indempotent. Since this must hold for all x in S, 

the theorem follows. 
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A result similar to Theorem 3.15 holds for inverse 

monoids. But.first a lemma. 

3.18 LEMMA. Let S be an inverse monoid and let e,feE(S). 

Then Rf(~Se is bijective with Hom(e,f) i__nn D(S) under the 

map: u § [u,e,u'], where u' is the inverse of u i_nn S. 

I__nn particular, Rf i_ss bijective with Hom(l,f), so that 

Hom(l,f) reduces to {[f,l,f]} precisely when Rf = {f}. 

Finally, the above correspondence i__ss multiplicative: 

i__f geE(S) and vERg~Sf, then vueRg~Se corresponds t__oo 

[v,f,v'][u,e,u'] in Hom(e,g). 

Proof. The first assertion is just [614.10. The remain- 

ing assertions are clear. 

3.19 THEOREM. If S is an inverse monoid, then the fol- 

I pwin~ are equivalent: 

i) S is a semilattice. 

ii) D(S) = J(S). 

iii) D(S) has finite coproducts. 

iv) D(S) has finite copowers. 

v) D(S) has finite powers. 

vi) 1 is initial in D(S). 

vii) cdD(S) = 0. 

Proof. The equivalence of (ii), (iv) and (v) again comes 

from 3.7. That (ii) implies (vi) is trivial, and by 

3.18 above, (vi) implies (i). By 3.10, (i) implies (iii) 

which trivially implies (iv). Thus (i) - (vi) are equiv- 

alent, with (vi) implying (vii). Assume (vii). Again, 

as in the previous proof, there must exist ~eEnd(1) such 

that 8e = Y~ for all pairs 8, Y:I § x with common codomain. 

Now End(l) is isomorphic with the submonoid, R I, by the 

above lemma. But the latter is right cancellative. 

(True of R 1 in any monoid.) Thus from on = iI~ we obtain 

= 1 I, so that (vi) must follow. 

Do surjective images of monoids for which the D 

category equals the J quasi-order also have this prop- 

erty? The answer is affirmative for regular monoids. 

To see this we need Howie's version of Lallement's Lemma. 
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(See [3]4.7.) 

3.20 LEMMA. Let ~:T § S be a surjective homomorphism 

where T is a regular monoid. Then S is also a regular 

monoid. If eeE(S), then there exists feE(T) such that 

~f = e. 

3.21 THEOREM. Let T be a regular monoid for which D(T)= 

J(T). Let ~:T + S be a surjective homomorphism. Then 

S is also regular and D(S) = J(S). 

Proof. By 3.20 above, S is regular. To see that ~(S) = 

J(S), by 3.9 we need only show that for each idempotent 

eeE(S) the principal monoid eSe is generated by its 

idempotents. So pick ecE(S) and xeeSe. Next, using 3.20 

again, pick feE(T) and yET such that ~f = e and ~y = x. 

Now fyf E fTf and #(fyf) = exe = x. Since D(T) = 3(T), 

by 3.9(iv) fyf E<E(fTf)>. But ~<E(fTf)>C_<E(eSe)>. Thus 

x = ~(fyf) e <E(eSe)> and we are done. 

3.22 At present, the author knows of neither proof nor 

counterexample to the irregular version of this theorem. 

The theorem clearly holds when S is a Rees quotient, 

S = T/I, where I is an ideal in T. It is the author's 

belief that further investigation into monoids and semi- 

groups for which D(S) = J(S) could yield other interest- 

ing classes of examples, and perhaps some new worthwhile 

results. 

3.23 PROBLEM. A functor F:K + K' is almost full if 

whenever Hom(x,y) is nonempty in K, the restriction 

F:Hom(x,y) + Hom(Fx,Fy) is surjective. Any functor be- 

tween quasi-orders is almost full. Using Theorem 3.9, 

it is easy to see that for S regular the following are 

equivalent: (i)D(S) = J(S); (ii)L(S)~D(S) is almost 

full; (iii)R(S)~D(S) is almost full; and (iv)H(S)~D(S) 

is almost full. If we drop the regularity assumption, 

then (i) still implies (ii) - (iv). What about the con- 

verses? 
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SECTION 4. TERMINAL OBJECTS AND THE KERNEL 

4.1 We turn our attention to the existence of terminal 

objects in ~(S). Once again the idempotents in S will 

play a prominent role. Recall that a terminal object 

in a category K is an object T such that for every object 

X in K, Hom(X,T) has exactly one morphism. Likewise 

recall that the kernel of a monoid S is the intersection 

of all its ideals and is denoted by K(S). If K(S) is 

nonempty, then it is the minimal ideal of S. Finally, 

by a zeroid of S we mean any element e in S such that 

for all x in S, 0x0 = 8. 

