Skip to main content
Log in

Picard potentials and Hill's equation on a torus

  • Published:
Acta Mathematica

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Abramowitz, M. &Stegun, I. A.,Handbook of Mathematical Functions. Dover, New York, 1972.

    MATH  Google Scholar 

  2. Airault, H., McKean, H. P. &Moser, J., Rational and elliptic solutions of the Korteweg-de Vries equation and a related many-body problem.Comm. Pure Appl. Math., 30 (1977), 95–148.

    MathSciNet  MATH  Google Scholar 

  3. Akhiezer, N. I.,Elements of the Theory of Elliptic Functions. Amer. Math. Soc., Providence, RI, 1990.

    MATH  Google Scholar 

  4. Al'ber, S. I., Investigation of equations of Korteweg-de Vries type by the method of recurrence relations.J. London Math. Soc., 19 (1979), 467–480.

    MathSciNet  MATH  Google Scholar 

  5. Arscott, F. M.,Periodic Differential Equations. MacMillan, New York, 1964.

    MATH  Google Scholar 

  6. Babich, M. V., Bobenko, A. I. &Matveev, V. B., Reductions of Riemann thetafunctions of genusg to theta-functions of lower genus, and symmetries of algebraic curves.Soviet Math. Dokl., 28 (1983), 304–308.

    MATH  Google Scholar 

  7. — Solutions of nonlinear equations integrable in Jacobi theta functions by the method of the inverse problem, and symmetries of algebraic curves.Math. USSR-Izv., 26 (1986), 479–496.

    Article  MATH  Google Scholar 

  8. Belokolos, E. D., Bobenko, A. I., Enol'skii, V. Z., Its, A. R. &Matveev, V. B.,Algebro-Geometric Approach to Nonlinear Integrable Equations. Springer-Verlag, Berlin, 1994.

    MATH  Google Scholar 

  9. Belokolos, E. D., Bobenko, A. I., Matveev, V. B. &Enol'skii, V. Z., Algebraic-geometric principles of superposition of finite-zone solutions of integrable non-linear equations.Russian Math. Surveys, 41:2 (1986), 1–49.

    Article  MathSciNet  MATH  Google Scholar 

  10. Belokolos, E. D. &Enol'skii, V. Z., Verdier elliptic solitons and the Weierstrass theory of reduction.Functional Anal. Appl., 23 (1989), 46–47.

    Article  MathSciNet  MATH  Google Scholar 

  11. — Reduction of theta functions and elliptic finite-gap potentials.Acta Appl. Math., 36 (1994), 87–117.

    Article  MathSciNet  MATH  Google Scholar 

  12. Birnir, B., Complex Hill's equation and the complex periodic Korteweg-de Vries equations.Comm. Pure Appl. Math., 39 (1986), 1–49.

    MathSciNet  MATH  Google Scholar 

  13. —, Singularities of the complex Korteweg-de Vries flows.Comm. Pure Appl. Math., 39 (1986), 283–305.

    MathSciNet  MATH  Google Scholar 

  14. Burchnall, J. L. &Chaundy, T. W., Commutative ordinary differential operators.Proc. London Math. Soc. (2), 21 (1923), 420–440.

    Google Scholar 

  15. — Commutative ordinary differential operators.Proc. Roy. Soc. London Ser. A, 118 (1928) 557–583.

    Google Scholar 

  16. Burkhardt, H.,Elliptische Funktionen, 2nd edition. Verlag von Veit, Leipzig, 1906.

    MATH  Google Scholar 

  17. Calogero, F., Exactly solvable one-dimensional many-body problems.Lett. Nuovo Cimento, 13 (1975), 411–416.

    MathSciNet  Google Scholar 

  18. Chudnovsky, D. V., Meromorphic solutions of nonlinear partial differential equations and many-particle completely integrable systems.J. Math. Phys., 20 (1979), 2416–2422.

    Article  MathSciNet  MATH  Google Scholar 

  19. Dickey, L. A.,Soliton Equations and Hamiltonian Systems. World Scientific, Singapore, 1991.

    MATH  Google Scholar 

  20. Dubrovin, B. A., Periodic problems for the Korteweg-de Vries equation in the class of finite-gap potentials.Functional Anal. Appl., 9 (1975), 215–223.

