Skip to main content
Log in

HPO 2−4 Content in enamel and artificial carious lesions

  • Original Papers
  • Published:
Calcified Tissue Research Aims and scope Submit manuscript

Abstract

The HPO 2−4 and CO 2−3 content was determined in sound enamel and in material collected from artificially produced carious lesions. The method described shows that the HPO 2−4 content can be determined from the 875 cm−1 infrared absorption band if correction for the CO 2−3 contribution are made. The I. R. spectra show that the HPO 2−4 content in sound human or bovine enamel is about 5% by weight. In artificially produced carious lesions (pH=4.0), the HPO 2−4 content is in the order of 15 wt%. Most likely, the HPO 2−4 ions in sound and carious enamel have a different environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arends, J., Davidson, C. L.: D.T.A.-T.G.A. investigations on sound and carious enamel. Calcif. Tiss. Res (in press)

  • Bell, L. C., Posner, A. M., Quirk, J. P.: The point of zero charge of hydroxyapatite and fluoroapatite in aqueous solutions. J. Colloid and Interf. Sci.42, 250–261 (1973)

    Article  CAS  Google Scholar 

  • Berry, E. E.: Structure and Composition of some Ca deficient Apatites. J. Inorg. Nucl. Chem.29, 317–327 (1967)

    Article  CAS  Google Scholar 

  • Berry, E. E., Braddiel, C. B.: The Infra-Red Spectrum of Brushite. Spectrochim. Acta23, 2089–2093 (1967)

    Article  CAS  Google Scholar 

  • Bett, J. A.: Studies of hydrogen held by solids. J. Amer. chem. Soc.89, 5535–5541 (1967)

    Article  CAS  Google Scholar 

  • Bjerrum, N.: Calcium orthophosphates. Mat. Fys. Medd. K. danske vidensk. Selsk.31, Nr. 7 (1958)

  • Bonel, G.: De la carbonation des apatites. Ann. Chemique7, 127–144 (1972)

    CAS  Google Scholar 

  • Bonel, G., Montel, G.: Sur une nouvelle apatite carbonatée synthetique. C.R. Acad. Sci. (Paris)258, 923–926 (1964)

    CAS  Google Scholar 

  • Brown, W.: Physiochemical aspects of decay and decalcification. Proceed of an international Symp. on Calcified Tissues (Driessens, F. C., ed.), p. 71–99. Nijmegen 1971

  • Cant, N. W.: The vibrational spectrum of OH ions in hydroxyapatite. Spectrochim. Acta27, 425–434 (1971)

    Article  CAS  Google Scholar 

  • Coolidge, T. B., Jacobs, M. H.: Enamel carbonate in caries. J. dent. Res.36, 765–768 (1957)

    PubMed  CAS  Google Scholar 

  • Corbridge, D. E. C.: Infrared analysis of phosphorus compounds. J. appl. Chem.6, 456–465 (1956)

    Article  CAS  Google Scholar 

  • Davidson, C. L.: Ontharding van glazuur. Thesis. University of Groningen 1973 (in Dutch)

  • Davidson, C. L., Boom, G., Arends, J.: Calcium distribution in human and bovine surface enamel. Caries Res.7, 349–359 (1973)

    PubMed  CAS  Google Scholar 

  • Duff, E. J.: Orthophosphates. J. chem. Soc. A 33–37 (1971)

  • Elliot, J. C.: Synthetic and biological carbonate containing apatites. Intern. Symp. on structural properties of hydroxyapatite (Young, R. A., Bown, W. E., ed.), chap. 11. New York: Gordon-Breach 1969

    Google Scholar 

  • Emerson, W. H., Fischer, E. E.: The I.R. absorption spectra of carbonate in calcified tissues. Arch. oral Biol.7, 671–683 (1962)

    Article  CAS  Google Scholar 

  • Forol, M. A., Wilkinson, C. R.: The preparation and properties of pressed alkalihalide discs. J. Sci. Instrum.31, 338 (1954)

    Article  Google Scholar 

  • Francis, M. D.: Solubility behaviour of dental enamel. Amer. N.Y. Acad. Sci.131, 694–712 (1965)

    Article  CAS  Google Scholar 

  • Gee, A., Deitz, V. R.: Pyrophosphate formation upon ignition of precipitated basic calcium phosphate. J. Amer. chem. Soc.77, 2961–2965 (1955)

