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AbstractmRecently, we developed a model of magnetic stimu- 
lation of a concentric axon in an anisotropic nerve bundle. In that 
earlier paper, we considered a single axon surrounded by a nerve 
bundle represented as a homogeneous anisotropic monodomain 
medium. In this paper we extend our previous calculations to 
examine excitation of axons within a nerve bundle without ne- 
glecting the presence of other axons in the nerve bundle. A 
three-dimensional axial symmetry volume conductor model is 
used to determine the transmembrane potential response along an 
axon due to induced electric fields produced by a toroidal coil. 
Our principal objective is to examine the effect of current redis- 
tribution to other axons in the bundle on excitation characteris- 
tics. We derive the transmembrane potential along an axon for 
two currently available models of current redistribution: the 
biodomain model and the spatial-frequency monodomain model. 
Results indicate that a reduction in the transmembrane potential 
along an axon due to the presence of other nerve fibers in the 
bundle is observed. Axons located at the periphery of a nerve 
bundle have lower thresholds and different excitation sites com- 
pared with axons located near the center of a nerve bundle. 

Keywords--Magnetic Stimulation, Electrical stimulation, An- 
isotropy, Coils, Transmembrane response, Nerve Bundle, 
Perineurium, Sheath, Bidomain, Spatial-frequency conductiv- 
ity, Monodomain, Cable Equation, Volume conductor effects. 

INTRODUCTION 

Magnetic stimulation is a noninvasive technique used 
to activate the nervous system and has emerged in recent 
years as a useful diagnostic and clinical tool (6). Despite 
its usefulness, many of  the basic mechanisms of  excitation 
of  nerves during magnetic stimulation are not year clear. 
Quantitative and complex models of  magnetic stimulation 
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have proven useful in understanding some of  the basic 
mechanisms of  excitation (4,5,11,12,16,21),  and predic- 
tions based on such models have been verified experimen- 
tally (15,19). Most existing models assume that the target 
axon is isolated and lying in a homogeneous,  isotropic 
volume conductor. A nerve, however,  contains many ax- 
ons held together in a bundle. The properties of  excitation 
of axons depend not only on the properties of  the axons 
themselves, but also on the properties of  the bundle, such 
as how tightly the axons are packed, and the anisotropic 

conductivity of  the nerve tissue. 
Recently, we have developed a model  of  a concentric 

axon located in a uniform anisotropic nerve bundle (18). 
In that model we determined that nerve bundle anisotropy 
and the presence of  a perineurium can significantly affect 
the amplitude of  transmembrane polarization and the lo- 
cation of  excitation along an axon. However,  in the earlier 
paper (18), we had chosen to neglect the effect of  the other 
axons within the nerve bundle. More appropriate repre- 
sentations of  neural tissue, however,  are either a bidomain 
medium consisting of  a coupled interstitial and intracellu- 
lar spaces or a monodomain medium in which the bundle 
conductivity depends on spatial frequency (22,23). In this 

paper we extend our previous calculations to examine ex- 
citation characteristics of axons within a nerve bundle 
modeled as a bidomain medium and a monodomain me- 
dium with a spatial f requency-dependent  conductivity.  
Our aim is to examine (a) the effect of current redistribu- 
tion within a nerve bundle on excitation characteristics, 
(b) the effect of  the perineurium using more complex rep- 
resentations of the nerve bundle such as the bidomain and 
spatial-frequency monodomain models,  and (c) the trans- 
membrane polarization of axons located at different radial 
positions within the nerve. In all of these models,  we 
assume that the nerve bundle is surrounded by a perineu- 
rium and a three-dimensional axisymmetric volume con- 
ductor. 
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THEORY 

Applied Fields 

The total electric field in a volume conductor can be 
expressed as the sum of an induced term and an electro- 
static term. The induced term Einduce d is due to the applied 
time-varying magnetic field, and the electrostatic term 
(Eohmic) arises from charge separation at the boundaries of 
the volume conductor. Therefore the total electric field is 

Etota I = Einduce d + Eohmi c (1) 

We assume that the induced component of electric field is 
created by a thin toroidal coil (5,16). This geometry has 
been used recently by Davey et al. to stimulate nerves in 
vitro (10). Similar to previously published calculations, 
we also assume that the toroidal coil creates a thin filament 
of time-varying magnetic flux ~ of radius c. Therefore, 
the magnetic field has only an azimuthal component and 
can be written in cylindrical coordinates using dirac-delta 
functions as shown in the following equations: 