4.2 THEOREM. A monoid S has a zeroid if and only if 

its kernel K(S) is a nonempty rectan@ular band, in which 

case K(S) is the set of zeroids of S. I__n_n general, the 

set of zeroids of S is precisely the set of terminal 

objects of ~(S). 

Proof. If K(S) is a nonempty rectangular band, then 

all elements of K(S) satisfy the equation eSa = a. If 

8 e K(S) and x e S, then we have 0x8 = 8(0x8)8 = e and 

8 is a zeroid. If 9 is a zeroid of S then <8,8,8> 

<1,8,1>, and using% we see that uxv = 0 implies 

[ u , x , v ]  = [ 8 , e , s ] [ u , x , v ]  = [ e u , x , v s ]  

= [8u,xv8,1][l, x,ve] 

= [o,xvo,l][l,x,vs] = [8,x,v8] 

= [l,8x,ve] [8,x,l] 

= [l,8x,o][o,x,l] = [o,x,o]. 

Hence Hom(x,8) = {[8,x,8]}, and all zeroid elements of S 

are terminal objects of D(S). Finally, let T be the set 

of terminal objects of D(S). Clearly T must be a P-class 

of S as terminal objects form an isomorphism class in 

a category. If 8 e T, then since every element of S 

must divide 0, we have 8 e K(S) and hence T~ K(S). If 

x r K(S), then there exist a, a', b, b' e S such that 

axb = 8 and a'Ob' = x. Since O E T, [a,x,b][a',8,b'] = 18 . 

Since isomorphisms are coprime, [a,x,b]:x ~ O, x is a 

terminal object, and K(S) = T. Hence, for all x e T, 
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x 2 e T also and both [l,x,x] and [x,x,l] are isomorphisms. 

But by 1.3(ii) x2ixRx 2 so that xHx 2. However, Aut(x) 

HL(X) is trivial so that x = x 2 for all x ~ T. Since 

K(S) = T is a g-class of idempotents, it is a rectangular 

band. 

4.3 COROLLARY. If D(S) has terminal objects and if 

T is an epimorphic image of S, then D(T) has a terminal 

object. 

4.4 EXAMPLE. If S = T(X), the full transformation 

monoid on a set X, then D(S) has terminal objects. This 

is because the set of all constant transformations is 

a nonempty set of zeroids of S. 

SECTION 5. COMPUTATIONS OF D(S). 

5.1 In this section we compute the structure of D(S) 

for several familiar classes of monoids. When we say 

that we will compute the structure of D(S), we mean that 

we will compute D(S) to within equivalence (not iso- 

morphism) of categories. More precisely, from each iso- 

morphism class of D(S) we will pick one object (i.e., 

from each D-class of S we will choose one element). The 

full subcategory of D(S) that these choices determine 

is called a skeleton of D(S) and it is equivalent to D(S). 

Our choice of elements will be made to facilitate the 

computations. Since all are regular, it is to our ad- 

vantage to choose an idempotent from each D-class. How- 

ever, even more is possible. The kinds of semigroups 

we are studying all have a finite number of D-classes, 

and it is possible to actually choose idempotents from 

them so as to obtain a totally ordered set of idempotents 

(using the ~ ordering). Such a choice will greatly sim- 

plify the computations. 

5.2 Let T = T n be the full transformation semigroup 

on {l,2,...,n}. There are n distinct g-classes in T 

which are totally ordered by the common rank of their 

elements. (By the rank of a transformation or partial 
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transformation we mean the size of its image.) If ~ and 

8 are transformations on {l,2,...,n}, then a divides 8 

precisely when rank ~ ~ rank 8. Let en>en_l>...>el be 

a ~ cross-section of idempotents with e n = 1 and 

rank(e k) = k. By 2.9, Hom(en,e k) is trivial for k<n, 

while Hom(en,e n) = Aut(e n) is isomorphic with the full 

symmetric group on {l,2,...,n}. Now ekTe k is isomorphic 

with the full transformation semigroup on {l,2,...,k}. 

