Skip to main content
Log in

The pitfalls of molecular phylogeny based on four species, as illustrated by the Cetacea/Artiodactyla relationships

  • Published:
Journal of Mammalian Evolution Aims and scope Submit manuscript

Abstract

We study the reliability of phylogeny based on four taxa, when the internal, ancestral, branch is short. Such a quartet approach has been broadly used for inferring phylogenetic patterns. The question of branching pattern between the suborders Ruminantia and Suiformes (order Artiodactyla) and the order Cetacea is chosen as an example. All the combinations of four taxa were generated by taking on and only one species per group under study (three ingroups and one outgroup). Using real sequences, the analysis of these combinations demonstrates that the quartet approach is seriously misleading. Using both maximum parsimony and distance methods, it is possible to find a quartet of species which provided a high bootstrap proportion for each of the three possible unrooted trees. With the same set of sequences, we used all the available species simultaneously to construct a molecular phylogeny. This approach proved much more reliable than the quartet approach. When the number of informative sites is rather low, the branching patterns are not supported through bootstrap analysis, preventing us from false inference due to the lack of information. The reliable resolution of the phylogenetic relationships among Ruminantia, Suiformes, and Cetacea will therefore require a large number of nucleotides, such as the complete mitochondrial genomes of at least 30 species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Allard, M. W., and Miyamoto, M. M. (1992). Testing phylogenetic approaches with empirical data, as illustrated with the parsimony method.Mol. Biol. Evol. 9: 778–786.

    PubMed  Google Scholar 

  • Allard, M. W., Miyamoto, M. M., Jarecki, L., Kraus, F., and Tennant, M. R. (1992). DNA systematics and evolution of the artiodactyl family Bovidae.Proc. Natl. Acad. Sci. USA 89: 3972–3976.

    PubMed  Google Scholar 

  • Anderson, S., Bankier, A. T., Barrel, B. G., De Bruijn, M. H. L., Coulson, A. R., Drouin, J., Eperon, I. C., Nierlich, D. P., Roe, B. A., Sanger, F., Schreier, P. H., Smith, A. J. H., Staden, R., and Young, I. G. (1981). Sequence and organization of the human mitochondrial genome.Nature 290: 457–465.

    PubMed  Google Scholar 

  • Arnason, U., and Johnsson, E. (1992). The complete mitochondrial DNA sequence of the harbor seal,Phoca vitulina.J. Mol. Evol. 34: 493–505.

    PubMed  Google Scholar 

  • Arnason, U., Gullberg, A., and Widegren, B. (1991). The complete nucleotide sequence of the mitochondrial DNA of the fin whale,Balaenoptera physalus.J. Mol. Evol. 33: 556–568.

    PubMed  Google Scholar 

  • Arnason, U., Gretarsdottir, S., and Gullberg, A. (1993). Comparisons between the 12S rRNA, 16S rRNA, NADH1 and COI genes of sperm and fin whale mitochondrial DNA.Biochem. Syst. Ecol. 21: 115–121.

    Google Scholar 

  • Czelusniak, J., Goodman, M., Koop, B. F., Tagle, D. A., Shoshani, J., Braunitzer, G., Kleinschmidt, T., De Jong, W. W., and Matsuda, G. (1990). Perspectives from amino acid and nucleotide sequences on cladistic relationships among higher taxa of Eutheria. In:Current Mammalogy, Vol. 2. H. H. Genoway, ed., pp. 545–572, Plenum Press, New York.

    Google Scholar 

  • DeWalt, T. S., Sudman, P. D., Hafner, M. S., and Davis, S. K. (1993). Phylogenetic relationships of pocket gophers (Cratogeomys andPappogeomys) based on mitochondrial DNA cytochrome b sequences.Mol. Phys. Evol. 2: 193–204.

    Google Scholar 

  • Douzery, E. (1993). Evolutionary relationships among Cetacea based on the sequence of the mitochondrial 12S rRNA gene: Possible paraphyly of toothed-whales (odontocetes) and long separate evolution of sperm whales (Physeteridae).C. R. Acad. Sci. Paris 316: 1511–1518.

    Google Scholar 

  • Felsenstein, J. (1978). Cases in which parsimony or compatibility methods will be positively misleading.Syst. Zool. 27: 401–410.

    Google Scholar 

  • Felsenstein, J. (1985). Confidence limits on phylogenies: An approach using the bootstrap.Evolution 39: 783–791.

    Google Scholar 

  • Felsenstein, J. (1989).PHYLIP Manual Version 3.3, University Herbarium, University of California, Berkeley.