Bapplie d = ~ t ~ ( p  - C)~(Z) (2) 

where ff is the unit vector in the azimuthal direction. The 
induced electric field is calculated from the vector poten- 
tial by 

aA 
Einduced = --  0"--t- (3) 

where the vector potential is calculated using the equations 

and 

V . A = 0  

V • A = B (4) 

We can express the time rate of change of the vector 
potential (A) as a function of k, the Fourier transformed 
variable of the axial variable z as (5,9,14) 

dO(t) ik6(Iklp)g~(Iklc), p < c (5) A~ = - c  

dO(t) 
�9 ~z(t,p,k) = - c  T IklIo(Iklo)gl(Iklc), p < c (6) 

where I o, 11, Ko, and K 1 are modified Bessel functions of 
the zeroth and first-order, and t represents time. 

The electrostatic component of the electric field ac- 
counts for the contribution to the electric field arising from 
charge accumulation at boundaries of the volume conduc- 
tor and can be expressed as follows 

Eohmi c = --  Vdxb (7) 

In the subsequent sections, we determine the scalar poten- 
tials and thereby the electrostatic component of the electric 

field for the different volume conductor models of an axon 
in a nerve bundle. 

Isolated Axon Located in an Infinite Homogeneous 
Conducting Medium 

In the case of an axon located in an infinite homoge- 
neous conducting medium, space is divided into three re- 
gions, intracellular (i), extracellular (e), and membrane 
(m). The scalar potential in each regions dPi, d~m, dPe sat- 
isfies Laplace's equation, 

V2(I)i,m,e = 0 (8 )  

Owing to azimuthal symmetry, expanding this equation in 
cylindrical coordinates we get 

1 0 ( 0(I)i,m,e~ OZ2(I)i m e 
p Op p ---~p /I + Oz------~:- - 0 (9) 

Equation 9 reduces to a modified Bessel's equations when 
applying a Fourier transform to the axial variable z as 
shown below: 

1 d ( ddPi,m,e'~_ k2dPim e -= 0 ( 1 0 )  
p dp _ p dp ] ' ' 

Solutions to these equations can be expressed using mod- 
ified Bessel functions 

~i(t,p,k) = A(t,k)lo(lklp), p < ai 

~ m ( t , p , k )  = n(t,k)lo(lklp) + C(t,k)go(Jklp), a i < p < ao 

a~e(t,p,k) -- D(t,k)go([klp), p > ao (11) 

The coefficients A, B, C, and D can be determined by 
applying the appropriate boundary conditions (see Appen- 
dix). We are interested in solving for the transmembrane 
potential, which is defined as the difference between the 
intracellular and extracellular potentials: 

~Igtm(t,k ) = dPm(t, ai,k ) - dPm(t, ao,k ) ( 1 2 )  

Basser et al. (5) have derived a similar analytical expres- 
sion for transmembrane potential as a function of k by 
approximating the membrane as a thin dipole surface of 
thickness d (Eq. 12 from Ref. 5), which results in identical 
solutions (16). 

Axon in an Anisotropic Monodomain Nerve Bundle 

We now consider an axon within a bundle, which is 
anisotropic with a conductivity different from that of the 
extracellular space (7,9,17). The interstitial medium is 
then assumed to be surrounded by a perineurium. Three- 
dimensional space is divided into five regions: intracellu- 
lar (i), membrane (m), bundle/interstitial (b), sheath (s), 
and extracellular (e). All of the regions except the bundle 
are assumed to be isotropic and satisfy the modified ho- 
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mogeneous Bessel's equations, whose solutions reduce to 
the following equations: 

qbi(t,p,k) = A(t,k)lo(lklp), p < ai 

qbm(t,p,k) = B(t,k)lo(lklp) + C(t,k)Ko(lklp), ai < p < ao 

~s(t,p,k) = F(t,k)1o(lklp) + G(t,k)Ko(lklP), bi < p < bo 

qbe(t,p,k) = H(t,k)Ko(Iklp), p > bo (13) 

where the unknown coefficients A, B, C, F, G, and H are 
determined from the boundary conditions. In an anisotro- 
pic region, such as the nerve bundle, the potentials satisfy 

V "  [~b( - - /~b  -- V(IDb) ] = 0 (14) 

where ~b is the conductivity tensor. We assume that the 
conductivity in the bundle is constant but is different in the 
radial and axial direction. The axial component of the 
bundle conductivity is related linearly to the conductivities 
in these regions through the volume fraction 

o-~ = o ' i f +  O" e (1 --3 ' )  (15) 

The eight unknown coefficients, A-H, are determined by 
the boundary conditions (see Appendix). 