    Article  Google Scholar 

  21. —, Theta functions and non-linear equations.Russian Math. Surveys, 36:2 (1981), 11–92.

    Article  MathSciNet  Google Scholar 

  22. Dubrovin, B. A. &Novikov, S. P., Periodic and conditionally periodic analogs of the many-soliton solutions of the Korteweg-de Vries equation.Soviet Phys. JETP, 40 (1975), 1058–1063.

    MathSciNet  Google Scholar 

  23. Enol'skii, V. Z., On the solutions in elliptic functions of integrable nonlinear equations.Phys. Lett. A, 96 (1983), 327–330.

    Article  MathSciNet  Google Scholar 

  24. —, On the two-gap Lamé potentials and elliptic solutions of the Kovalevskaja problem connected with them.Phys. Lett. A., 100 (1984), 463–466.

    Article  MathSciNet  Google Scholar 

  25. — On solutions in elliptic functions of integrable nonlinear equations associated with two-zone Lamé potentials.Soviet Math. Dokl., 30 (1984), 394–397.

    Google Scholar 

  26. Enol'skii, V. Z. &Kostov, N. A. On the geometry of elliptic solitions.Acta Appl. Math., 36 (1994), 57–86.

    Article  MathSciNet  MATH  Google Scholar 

  27. Floquet, G., Sur les équations différentielles linéaires à coefficients doublement périodiques.C. R. Acad. Sci. Paris, 98 (1884), 38–39 82–85.

    Google Scholar 

  28. —, Sur les équations différentielles linéaires à coefficients doublement périodiques.Ann. Sci. École Norm. Sup. (3), 1 (1884), 181–238.

    MathSciNet  Google Scholar 

  29. —, Addition à un mémoire sur les équations différentielles linéaires.Ann. Sci. École Norm. Sup., (3), 1 (1884), 405–408.

    MathSciNet  Google Scholar 

  30. Gasymov, M. G., Spectral analysis of a class of second-order non-self-adjoint differential operators.Functional Anal. Appl., 14 (1980), 11–15.

    MATH  Google Scholar 

  31. —, Spectral analysis of a class of ordinary differential operators with periodic coefficients.Soviet Math. Dokl., 21 (1980), 718–721.

    MATH  Google Scholar 

  32. Gel'fand, I. M. &Dikii, L. A., Asymptotic behaviour of the resolvent of Sturm-Liouville equations and the algebra of the Korteweg-de Vries equations.Russian Math. Surveys, 30:5 (1975), 77–113.

    Article  MathSciNet  MATH  Google Scholar 

  33. —, Integrable nonlinear equations and the Liouville theorem.Functional Anal. Appl., 13 (1979), 6–15.

    Article  MATH  Google Scholar 

  34. Gesztesy, F., On the modified Korteweg-de Vries equation, inDifferential Equations with Applications in Biology, Physics, and Engineering (J. A. Goldstein, F. Kappel, and W. Schappacher, eds.), pp. 139–183. Marcel Dekker, New York, 1991.

    Google Scholar 

  35. Gesztesy, F. &Weikard, R., Spectral deformations and soliton equations, inDifferential Equations with Applications to Mathematical Physics (W. F. Ames, E. M. Harrell II, and J. V. Herod, eds.), pp. 101–139. Academic Press, Boston, 1993.

    Google Scholar 

  36. —, Lamé potentials and the stationary (m)KdV hierarchy.Math. Nachr. 176 (1995), 73–91.

    MathSciNet  MATH  Google Scholar 

  37. —, Trelbich-Verdier potentials and the stationary (m)KdV hierarchy.Math. Z., 219 (1995), 451–476.

    MathSciNet  MATH  Google Scholar 

  38. —, On Picard potentials.Differential Integral Equations, 8 (1995), 1453–1476.

    MathSciNet  MATH  Google Scholar 

  39. -Gesztesy, F., Floquet theory revisited. To appear inDifferential Equations and Mathematical Physics (I. Knowles, ed.). International Press, Boston.

  40. Guillemin, V. &Uribe, A. Hardy functions and the inverse spectral method.Comm. Partial Differential Equations, 8 (1983), 1455–1474.