Thus by Theorem 1.5, our remarks about Hom(en,e k) apply 

to the general case Hom(ek,ej). Hom(ek,e k) is isomorphic 

with the symmetric group on {l,2,...,k}, while for j<k 

Hom(ek,e j) is trivial. Hence the skeleton of ~(T) in- 

duced by the above chain of idempotents looks like the 

following n-point category where Aut(P k) = Gk, the full 

symmetric group on {l,2,...k}, and between points we have 

only the zero morphisms. 

9 Gn ~ Gn-I Q G1 

> > �9 . �9 

Pn 0 Pn-i 0 0 P1 

5.3 Let ~n denote the semigroup of all order preserving 

transformations on the ordered set {l<2<...<n}. Rn is 

a band when n = 1,2, but not when n ~ 3. In general, 

~n is generated from its idempotents. This is clear 

for n ~ 2. Assume it for n = l,...,m - 1 and let ~e~ m. 

Since # is order preserving there must exist a fixed 

point k such that #(k) = k. Let ~-l(k) = {i + 1 .... , j - 

i} where i + 1 ~ k ~ j - i. Set I = max(i,~(i)) and 

J = min(j,~(j)). Then I + 1 ~ k s J - i. Now # factors 

in Rm as ~ = 8y6 where 6 pointwise fixes {1,2, .... i,j, .... 

m}, but sends {i + 1 .... ,j - I} to k; ~ pointwise fixes 

{l,...,J - i}, but behaves like # on {J,...,m}; while 

8 pointwise fixes {I + l,...,m}, but acts like ~ on 

{l,...,I}. Clearly 6 = 62 . By the induction hypothesis 

(on lower cases n = I, m + 1 - J), both ~ and y are pro- 

ducts of idempotents in ~m and hence so is ~. Hence for 

all n, ~n = <E(~n)>- It is not hard to show that for 

all e in E(Rn) , aflne ~ Rp where p is the rank of s as a 

]09 



LEECH 

transformation. We also leave to the reader the easy 

verification that Rn is regular. Thus Rn is a regular 

monoid, all of whose principal monoids ~Rn ~ are generated 

by their idempotents. By 3.9, V(R n) = J(~n)- 

5.4 Let I = I n be the symmetric inverse semigroup on 

{l,...,n}. Since the empty transformation is allowed, 

there are actually n+l D-classes, again totally ordered 

by division. For 0 ~ k ~ n let e k be the identity trans- 

formation on {l,...,k}. The ek's are a totally ordered 

set of idempotents which form a P-class cross section. 

e n = i, while e 0 is the empty bijection. Let k ~ j. 

By Lemma 3.18, the morphism set Hom(ek,e j) may be la- 

belled by Rej~Se k, the set of all partial bijections 

from within {i, .... k} onto {l,...,j}, and this labelling 

is multiplicative. But the latter set may be identified 

with Perm(k,j), the set of all (partial) permutations 
( 

on  { 1 , . . . , k }  t a k e n  j a t  a t i m e .  F o r  e x a m p l e ,  ~ i n  

Re2( '~Se  4 i s  i d e n t i f i e d  w i t h  32 i n  P e r m ( 4 , 2 ) .  To d i s -  

t i n g u i s h  32 i n  P e r m ( 4 , 2 )  f r o m  32 i n  P e r m ( 7 , 2 ) ,  we s u b -  

script the k to get 324 distinct from 327 . Under this 

identification, the skeleton of ~(1) obtained from the 

above chain of idempotents is isomorphic with the Full 

Permutation Category on {l,...,n}, denoted Perm n. The 

object class is {0,1 ..... n} and for k,j ~ n, Hom(k,j) = 

Perm(k,j) which is empty unless k ~ j. The composition 

is the natural composition of such permutations described 

by the following example. Let 24535 e Perm(5,4) and 

324 E Perm(4,2). Then (324)(24535 ) = 545 e Perm(5,2), 

because 54 is the third entry in 2453 followed by the 

second entry in 2453. Returning to 7, this corresponds 

to the multiplication, _4(~ ~)(~ 
4 
2 3 4 ) =  

5 3 

5.5 Let 0 = 0 n be the inverse semigroup of all order 

preserving partial bijections on {i ..... n}. 0 is a sub- 

monoid of I and forms an H-class cross section of 7. 