Axons  in a Bidomain  Nerve  Bundle  

In the previous model we neglected the effect of current 
redistribution due to the presence of other fibers in the 
nerve bundle. The "bidomain concept" accounts for the 
presence of multiple fibers (1,20). This is a continuum 
model that accounts for both the intracellular and the in- 
terstitial spaces. The tissue is described by five parame- 
ters: the intracellular axial conductivity, o-iz; the interstitial 

o and o. the membrane axial and radial conductivities, o-z o-0, 
resistance per unit area, Rm; and the ratio of the membrane 
surface area to the tissue volume, 13. Current in the bido- 
main is governed by two equations for the intracellular and 
the interstitial regions 

V �9 Ji = - l m  (20) 

V "Jo  = ]m (21) 

where I m is the membrane current per unit volume. For a 
passive linear membrane, we can express I m as 

where f is the fraction of volume occupied by the intra- 
cellular space. When we define the anisotropy ratio within 
the bundle as 

(16) 

the potential in the bundle satisfies the inhomogeneous 
modified Bessel's equation: 

13 
Im = R m ( ~ i  - qbo) (22) 

where 13 is the ratio of membrane surface to tissue volume 
(18) and R m the membrane resistance per unit area (20). 
We assume that the bidomain conductivities are related to 
the volume fraction by 

o z = f ~  

1 d (  dq~b'~ _ hbekZq~b = --(1 -- hbZ)ikkz (17) 
oN P do/ 

where i is the imaginary number. The solution to Eq. 17 is 
the sum of a general solution to the homogeneous equation 
and a particular solution to the inhomogeneous equation: 

�9 b(t,p,k) -- O(t,k)lo(IklXp) + E(t,k)go(lklXp) 

+ ~(t,k)Io(lk[p), a0 < p < bi (18) 

where D and E must also be determined from the boundary 
conditions. The third term of Eq. 18 is the particular so- 
lution to the inhomogeneous modified Bessel's Eq. 17, 
where 

~(t,k) 
dO ik 

-- - c  7 ;  ~1 gm(Iklc) Xb # 1 

= 0 ,  hb = 1 

(19) 

l - f  
o-~ 1 + f o - e  

o-~ = (1 - J)o-e (23) 

The current densities are related to the potentials through 
Ohm's law: 

Ji  = ~ i ( - A i  - V(I)i) (24) 

Jo = ~ o ( - A o  - V ~ o )  (25) 

where Fi and Fo are the conductivity tensors 

~i = 0 (26) 

0 o-i 
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and 4Po = A(k)lo(Ikl'qhp) + ~(k)Zo(lklp) (32) 

[~o ~ o o) 
~~ ~00 ~176176 O0 o" o (27) 

Since the nerve axons making up the bundle are not cou- 
pled by intracellular junctions in the radial direction, the 
intracellular radial conductivity in the bidomain model 
vanishes (22). Substituting Eqs. 26, 24, and 22 in Eq. 20 
and expanding the divergence operator in cylindrical co- 
ordinates, we can obtain an algebraic expression for the 
intracellular potentials by taking the Fourier transform of 
the axial variable z as shown below: 

1 i k ~  m ~ 

- qbo(t, p,k) Zm 
~i(t, p,k) Zm o.Zk 2 + 1 - -  o'Zk 2 + 1 

13 13 

s 

(28) 

This equation is analogous to the result for point source 
electrical stimulation as derived by Altman and Plonsey 
(1), except for the presence of the second term on the 
right-hand side. Similarly, substituting Eqs. 27, 25, and 
22 in Eq. 21, we find that the interstitial potential satisfies 
the following inhomogeneous modified Bessel's equation: 

ld( a% 
P dP P do ] -- Ti2h2k2(I)o = ( z o" i 

1 
- 1 - ~ - ~ +  

z) 
cr o ikk  2 ~kz 

Zm-- o'Zk 2 + 1 
13 / 

(29) 

where 

/ 1 ) 
(Zm z-2 rl(k ) = 1 Zm Zk2 1 
I g  (rik + 1 

(30) 

and 

(31) 