    MathSciNet  MATH  Google Scholar 

  41. Halphen, G.-H.,Traité des fonctions elliptiques, tome 2. Gauthier-Villars, Paris, 1888.

    Google Scholar 

  42. Hermite, C.,Oeuvres, tome 3. Gauthier-Villars, Paris, 1912.

    MATH  Google Scholar 

  43. Ince, E. L., Further investigations into the periodic Lamé functions.Proc. Roy. Soc. Edinburgh, 60 (1940), 83–99.

    MathSciNet  MATH  Google Scholar 

  44. —,Ordinary Differential Equations, Dover, New York, 1956.

    Google Scholar 

  45. Its, A. R. &Enol'skii, V. Z., Dynamics of the Calogero-Moser system and the reduction of hyperelliptic integrals to elliptic integrals.Functional Anal. Appl., 20 (1986), 62–64.

    Article  MathSciNet  MATH  Google Scholar 

  46. Its, A. R. &Matveev, V. B., Schrödinger operators with finite-gap spectrum andN-soliton solutions of the Korteweg-de Vries equation.Theoret. and Math. Phys., 23 (1975), 343–355.

    Article  MathSciNet  Google Scholar 

  47. Kostov, N. A. &Enol'skii, V. Z., Spectral characteristics of elliptic solitons.Math. Notes, 53 (1993), 287–293.

    Article  MathSciNet  Google Scholar 

  48. Krause, M.,Theorie der doppeltperiodischen Funktionen einer veränderlichen Grösse, Vol. 2. Teubner, Leipzig, 1897.

    Google Scholar 

  49. Krichever, I. M., Integration of nonlinear equations by the methods of algebraic geometry.Functional Anal. Appl., 11 (1977), 12–26.

    Article  MATH  Google Scholar 

  50. —, Methods of algebraic geometry in the theory of non-linear equations.Russian Math. Surveys, 32:6 (1977), 185–213.

    Article  MATH  Google Scholar 

  51. —, Elliptic solutions of the Kadomtsev-Petviashvili equation and integrable systems of particles.Functional Anal. Appl., 14 (1980), 282–290.

    Article  Google Scholar 

  52. —, Nonlinear equations and elliptic curves.Revs. Sci. Technology, 23 (1983), 51–90.

    Google Scholar 

  53. —, Elliptic solutions of nonlinear integrable equations and related topics.Acta Appl. Math., 36 (1994), 7–25.

    Article  MathSciNet  MATH  Google Scholar 

  54. McKean, H. P. &Moerbeke, P. van, The spectrum of Hill's equation.Invent. Math., 30 (1975), 217–274.

    Article  MathSciNet  MATH  Google Scholar 

  55. Mittag-Leffler, G., Sur les équations différentielles linéaires à coefficients doublement périodiques.C. R. Acad. Sci. Paris, 90 (1880), 299–300.

    Google Scholar 

  56. Moser, J.,Integrable Hamiltonian Systems and Spectral Theory. Lezioni Fermiani, Academia Nazionale dei Lincei, Scuola Normale Superiore, Pisa, 1981. (Preprint, ETH, Zürich, 1982.)

    MATH  Google Scholar 

  57. —, Three integrable Hamiltonian systems connected with isospectral deformations.Adv. Math., 16 (1975), 197–220.

    Article  MATH  Google Scholar 

  58. Novikov, S. P., The periodic problem for the Korteweg-de Vries equation.Functional Anal. Appl., 8 (1974), 236–246.

    Article  MATH  Google Scholar 

  59. Novikov, S. P., Manakov, S. V., Pitaevskii, L. P. &Zakharov, V. E. Theory of Solitons, Consultants Bureau, New York, 1984.

    MATH  Google Scholar 

  60. Pastur, L. A. &Tkachenko, V. A., Spectral theory of Schrödinger operators with periodic complex-valued potentials.Functional Anal. Appl., 22 (1988), 156–158.

    Article  MathSciNet  MATH  Google Scholar 

  61. —, An inverse problem for a class of one-dimensional Schrödinger operators with a complex periodic potential.Math. USSR-Izv., 37 (1991), 611–629.