As in 5.4 we let the ek,0 s k ~ n, form a g-class cross 

section of 0. The induced skeleton of 9(0) must be 
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isomorphic with a subcategory of Perm n. This subcategory 

is in turn isomorphic with the Full Combination Category 

on {i, .... n}, denoted Comb n. The object class is again 

{0,1 .... ,n}, while Hom(k,j) in Comb n equals Comb(k,j), 

the set of all combinations of {i ..... k} taken j at a 

time. That is, Comb(k,j) is the set of all subsets of 

{i .... ,k} having exactly j elements. Again, to avoid 

ambiguity we will subscript the domain k. The composi- 

tion of combinations is the natural one, illustrated 

as follows. Let {2,4,5,7} 8 e Comb(8,4) and {2,3} 4 E 

Comb(4,2). Then {2,3}4{2,4,5,7} 8 = {4,5} 8 because 4 and 

5 are the second and third smallest numbers that can 

be drawn out of {2,4,5,7}. The reason why Comb n must 

be a copy of the skeleton of ~(0) is that combinations 

correspond bijectively with order preserving permuta- 

tions. Thus, e.g., {2,3} 4 corresponds to 234 . In this 

way Comb n becomes isomorphic with a subcategory of Perm n, 

namely the category of all order preserving (partial) 

permutations on {l,...,n}. But this is precisely the 

skeleton that we would expect to find upon restricting 

our attention to those partial bijections in I which 

preserve the natural ordering; that is, to partial bi- 

jections in 0. 

Let k ~ j. Recall that the permutation symbol 

P(k,j) denotes the number of permutations of k objects 

taken j at a time, and that this number is given by. 

P ( k , j )  = k ! / ( k - j ) ! .  L i k e w i s e  t h e  b i n o m i a l  s~ 'mbol  j 

r e p r e s e n t s  t h e  n u m b e r  P ( k , j ) / j !  w h i c h  c o u n t s  t h e  n u m b e r  

o f  c o m b i n a t i o n s  o f  k o b j e c t s  t a k e n  j a t  a t i m e .  U s i n g  

1 . 4 ( i i ) ,  we o b t a i n  f r o m  5 . 4  and  5 . 5  t h e  f o I l o w i n g  r e s u l t .  

5.6 THEOREM. Let I n be the symmetric inverse semigroup 

o_nn {l,2,...,n}, and let 0 n be the submonoid of all par- 

tial bijections which preserve the natural ordering o__nn 

{l,2,...,n}. Let ~ and ~ b_ee partial bijeGtions i__n I n with 

rank ~ = k, rank ~ = j and k ~ j. Then Hom(~,~) i__qn ~(I n) 

has P(k,j) distinct morphisms. If both ~ and ~ lie in 

On, then Hom(#,~) i__nn D(0 n) has (~) distinct morphisms. 
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5.7 Let B = {ymxn:m,n ~ 0} be the bicyclic semigroup, 

where multiplication is juxtaposition followed by apply- 

ing the identity, xy = i, to reduce the middle. Thus, 

y3x2yx4 = y3x5. B is a bisimple inverse monoid. Let d 

be a positive integer. Then B d is the submonoid of B 

characterized by the condition: ymxn e B d iff m 

n(mod d). B d is a simple inverse monoid with d D-classes. 

The idempotents l,yx,...,yd-lx d-I form a totally ordered 

P-class cross section. For 0 ~ m,n < d, 

Hom(ymxm,ynx n) ~ Rynxn~Symxm = {ynxn+kd : n + kd ~ m} 

by 3.18, with composition of morphisms corresponding to 

multiplication in 8 d. In particular, End(ymx m) is free 

and cyclic on the endomorphism corresponding to ymxm+d. 

But even more is true. Let 9 o be the skeleton determined 

by this chain of idempotents. D O is free on the graph 

which is a directed d-gon, denoted Zd, whose vertices we 

label l,yx,...,yd-lx d-l. The following diagram is Z5- 

y x  

i ~  y2x2 

y4x4 y3x3 

In this graph, the directed path from y2x2 to y3x3 in 

which the entire graph is covered twice before stopping 

at y3x3 corresponds to the morphism labelled by y3x13. 

In general, the morphism from ymxm to ynxn labelled by 

ynxn+kd corresponds to the directed path of length 

n + kd - m from ymxm to ynxn. 

5.8 Let S be a regular ~-semigroup with a nonempty min- 

imal ideal. Suppose further that H is trivial. By [9], 

S is isomorphic with the disjoint union of a finite chain 

of idempotents {el> ... >ep} and a generalized bicyclic 
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semigroup B d, with multiplication between the two semi- 

groups given by: 

ymxnek = ymxn = ekymxn. 