Solution to this equation can be written as the sum of a 
general solution and a particular solution 

where ~(k) is the function defined in Eq. 19. 
We consider the bidomain bundle to be surrounded by 

a perineurium sheath, which in turn is surrounded by an 
unbounded homogeneous conducting medium. The sheath 
and the extracellular medium are assumed to be isotropic. 
The potentials in those regions satisfy Laplace's equation, 
which reduces to a modified Bessel's equation, the solu- 
tion to which can be expressed as 

�9 s(t,o,k) = n(t,k)to(Iklp) + C(t,k)go(Iklp), bi < p < bo 

dPe(t,p,k) = O(t,k)go(Iklp), p > bo (33) 

The four unknown coefficients A - D  can be determined 
from the boundary conditions (see Appendix): (a) conti- 
nuity of the normal component of the current density and 
(b) the continuity of the tangential component of the elec- 
tric field at the bidomain-perineurium surface (p = bi) 
and the perineurium-extracellular interface (p = bo). The 
current density in the bidomain is the sum of the current 
densities in the intracellular and interstitial spaces. How- 
ever, since we assume that the intracellular conductivity in 
the direction transverse to the fibers is zero, the intracel- 
lular potentials do not enter these boundary conditions 
(22). 

Axon in a Spatial-Frequency Monodomain Bundle 

Another proposed representation of a nerve bundle that 
takes into account the presence of other nerve fibers is the 
spatial-frequency monodomain model (23). This model 
makes use of monodomain conductivities that depend on 
spatial and temporal frequencies (22,23) and is a general- 
ization of an earlier description of the electric properties of 
a bundle of muscle fibers. The macroscopic conductivities 
% and crp are expressed as functions of the spatial fre- 
quency k (22): 

ere(1 - f )  + cr0e 

and 

1 - y  aW5 
~C(k)- 1 + f ~e + 2R----~- (35) 
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where R m is the membrane resistance per unit area, and h 
is the length constant of a single fiber in the restricted 
interstitial space of the fiber bundle given by 

h = (36) 

O" 

In these equations, o" i and (r e are the intracellular and 
interstitial conductivity, f is the volume fraction of the 
intracellular space, and a is the radius of the passive fi- 
bers. If  we assume that an axon is present inside a nerve 
bundle with these spatial frequency-dependent conductiv- 
ities, the equations for the anisotropic monodomain can be 
modified to include the conductivities to be functions of k. 
In this case, the equations for an anisotropic monodomain 
model (see Appendix) are now solved by substituting in 
Eqs. 34, 35, and 36 for the spatial frequency-dependent 
conductivities and by assuming that the anisotropy ratio is 
calculated as follows: 

Xb(k) = ~/-~b(k) 
(37) 

As in the previous models, the transmembrane potential, 
as a function of k, of an axon located concentrically in a 
bundle with spatial frequency~lependent conductivity is 
determined. 
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FIGURE 1. Steady-state t ransmembrane potential  along an 
isolated axon (closed circles), an axon located in a sheathless 
anisotropic nerve bundle (open circles), an axon located in a 
sheatbless bidomain bundle (closed triangles), and an axon 
located in a sheathless spatial - frequency monodomain bun- 
dle (open triangles). The fol lowing parameters were  used: b. 
= 1 mm,  cq = 1.4286 S/m, cre = 0.8 S/m, f = 0.7, crm = 62.5 
nS/m, arm = 6 nm, ch~/dt = 0.1 T/s, c = 2 m m  (chosen from 
Refs. 1,5,13,17). 
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FIGURE 2. Effect of perineurium: steady-state t ransmem-  
brane potential along an axon located in (A) a sheathless an- 
isoptropic monodomain  bundle (open circles) and an aniso- 
tropic monodomain bundle wi th  a perineurium (closed cir- 
cles), (B) a sheathless bidomain bundle (open circles) and a 
bidomain bundle surrounded by a perineurium (closed cir- 
cles), and (C) a sheathless spat ia l - f requency monodomain  
bundle (open circles) and a spatial - frequency monodomain  
bundle wi th  a perineurium (closed circlesl. 

