Skip to main content
Log in

Flexural repair of hollow rectangular bridge columns failed due to earthquake-type loading

  • Scientific Reports
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

The purpose of this research is to develop a repair technique for hollow-bridge columns that have failed, due to fracturing or buckling of longitudinal rebars, so that bridge function can be quickly restored after earthquakes. In order to validate the proposed technique, two full size and three scaled-down hollow bridge columns, which had previously failed under tests conducted in conjunction with other projects, were repaired using the proposed technique and subsequently retested. To restore the column's flexural strength, the fractured longitudinal bars were replaced with dog-bone shaped bars. In addition, a steel jacket was emplaced in the plastic hinge region in order to enhance the deformation capacity of the repaired columns. Test results showed that the damaged columns could be repaired within three days, effecting a 90% restoration of the original column's flexural strength and a comparable degree of restoration of ultimate displacement to the original columns. However, it was also found that there was only a 50% recovery of the column's original stiffness and ductility.

Résumé

L'objectif de ce travail de recherche est de développer une technique de réparation pour des colonnes de pont en profiles creux qui n'ont pas résisté en raison de la rupture ou de la déformation des barres d'armature longitudinales, de sorte que la fonction de pont puisse être rapidement restaurée après des tremblements de terre. Afin de valider la technique proposée, deux colonnes de pont creuses de taille normale et trois autres à échelle réduite, qui n'avaient résisté précédemment lors d'essais conduits en même temps que d'autres projets, ont été réparées en utilisant la technique proposée et ensuite testées de nouveau. Pour reconstituer la force en flexion de la colonne, les barres longitudinales ayant subi la rupture ont été remplacées par des barres en forme d'os à moelle. En outre, une structure en acier a été placée dans la région de la charnière plastique afin d'augmenter la capacité de déformation des colonnes réparées. Les résultats des essais ont prouvé que les colonnes endommagées pouvaient être réparées en l'espace de trois jours, en effectuant une restauration à 90% de la force en flexion de la colonne originale et à un degré de restauration de déplacement final comparable aux colonnes originales. Cependant, on a également constaté qu'il n'y avait qu'un rétablissement de 50% de la rigidité originale et de la ductilité de la colonne.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Mander, J.B., ‘Seismic design of bridge piers’, PhD Dissertation, Department of Civil Engineering, University of Canterbury, Christchurch, New Zealand, 1984.

    Google Scholar 

  2. Suda, K., Shimbo, H., Masukawa, J. and Murayama, Y., ‘Reinforcing method to improve ductility of RC column with hollow section’,Proc. of JCI, Tokyo, Japan 18 (2) (1996) 725–730.

    Google Scholar 

  3. Tylor, A.W. and Breen, J.E., ‘Design recommendations for thin-walled box piers and pylons’,Concrete International (1994) 36–41.

  4. Priestley, M.J.N., Seible F., Xiao Y. and Verma R., ‘Steel jacket retrofitting of RC bridge columns for enhanced shear strength-Part1: Theoretical Consideration and Test Design’,ACI Structural Journal 91 (4) (1994) 394–405.

    Google Scholar 

  5. Cheng, C.-T., Yang, J-C., Yeh, Y-K. and S.E. Chen, ‘Seismic performance of repaired hollow-bridge piers’,Journal of Construction and Building Materials 17 (5) (2003) 339–351.

    Article  Google Scholar 

  6. Cheng, C.-T. and Mander, J.B., ‘Seismic design of bridge columns based on control and reparability of damage’, Technical Report, NCEER 97-0013, National Center of Earthquake Engineering Research, Buffalo, New York, 1997.

    Google Scholar 

  7. Priestley, M.J.N., Seible, F. and Calvi, G.M., ‘Seismic Design and Retrofit of Bridges’, (John Wiley & Sons, 1996) p. 308.

  8. Caltrans, Memo to designs 20-4’, California Department of Transportation, Sacramento, Calif., March 1995.

    Google Scholar 

  9. Mander, J.B., Priestley, M.J.N. and Park, R., ‘Theoretical stress-strain model for confined concrete’,J. of Structural Engineering, ASCE 114 (8) (Aug. 1988) 1804–1826.

    Article  Google Scholar 

  10. Yeh, Y.-K., Mo, Y.L., and Yang, C.Y., ‘Seismic performance of rectangular hollow bridge columns’,J. of Structural Engineering, ASCE,128 (1) (Jan, 2002) 60–68.

    Article  Google Scholar 

  11. ACI Committe 318, ‘Building Code Requirement for Structural Concrete and Commentary’, American Concrete Institute, Mich., 1995.

    Google Scholar 

  12. Priestley, M.J.N. and Park R., ‘Strength and ductility of concrete bridge columns under seismic loading’,ACI Structural Journal 84 (1) (1987) 61–75.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, C.T., Yeh, Y.K. & Mo, Y.L. Flexural repair of hollow rectangular bridge columns failed due to earthquake-type loading. Mat. Struct. 37, 717–723 (2004). https://doi.org/10.1007/BF02480517

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02480517

Keywords

Navigation