    Google Scholar 

  • Fitch, W. M., and Beintema, J. J. (1990). Correcting parsimonious trees for unseen nucleotide substitutions: The effect of dense branching as exemplified by ribonuclease.Mol. Biol. Evol. 7: 437–443.

    Google Scholar 

  • Gingerich, P. D., Smith, B. H., and Simons, E. L. (1990). Hind limbs of EoceneBasilosaurus: Evidence of feet in whales.Science 249: 154–156.

    Google Scholar 

  • Graur, D. (1993a). Molecular phylogeny and the higher classification of eutherian mammals.Trends Ecol. Evol. 4: 141–147.

    Google Scholar 

  • Graur, D. (1993b). Towards a molecular resolution of the ordinal phylogeny of the eutherian mammals.FEBS 325: 152–159.

    PubMed  Google Scholar 

  • Graur, D., and Higgins, D. G. (1994). Molecular evidence for the inclusion of cetaceans within the order Artiodactyla.Mol. Biol. Evol. 11: 357–364.

    PubMed  Google Scholar 

  • Graur, D., Hide, W. A., and Li, W.-H. (1991). Is the guinea-pig a rodent?Nature 351: 649–652.

    PubMed  Google Scholar 

  • Hedges, S. B. (1992). The number of replications needed for accurate estimation of the bootstrap P value in phylogenetic studies.Mol. Biol. Evol. 9: 366–369.

    PubMed  Google Scholar 

  • Hedges, S. B., Hass, C. A., and Maxson, L. R. (1993). Relations of fish and tetrapods.Nature 363: 501–502.

    PubMed  Google Scholar 

  • Hendy, M. D., and Penny, D. (1989). A framework for the quantitative study of evolutionary trees.Syst. Zool. 38: 297–309.

    Google Scholar 

  • Hillis, D. M., and Bull, J. J. (1993). An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis.Syst. Biol. 42: 182–192.

    Google Scholar 

  • Hixson, J. E., and Brown, W. M. (1986). A comparison of the small ribosomal RNA genes from the mitochondrial DNA of the great apes and humans: Sequence, structure, evolution, and phylogenetic implications.Mol. Biol. Evol. 3: 1–18.

    PubMed  Google Scholar 

  • Irwin, D. M., and Arnason, U. (1994). Cytochrome b gene of marine mammals: Phylogeny and evolution.J. Mammal. Evol. 2: 37–55.

    Google Scholar 

  • Irwin, D. M., Kocher, T. D., and Wilson, A. C. (1991). Evolution of the cytochrome b gene of mammals.J. Mol. Evol. 32: 128–144.

    PubMed  Google Scholar 

  • Kraus, F., and Miyamoto, M. M. (1991). Rapid cladogenesis among the pecoran ruminants: Evidence from mitochondrial DNA sequences.Syst. Zool. 40: 117–130.

    Google Scholar 

  • Lake, J. A. (1987). A rate-independent technique for analysis of nucleic acid sequence: Evolutionary parsimony.Mol. Biol. Evol. 4: 167–191.

    PubMed  Google Scholar 

  • Lecointre, G., Philippe, H., Lê, V., and Le Guyader, H. (1993). Species sampling has a major impact on phylogenetic inference.Mol. Phys. Evol. 2: 205–224.

    Google Scholar 

  • Lecointre, G., Philippe, H., Lê, V., and Le Guyader, H. (1994). How many nucleotides are required to resolve a phylogenetic problem? The use of a new statistical method applicable to available sequences.Mol. Phys. Evol. 3(4) (in press).

  • Li, W.-H. (1993). So, what about the molecular clock hypothesis?Curr. Opin. Genet. Dev. 3: 896–901.

    PubMed  Google Scholar 

  • Li, W. H., and Gouy, M. (1990). Statistical tests of molecular phylogenies. In:Molecular Evolution: Computer Analysis of Protein and Nucleic Acid Sequences, Methods in Enzymology, Vol. 183, R. F. Doolittle, ed., pp. 645–659. Academic Press, New York.

    Google Scholar 

  • Luckett, W. P., and Hartenberger, J.-L. (1993). Monophyly or polyphyly of the order Rodentia: Possible conflict between morphological and molecular interpretations.J. Mammal. Evol. 1: 127–147.

    Google Scholar 

  • Ma, D.-P., Zharkikh, A., Graur, D., Van de Berg, J. L., and Li, W.-H., (1993). Structure and evolution of opposum, guinea pig, and porpucine cytochrome b genes.J. Mol. Evol. 36: 327–334.

    PubMed  Google Scholar 

  • Meyer, A., and Wilson, A. C. (1990). Origin of tetrapods inferred from their mitochondrial DNA affiliation to lungfish.J. Mol. Evol. 31: 359–364.