METHODS 

Each set of linear equations shown in Appendix was 
solved using MATLAB (Mathworks) on a SPARC Station 
10, for different values of k; the solutions to scalar poten- 
tials as a function of k were obtained, and the transmem- 
brane potential ((I)tm(k)) was calculated. We obtain the 
transmembrane potential as a function of z by obtaining 
the inverse Fourier transform of (I)tm(k) using the IFFT 
algorithm. The magnitude of the peak transmembrane de- 
polarization is an indicator of threshold strength for exci- 
tation, and its location is an indicator of the excitation site 
(2,18,21). Threshold changes due to the nerve bundle can 
therefore be characterized by determining the magnitude 
of peak depolarization for different bundle parameters. 
Changes in the location of excitation due to the nerve 
bundle can be characterized by determining the "shif t"  
(see Fig. 1) in location of the excitation site from that in an 
axon surrounded by an unbounded homogeneous medium. 
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FIGURE 3. Effects of volume fraction. Max imum transmembrane depolarization as a function of the intracellular volume fraction 
(f) for an axon located in (A) a sheathless nerve bundle and (B) a nerve bundle wi th a perineurium. Difference or shift between the 
position of the peak t ransmembrane depolarization along an isolated axon and the position of peak t ransmembrane depolarization 
along an axon in (C) a sheathless nerve bundle and (D) a nerve bundle surrounded by a perineurium is plotted as a function of the 
intracellular volume fraction. The three different models of the nerve bundle considered are an anisotropic monodomain  medium 
(circles), a spatial - frequency monodomain  medium (squares), and a bidomain (triangles). 

RESULTS 

The spatial profiles of  transmembrane potentials along 
an infinitely long axon are plotted in Fig. 1 for an isolated 
axon and for an axon located in three different models of  
a sheathless nerve bundle. The following parameters were 

used: b i = 1 mm,  tr i = 1.43 S/m, ~ = 0.8 S / m , f  = 0.7, 
tr~ = 62.5 nS/m, d,~ = 6 nm, dO~dr = 0.1 T/s ,  c = 2 

mm (chosen from Refs. 1,3,5,16). An isolated axon in an 
infinite homogeneous conducting medium shows a maxi-  
mum transmembrane polarization of  0.243 mV (Fig. 1, 
closed circles). The transmembrane potential along an 
axon inside a nerve bundle for all of  the three bundle 
models is found to be significantly lower than that for an 
isolated axon. When the nerve bundle is represented either 
as a bidomain (closed triangles) or as a monodomain with 

spatial f requency~lependent  conductivities (open trian- 
gles), solutions for transmembrane potential are identical 
( <  1% different), with a maximum depolarization of  0.146 
mV, which is 60% that of  an isolated axon. Representing 
the nerve bundle as an anisotropic monodomain (open 
circles) under the condition that the anisotropy ratio is the 
same as that of  the bidomain bundle, the peak transmem- 
brane polarization is 0.189 mV, which is 22% larger than 
the maximum depolarization predicted by the bidomain 
model.  However,  the peak transmembrane potentiai is still 
only 78% of  the response predicted for an isolated axon. 

The addit ion of  a per ineurium ( ~  = 0.025 S/m, 
d s = 20 p~m chosen from Ref. 17) around the anisotropic 
monodomain bundle reduces the maximum transmem- 
brahe depolarization to 0.165 mV, which is 13% less than 
that in a sheathless bundle (see Fig. 2A). In comparison,  
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this reduction in maximum transmembrane depolarization 
is 7% due to the presence of  a perineurium for an axon in 
a bidomain bundle or a spatial frequency~lependent con- 
ductive bundle (Figs. 2B and 2C). 

The effect of  increasing the volume fraction of  the in- 
tracellular space within the bundle monotonically is a de- 
crease in the maximum transmembrane potential (Figs. 3A 
and 3B). Such a reduction was similar for axons located in 
sheathless bundles and for a bundle surrounded by a 
perineurium. At a volume fraction of 0.9, an axon located 
concentrically in a bidomain bundle surrounded by a 
perineurium sheath has a maximum depolarization of  
0.095 mV, which is 39% that of  an isolated axon. An 
increase in the volume fraction also shifts the location of  
the peak depolarization to the left from the location pre- 

dicted for an isolated axon. This shift is more pronounced 
for an axon in a bidomain and a spat ia l - f requency 
monodomain bundle, in which, at a volume fraction of  
0.9, the shift is - 1 . 7 0  mm in sheathless bundles and 
- 1.75 in a bundle surrounded by a perineurium (Figs. 3C 
and 3D). 