    Article  CAS  Google Scholar 

  • Gray, J. A.: Kinetics of dissolution of enamel in acid. J. dent. Res.41, 633–645 (1962)

    PubMed  CAS  Google Scholar 

  • Grøn, P., Spinelli, M., Trautz, O., Brudevold, F.: The effect of carbonate on the solubility of hydroxylapatite. Arch. oral. Biol.8, 251–256 (1963)

    Article  PubMed  Google Scholar 

  • Higuchi, W. I., Patel, P. R., Becker, J. W., Hefferen, J. J.: Quantitation ef enamel demineralization mechanisms. J. dent. Res.48, 396–409 (1971)

    Google Scholar 

  • Joris, S. J., Amberg, C. H.: The nature of deficiency of non-stoichiometric hydroxyapatite. J. phys. Chem.75, 3172–3179 (1971)

    Article  CAS  Google Scholar 

  • Kühl, G., Nebergall, W. H.: Hydrogenphosphat- und Carbonatapatite. Z. anorg. allg. Chemie324, 313–320 (1963)

    Article  Google Scholar 

  • Legeros, R. Z., Legeros, J. P., Trautz, O. R., Klein, E.: Spectral properties of carbonate in carbonate containing apatites. In: Developments in applied spectroscopy, vol. 7 B (Grove, E. L., ed.), p. 3–12. New York: Plenum Press 1970

    Google Scholar 

  • Maas van der, J. H.: Basic infrared spectroscopy. London: Heyden and Son 1969

    Google Scholar 

  • Menzel, B., Amberg, C. H.: An I.R. study of OH grounds in non-stoichiometric hydroxypatite. J. Colloid and Interf. Sci.38, 256–262 (1971)

    Article  Google Scholar 

  • Montel, G.: Sur les structures de quelques apatite d’intérêt biologique. Bull. Soc. Fr. Mineral Crist.94, 300–320 (1971)

    CAS  Google Scholar 

  • Moreno, E. C.: Solubility and thermodynamic data for calcium phosphates. Intern. Symp. on structural properties of hydroxyapatite (Young, R. A., Brown, W., eds.), chap. 15. New York: Gorden-Breach 1969

    Google Scholar 

  • Nancollas, G. H.: Kinetics of dissolution of DCPD crystals. J. dent. Res.50, 1268–1272 (1971)

    PubMed  CAS  Google Scholar 

  • Neumann, W. F., Mulryan, B. J.: Synthetic hydroxyapatite crystals. Calcif. Tiss. Res.1, 94–104 (1967)

    Article  Google Scholar 

  • Neumann, W. F., Toribara, T. Y., Mulryan, B. J.: Surface chemistry of Bone. J. Amer. chem. Soc.78, 4263–4266 (1956)

    Article  Google Scholar 

  • Posner, A., Stephenson, S. R.: I.R. study of carbonate in bone, teeth and francolite. Nature10, 124–126 (1954)

    Google Scholar 

  • Ramsey, D. A.: Intensities and shapes of I.R. absorption bands. J. Amer. chem. Soc.74, 72–80 (1952)

    Article  Google Scholar 

  • Römer, F. G., Osch, G. W. S., Griepink, B.: Über die Automatisierung der Kohlenstoff- und Wasserstoffbestimmung in μg-Mengen organischer Substanz. Microchim. Acta 772–777 (1971)

  • Rootare, H. M., Deitz, V. R., Carpenter, F. G.: Solubility product phenomena in hydroxyapatite water systems. J. Colloid Sci.17, 179–206 (1962)

    Article  CAS  Google Scholar 

  • Schiedt, U.: Infrarot-Spektroskopie von Aminosäuren. Z. Naturforsch.8b, 66 (1953)

    CAS  Google Scholar 

  • Vignoles, C.: Contribution à l’étude de l’influence des ion alcalins sur la carbonation dans les sites de type B des apatites. Thèse, L’université Paul Sabatier, Toulouse 1973

    Google Scholar 

  • Weatherell, I. A., Robinson, C., Hiller, C. R.: Distribution of carbonate in thin sections of dental enamel. Caries Res.2, 1–9 (1968)

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arends, J., Davidson, C.L. HPO 2−4 Content in enamel and artificial carious lesions. Calc. Tis Res. 18, 65–79 (1975). https://doi.org/10.1007/BF02546227

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02546227

Key words

Navigation