    PubMed  Google Scholar 

  • Milinkovitch, M. C. (1992). DNA-DNA hybridizations support ungulate ancestry of Cetacea.J. Evol. Biol. 5: 149–160.

    Google Scholar 

  • Miyamoto, M. M., Kraus, F., and Ryder, O. A. (1990). Phylogeny and evolution of antlered deer determined from mitochondrial DNA sequences.Proc. Natl. Acad. Sci. USA 87: 6127–6131.

    PubMed  Google Scholar 

  • Philippe, H. (1993). MUST: A computer package of Management Utilities for Sequences and Trees.Nucl. Acids Res. 21: 5264–5272.

    PubMed  Google Scholar 

  • Prothero, D. R., Manning, E. M., and Fischer, M. (1988). The phylogeny of the ungulates. In:The Phylogeny and Classification of the Tetrapods, Vol. 2. Mammals, M. J. Benton ed., pp. 201–234, Clarendon Press, Oxford.

    Google Scholar 

  • Rose, K. D. (1982). Skeleton ofDiacodexis, oldest known artiodactyl.Science 216: 621–623.

    Google Scholar 

  • Rose, K. D. (1987). Climbing adaptations in the early Eocene mammalChriacus and the origin of Artiodactyla.Science 236: 314–316.

    PubMed  Google Scholar 

  • Saccone, C., Pesole, G., and Sbisa, E. (1991). The main regulatory region of mammalian mitochondrial DNA: Structure-function model and evolutionary pattern.J. Mol. Evol. 33: 83–91.

    PubMed  Google Scholar 

  • Saitou, N., and Nei, M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees.Mol. Biol. Evol. 4: 406–425.

    PubMed  Google Scholar 

  • Shoshani, J. (1986). Mammalian phylogeny: Comparison of morphological and molecular results.Mol. Biol. Evol. 3: 230–240.

    Google Scholar 

  • Steel, M. A., Lockhart, P. J., and Penny, D. (1993). Confidence in evolutionary trees from biological sequence data.Nature 264: 440–442.

    Google Scholar 

  • Swofford, D. L. (1985).PAUP: Phylogenetic Analysis Using Parsimony, Version 2.4.1, Illinois Natural History Survey, Champaign.

    Google Scholar 

  • Swofford, D. L., and Olsen, G. J. (1990). Phylogeny reconstruction. In:Molecular Systematics, D. M. Hillis and C. Moritz eds., pp. 411–501, Sinauer, Sunderland, MA.

    Google Scholar 

  • Szalay, F. S. (1977). Phylogenetic relationships and a classification of the eutherian Mammalia. In:Major Patterns in Vertebrate Evolution, M. K. Hecht, P. C. Goody, and B. M. Hecht, eds., pp. 315–374, Plenum Press, New York.

    Google Scholar 

  • Tanhauser, S. M. (1985).Evolution of Mitochondrial DNA: Patterns and Rate of Change, Ph. D. dissertation, University of Florida, Gainesville.

    Google Scholar 

  • Thewissen, J. G., and Hussain, S. T. (1993). Origin of underwater hearing in whales.Nature 361: 444–445.

    PubMed  Google Scholar 

  • Van Valen, L. (1966). Deltatheridia, a new order of mammals.Bull. Am. Mus. Nat. Hist. 132: 1–126.

    Google Scholar 

  • Van Valen, L. (1971). Toward the origin of artiodactyls.Evolution 25: 523–529.

    Google Scholar 

  • Wheeler, W. C. (1992). Extinction, sampling, and molecular phylogenetics. In:Extinction and Phylogeny, M. J. Novacek and Q. D. Wheeler, eds., pp. 205–215, Columbia University Press, New York.

    Google Scholar 

  • Zharkikh, A., and Li, W.-H. (1992a). Statistical properties of bootstrap estimation of phylogenetic variability from nucleotide sequences. I. Four taxa with a molecular clock.Mol. Biol. Evol. 9: 1119–1147.

    PubMed  Google Scholar 

  • Zharkikh, A., and Li, W.-H. (1992b). Statistical properties of bootstrap estimation of phylogenetic variability from nucleotide sequences. II. Four taxa without a molecular clock.J. Mol. Evol. 35: 356–366.

    PubMed  Google Scholar 

  • Zharkikh, A., and Li, W.-H. (1993). Inconsistency of the maximum-parsimony method: The case of five taxa with a molecular clock.Syst. Biol. 42: 113–125.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Philippe, H., Douzery, E. The pitfalls of molecular phylogeny based on four species, as illustrated by the Cetacea/Artiodactyla relationships. J Mammal Evol 2, 133–152 (1994). https://doi.org/10.1007/BF01464365

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01464365

Key Words

Navigation