An increase in the bundle radius almost linearly de- 
creases the maximum transmembrane polarization for 
axons both in sheathless bundles and in a bundle sur- 
rounded by a perineurium (Figs. 4A and 4B). This de- 
crease is more drastic for the bidomain and spatial- 
frequency monodomain bundles models. Increasing the 
bundle radius also causes a shift in the location of  peak 
depolarization (Figs. 4C and 4D). For axons in a bundle 
surrounded by a perineurium, at lower bundle radii, the 



Magnetic Stimulation of Axons in a Nerve Bundle 123 

0 . 3 -  

- 1 0  - 5  z (mm 

-0.1 - 

- 0 . 2 -  

0.3 

E 0.2 
>E 

E 
:~ 0.1 

-0 .3  

- -  vm iso laxon  
- O -  f f ~ = l . 0  
- 1 -  p/i~ =0,7 
" " }  " ~ = 0 ,  4 
-J~V-- p/l~=0.1 

I I I I 

- C -  $heathless bidomain model 
-c)-  BiOomain model with perineurium 

~3 13. 

0 . 0  I I I I 
0.0 0.2 0.4 0.6 0.8 1.0 

Axon position from cenler [mm] 

0 .8  

E" 0.6 

.~_ 0,4 

.~ 0 .2  

o 

0 . 2  

~- - o . 4  

= - 0 , 6  
go 

- 0 . 8  

- c -  Sheathless bidomain model 
�9 -C -  Bidomain model with perineurium 

0.2 0.4 0.6 0.8 

Axon position from center [mm] 

1.0 

FIGURE 5. Effects of axon position. (A) Steady-state trans- 
membrane profiles along an axon located at different radial 
distances from the center of a nerve bundle. (B) The maximum 
transmembrane depolarization is plotted as a function of the 
radial position of the axon from the center of a sheathless 
bidomain nerve bundle (circles) and a bidomain bundle sur- 
rounded by a perineurium. (C) Difference or shift between the 
position of the peak transmembrane depolarization along an 
isolated axon and the position of peak transmembrane depo- 
larization along an axon in different positions from the center 
of a sheathless bidomain nerve bundle (circles) and a bido- 
main bundle surrounded by a perineurium. 

shift in peak location of  an axon located in an anisotropic 
bundle (e.g., at b i = 0.2 mm, shift = - 0 . 2  mm) is 
greater than that of  an axon located in a bidomain or 
spatial-frequency monodomain bundle (e.g., at b i = 0.2 
mm, shift = - 0 . 1  mm). However, this effect is reversed 
at higher bundle radii, when the shift in peak depolariza- 
tion is greater for an axon located in a bidomain bundle 
(e.g., at b i = 0.9 mm, shift = - 0 . 8  mm) when com- 
pared with an axon located in an anisotropic monodomain 
bundle (e.g., at b i = 0.9 mm, shift = - 0 . 4  mm). 

Finally, we determine the transmembrane polarization 
along axons located at different radial distances from the 
nerve bundle origin using the bidomain model (see Fig. 
5A). The profile of  transmembrane polarization is more 
"spread out"  for axons located closer to the center of  the 
bundle. The maximum transmembrane depolarization in- 

creases as the axons are located closer to the periphery of  
the bundle for both sheathless bundles and bundles with a 
perineurium (see Fig. 5B). Yet the maximum transmem- 
brane potential even at the periphery is 0.195 mV (80% 
that of  an isolated axon), which is 46% greater than that 
for an axon at the center of the bundle. Moreover, the shift 
in the location of  the peak depolarization is a function of  
the location of the axon inside the nerve bundle. For axons 
located near the center of  the bundle, the peak transmem- 
brane potential is shifted to the left when compared with 
that of  an isolated axon. The location of  the peak trans- 
membrane potential for axons near the periphery of  the 
bundle, however, is shifted to the right when compared 
with that of an isolated axon. The change in the direction 
of shift occurs at a radial distance of  0.7 mm in a bundle 
with a radius of  1 mm (see Fig. 5C). 