If p = 0, then S ~ B d. We identify S with this union. 

Choose {el,...,ep,l,yx,...,yd-lx d-l} to be a V-class 

cross section of totally ordered idempotents. We obtain 

as a skeleton for D(S) a category D o which is free on 

the directed graph F obtained by adjoining a directed 

chain to Zd, the graph of 5.7, at i. 

low, F is given for p = 3, d = 6. 

el e 2 e 3 

In the diagram be- 

yx Y 2x2 

I/~~,> ~ Y 3x3 

y5x5 y4x4 

5.9 Let us drop the above assumption that H be trivial. 

So let S be a regular ~-semigroup with a nonempty minimal 

ideal. It follows from [9] that H is a congruence on 

and that there exists a submonoid S of the type described 

in 5.8 above, such that S forms a complete H-class cross 

section in S. In the terminology of [5], S is a split 

H-coextension of S. Conversely, every split H-coexten- 

sion of S is a regular ~-semigroup with nonempty minimal 

ideal. According to [5]4.2 each such coextension can 

be isomorphically described as a generalized semidirect 

product, SxF, where F is a group valued functor over 

D(S), F:D(S) + Gr. (Since S is regular, the covering 

equalities in [5]4.2 are automatically satisfied.) But 

F itself is determined (to within natural equivalence) 

by its restriction FID o where D o is the skeleton of D(S) 

given in 5.8. Moreover, since V o is free on the directed 

graph F also given in 5.8, the restriction FID O is com- 

pletely determined by the further restriction FIF, which 

is simply a group valued diagram over the directed graph 
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F. Backing up, if we are presented a group valued dia- 

gram over r, G:F § G_[r, then G uniquely determines a group 

valued functor Fo:~ O § G_~r such that FolF = G, and F O it- 

self must extend to a functor F:D(S) § Gr which is unique 

to within natural equivalence. Thus every split H- 

coextension of S is uniquely determined to within isomor- 

phism by a group valued diagram over F. Using the con- 

struction found in [7], it is clear that the structure 

of S itself is determined by the free category on F, 

namely 9 0 . Thus the structure of S is determined by F, 

while the structure of any coextension SxF is determined 

from FIF. The group diagram FIF may be viewed as a con- 

junction of two group diagrams at the common vertex i. 

One diagram lies over the stem of F and corresponds to 

the finite chain of groups given in [9]2.7. It both 

describes the complement of the minimal ideal and tells 

how it is attached to the minimal ideal. The second 

diagram FIz determines the structure of the minimal ideal 

and corresponds to the cycle of groups encountered in 

the third section of [9]. An efficient construction 

of the minimal ideal from FIZ is provided by the Bruck- 

Reilly construction as given in that section as well 

as in [3]V7. 

5.10 PROBLEM. Let S be a free inverse monoid. What 

does a skeleton of D(S) look like? 

5.11 We construct a bisimple monoid S for which cd@(S) = 

0, but 1 is not an initial object in P(S). Let S be de- 

fined on generators {a,b,c,d} and subject to relations 

ab = i, cd = i, cb = i, and ad = b. Given the first 

relation, the last relation implies a2d = i. Both sub- 

monoids, <{a,c}> and <{b,d}>, are freely generated and 

thus noncommutative. Moreover, R 1 = <{a,c} >, i I = <{b,d}> 

and RILI~RIk.)L I, so that S = LIRI and the monoid is bi- 

simple. Hence End(l) is a skeleton of ~(S). We claim 

that End(l) is isomorphic with the semilattice, 10, from 

which everything asserted about D(S) must follow. To 

begin, 
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[a,l,b] = [c,l,b] = [c,l,d] = [a2,l,d] = [a2,l,b 2] 

so that [a,l,b] is idempotent. Now take [A,I,B] in 

End(l) with A E R I, B e L 1 and length A = n ~ I. Then 

[A,I,B] = [A,I,b n] = [an,l,b n] = [a,l,b] n = [a,l,b]. 

Thus End(l) = {[l,l,l],[a,l,b]} and the claim is verified. 

5.12 PROBLEM. In this section we have encountered var- 

ious endomo~phism monoids, End(x). What general facts 

must hold about endomorphism monoids? For example, 

Jl = HI must hold by 1.3. What kinds of monoids can be 

endomorphism monoids in some division category D(S)? 
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