    Article  MathSciNet  Google Scholar 

  62. —, Geometry of the spectrum of the one-dimensional Schrödinger equation with a periodic complex-valued potential.Math. Notes, 50 (1991), 1045–1050.

    MathSciNet  Google Scholar 

  63. Picard, E., Sur une généralisation des fonctions périodiques et sur certaines équations différentielles linéaires.C. R. Acad. Sci. Paris, 89 (1879), 140–144.

    Google Scholar 

  64. —, Sur une classe d'équations différentielles linéaires.C. R. Acad. Sci. Paris, 90 (1980), 128–131.

    Google Scholar 

  65. —, Sur les équations différentielles linéaires à coefficients doublement périodiques.J. Reine Angew. Math., 90 (1881), 281–302.

    Google Scholar 

  66. Rofe-Beketov, F. S., The spectrum of non-selfadjoint differential operators with periodic coefficients.Soviet Math. Dokl., 4 (1963), 1563–1566.

    Google Scholar 

  67. Segal, G. &Wilson, G., Loop groups and equations of KdV type.Inst. Hautes Études Sci. Publ. Math., 61 (1985), 5–65.

    MathSciNet  MATH  Google Scholar 

  68. Smirnov, A. O., Elliptic solutions of the Korteweg-de Vries equation.Math. Notes, 45 (1989), 476–481.

    MathSciNet  MATH  Google Scholar 

  69. —, Finite-gap elliptic solutions of the KdV equation.Acta Appl. Math., 36 (1994), 125–166.

    Article  MathSciNet  MATH  Google Scholar 

  70. Taimanov, I. A., Elliptic solutions of nonlinear equations.Theoret. and Math. Phys., 84 (1990), 700–706.

    Article  MathSciNet  Google Scholar 

  71. —, On the two-gap elliptic potentials.Acta Appl. Math., 36 (1994), 119–124.

    Article  MathSciNet  MATH  Google Scholar 

  72. Tkachenko, V. A., Discriminants and generic spectra of non-selfadjoint Hill's operators.Adv. Soviet Math., 19 (1994), 41–71.

    MathSciNet  Google Scholar 

  73. Treibich, A., New elliptic potentials.Acta Appl. Math., 36 (1994), 27–48.

    Article  MathSciNet  MATH  Google Scholar 

  74. Treibich, A. &Verdier, J.-L., Solitons elliptiques, inThe Grothendieck Festschrift, Vol. III (P. Cartier, L. Illusie, N. M. Katz, G. Laumon, Y. Manin, and K. A. Ribet, eds.), pp. 437–480. Birkhäuser, Basel, 1990.

    Google Scholar 

  75. —, Revêtements tangentiels et sommes de 4 nombres triangulaires.C. R. Acad. Sci. Paris Sér. I Math., 311 (1990), 51–54.

    MathSciNet  MATH  Google Scholar 

  76. —, Revêtements exceptionnels et sommes de 4 nombres triangulaires.Duke Math. J., 68 (1992), 217–236.

    Article  MathSciNet  MATH  Google Scholar 

  77. Turbiner, A. V., Lamé equation, sl(2) algebra and isospectral deformations.J. Phys. A, 22 (1989), L1-L3.

    Article  MathSciNet  Google Scholar 

  78. Verdier, J.-L., New elliptic solitons, inAlgebraic Analysis (M. Kashiwara and T. Kawai, eds.), pp. 901–910. Academic Press, Boston, 1988.

    Google Scholar 

  79. Ward, R. S., The Nahm equations, finite-gap potentials and Lamé functions.J. Phys. A, 20 (1987), 2679–2683.

    Article  MathSciNet  MATH  Google Scholar 

  80. Whittaker, E. T. &Watson, G. N.,A Course of Modern Analysis. Cambridge Univ. Press, Cambridge, 1986.

    Google Scholar 

  81. Wilson, G., Commuting flows and conservation laws for Lax equations.Math. Proc. Cambridge Philos. Soc., 86 (1979), 131–143.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Based upon work supported by the National Science Foundation under Grant DMS-9401816.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gesztesy, F., Weikard, R. Picard potentials and Hill's equation on a torus. Acta Math. 176, 73–107 (1996). https://doi.org/10.1007/BF02547336

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02547336

Keywords

Navigation