DISCUSSION 

Our initial hypothesis was that the presence of  a nerve 
bundle surrounding an axon would "at tenuate" and "spa- 
tially filter" the applied fields and consequently shift and 
reduce the peak transmembrane polarization. We partially 
confirmed this hypothesis in an earlier paper, in which we 
determined that the transmembrane polarization is de- 
creased owing to the presence of  a nerve bundle of  differ- 
ent conductivity, compared with the extracellular tissue, 
and the presence of  the perineurium (16,17). However, in 
that model we chose to neglect the effect of  current redis- 
tribution in the nerve bundle due to the presence of other 
nerve fibers. We then hypothesized that current redistri- 
bution in the nerve bundle would cause a further reduction 
in the transmembrane polarization. We chose to test this 
hypothesis using two currently available macroscopic 
models of  a nerve bundle: the bidomain model and the 
spatial-frequency monodomain model. Fig. 1 confirms 
our hypothesis that the presence of  the nerve bundle 
causes a reduction in the amplitude of  the transmembrane 
polarization and that current redistribution as incorporated 
in the bidomain and spatial-frequency monodomain mod- 
els causes an additional decrease in the membrane re- 
sponse. Furthermore, the profile of  the transmembrane 
potential along an axon is broader for bidomain and spa- 
tial-frequency representations. This indicates that the cur- 
rent redistribution causes not only an additional reduction 
in the peak depolarization, but also an increase in the 
spatial filtering effect. Moreover, two different models of  
a nerve bundle, the bidomain model and the spatial- 
frequency monodomain model, result in nearly identical 
solutions (Fig. 1), which is consistent with the fact that the 
two models are nearly equivalent (22). 

The presence of  a perineurium surrounding a bundle 
causes an additional significant reduction in the transmem- 
brane response along an axon located in an anisotropic 
monodomain bundle (see Fig. 2A). However, in a bundle 
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that accounts for current redistribution (both the bidomain 
and the spatial-frequency monodomain representations), 
the addition of the perineurium does not cause a further 
reduction in the transmembrane polarization. This result 
suggests that the contribution of the perineurium in atten- 
uating the applied field is less significant than that due to 
current redistribution in the nerve bundle. However, the 
presence of the perineurium at lower bundle radii causes a 
greater spatial filtering in an anisotropic monodomain 
bundle rather than the bidomain or spatial-frequency 
monodomain bundle (see Fig. 4D). 

The bidomain model enables us to determine the trans- 
membrane response along axons positioned at different 
radial distances from the bundle center. Axons located in 
the periphery of a nerve bundle would be predicted to have 
a lower threshold for excitation because they are closer to 
the exciting coil. Accordingly, the response of an axon 
located at the periphery of a nerve bundle is significantly 
greater than the response of one located at the center (see 
Figs. 5A and 5B). Furthermore, the shift in the location of 
peak depolarization is a function of the relative distance of 
an axon from the center of the bundle (see Fig. 5C). Since 
the location of peak depolarization is an indicator of ex- 
citation sites, there would be an ambiguity in the location 
of these excitation sites from recordings of action poten- 

tials in nerve bundles. The range of this uncertainty is on 
the order of 2 mm in this model, which would become 
significant when more localized coils are used during 
magnetic stimulation. 

CONCLUSION 

We have analyzed the effect of current redistribution in 
a nerve bundle due to the presence of other nerve fibers on 
magnetic stimulation of an axon in a nerve bundle. Two 
currently available models of current redistribution, the 
bidomain model and the spatial-frequency monodomain 
model, indicate a reduction in the transmembrane poten- 
tial along an axon due to the presence of other nerve fibers 
in the bundle. This reduction is in addition to contributions 
from the conductivity and anisotropy in the nerve bundle. 
Therefore, models of isolated axons are poor predictors of 
the membrane response of an axon located in a nerve 
bundle. Reduction in transmembrane polarization in fibers 
located concentrically in a nerve bundle is a function pri- 
marily of the bundle radius and the volume fraction of 
axons in the bundle. Axons located in the periphery of a 
nerve bundle have lower thresholds and different excita- 
tion sites compared with axons located near the center of 
a nerve bundle. 

APPENDIX 

Determining Coefficients of Scalar Potentials for an Isolated Axon Located in an Infinite Homogeneous Conducting Medium 

The coefficients of the scalar potentials of Eq. 11 are determined by applying the boundary conditions (a) continuity 
of normal current and (b) continuity of tangential electric field at the intracellular-membrane surface and the membrane- 
extracellular interfaces. This is expressed in the following equations: 

(riEP(t, ai,k ) ormEOm(t, ai,k); Ei(t,  ai,k) = EZ(t,  ai,k) o o = z crmEm(t, ao,k ) -_ CrOeEOe(t, ao,k ) EZ(t,  ao,k) = Ee(t, (A1) 

lo(Iklai) - lo(Iklai)  - g o ( l k l a i )  o A(k) 0 
-Ikl~]l(lklaO I k l~ml~( lk la i )  -Iklcrmg~(lklai) 0 n(k)  = - -  ( O "  m - -  O ' i ) A p l p = a i  

0 lo(Iklao) Ko(lklao) - go(lklao) C(k) 0 
o -~mlklla(lklao) ~mlklg~(Iklao) --(relklg~(Ikla o) D(k) ( O "  m - -  Cre),4,plO=ao (A2) 

The spatial Fourier transform formulation of the potentials reduces these boundary conditions to the following system of 
linear equations, which can be solved for each value of the spatial frequency k: 

Determining Coefficients of  Scalar Potentials for an Axon in an Anisotropic Monodomain Bundle with a Perineurium 

The eight unknown coefficients, A - H ,  are determined by the boundary condition (a) continuity of the tangential electric 
field and (b) continuity of normal current density at the following four surfaces, membrane-intracellular region, mem- 
brane-interstitial surface, interstitial perineurium surface, and the perineurium-extracellular surface, as shown in the 
following equations: 

(riE~ ai,k) = (ymE~m(t, ai,k); EZ(t, ai,k) = Ez( t ,  ai,k); ~E~ ao,k) = cr~E~(t, ao,k); EZ(t,  ao,k) = E~(t, ao,k); (rbE~ bi,k) 

ffsEPs(t, bi,k); z = Eb(t, bi,k) = EZ(t, bi,k); (rsEPs(t, bo,k) = treEPe(t, bo,k); EsZ(t, bo,k) = Ee(t, (A3) 
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These result in the following system of  linear equations: 

lo(Iklai) -lo(]klai) go(Ikla~) 0 
-cq]klla(lklaO %lklh(lklaO -~mlklg~(lklaO 0 

0 lo(Ikla o) Ko(lkla o) -lo(]klha o) 
0 -trmlkll~(lklka o) crmlk[g~(lkla o) X(rb[klldlklXa o) 
0 0 0 lo(]klhb i) 
0 0 0 -- hOtb[k[lt([klhbi) 
0 0 0 0 
0 0 0 0 

0 
- - ( 0 -  m - -  (ri)AP(t,ai,k) 

~(k)lo(lklao) 
- (or  b - (Ln)~P(t,ao,k) - (rr,~(k)lk[ll([k[ao) 

- ~(k)lc~(tklb~) 
- ( ~  - ~rb)Aa(t,b,,k ) + r 

0 
- ( ~ e  - (rs)A"(t,bo,k) 

0 0 0 0 A(k) 
o o o o B(k) 
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- X%lklg,(lklhao) 0 0 0 D(k) 
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o lo(Iklbo) Ko(lklbo) -Ko(lklbo) a(k) 
0 --crdk[ll([ktbo) tr~lk[Kl([k[bo) --e%lklKl(lk[bo) H(k) 

Determining Coefficients of  Scalar Potentials for  an Axon in a Bidomain Bundle with a Perineurium 

(A4) 

The four unknown coefficients, A - D ,  of the scalar potentials in the bidomain model are again determined by the 
boundary conditions,  

(rOoEPo(t, bi ,k) = (rsEOs(t, bi,k); Eo(t, = Es(t,  bi ,k) ~sEPs(t, bo,k ) = creEOe(t, bo,k); Es(t,  = EZ(t, bo,k) (A5) 

Similar to the previous models,  these boundary conditions reduce to the following linear system of  equations for different 
values of  k: 

- ~(k)lo(Iklbi) 

IklcrOo~(k)l,(lklbO - (~o s - ~o0)~plp~b, 

-   )aol.=b ~ 

(A5) 

Io(Ikl~Xbi) -Io([klbO - go(lklbO 0 A(k) 

-Ik[~qh~ [kl~rSoll(ik[bi) -Ikl~Spgl(Ik[bi) 0 n(k) 
o Io(Iklbo) go(Iklbo) -go(Iklbo) C(k) 

0 - slklll(Iklbo)  dklg (Iklbo) - elklgl(Iklbo) O(k) 
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